1
|
Murugaiah V, Tsolaki AG, Kishore U. Collectins: Innate Immune Pattern Recognition Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:75-127. [PMID: 32152944 PMCID: PMC7120701 DOI: 10.1007/978-981-15-1580-4_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collectins are collagen-containing C-type (calcium-dependent) lectins which are important pathogen pattern recognising innate immune molecules. Their primary structure is characterised by an N-terminal, triple-helical collagenous region made up of Gly-X-Y repeats, an a-helical coiled-coil trimerising neck region, and a C-terminal C-type lectin or carbohydrate recognition domain (CRD). Further oligomerisation of this primary structure can give rise to more complex and multimeric structures that can be seen under electron microscope. Collectins can be found in serum as well as in a range of tissues at the mucosal surfaces. Mannanbinding lectin can activate the complement system while other members of the collectin family are extremely versatile in recognising a diverse range of pathogens via their CRDs and bring about effector functions designed at the clearance of invading pathogens. These mechanisms include opsonisation, enhancement of phagocytosis, triggering superoxidative burst and nitric oxide production. Collectins can also potentiate the adaptive immune response via antigen presenting cells such as macrophages and dendritic cells through modulation of cytokines and chemokines, thus they can act as a link between innate and adaptive immunity. This chapter describes the structure-function relationships of collectins, their diverse functions, and their interaction with viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
2
|
Yan Z, Sun X, Evans IA, Tyler SR, Song Y, Liu X, Sui H, Engelhardt JF. Postentry processing of recombinant adeno-associated virus type 1 and transduction of the ferret lung are altered by a factor in airway secretions. Hum Gene Ther 2014; 24:786-96. [PMID: 23948055 DOI: 10.1089/hum.2013.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We recently created a cystic fibrosis ferret model that acquires neonatal lung infection. To develop lung gene therapies for this model, we evaluated recombinant adeno-associated virus (rAAV)-mediated gene transfer to the neonatal ferret lung. Unlike in vitro ferret airway epithelial (FAE) cells, in vivo infection of the ferret lung with rAAV1 required proteasome inhibitors to achieve efficient airway transduction. We hypothesized that differences in transduction between these two systems were because of an in vivo secreted factor that alter the transduction biology of rAAV1. Indeed, treatment of rAAV1 with ferret airway secretory fluid (ASF) strongly inhibited rAAV1, but not rAAV2, transduction of primary FAE and HeLa cells. Properties of the ASF inhibitory factor included a strong affinity for the AAV1 capsid, heat-stability, negative charge, and sensitivity to endoproteinase Glu-C. ASF-treated rAAV1 dramatically inhibited apical transduction of FAE ALI cultures (512-fold), while only reducing viral entry by 55-fold, suggesting that postentry processing of virus was influenced by the inhibitor factor. Proteasome inhibitors rescued transduction in the presence of ASF (~1600-fold) without effecting virus internalization, while proteasome inhibitors only enhanced transduction 45-fold in the absence of ASF. These findings demonstrate that a factor in lung secretions can influence intracellular processing of rAAV1 in a proteasome-dependent fashion.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa School of Medicine, Iowa City, IA 52242-1009, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Faure M, Rabourdin-Combe C. Innate immunity modulation in virus entry. Curr Opin Virol 2011; 1:6-12. [PMID: 22440562 PMCID: PMC7102793 DOI: 10.1016/j.coviro.2011.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 02/07/2023]
Abstract
Entry into a cell submits viruses to detection by pattern recognition receptors (PRRs) leading to an early innate anti-viral response. Several viruses evolved strategies to avoid or subvert PRR recognition at the step of virus entry to promote infection. Whereas viruses mostly escape from soluble PRR detection, endocytic/phagocytic PRRs, such as the mannose receptor or DC-SIGN, are commonly used for virus entry. Moreover, virion-incorporated proteins may also offer viruses a way to dampen anti-viral innate immunity upon virus entry, and entering viruses might usurp autophagy to improve their own infectivity.
Collapse
|
4
|
Kneyber MCJ, Plötz FB, Kimpen JLL. Bench-to-bedside review: Paediatric viral lower respiratory tract disease necessitating mechanical ventilation--should we use exogenous surfactant? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2005; 9:550-5. [PMID: 16356236 PMCID: PMC1414027 DOI: 10.1186/cc3823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Treatment of infants with viral lower respiratory tract disease (LRTD) necessitating mechanical ventilation is mainly symptomatic. The therapeutic use of surfactant seems rational because significantly lower levels of surfactant phospholipids and proteins, and impaired capacity to reduce surface tension were observed among infants and young children with viral LRTD. This article reviews the role of pulmonary surfactant in the pathogenesis of paediatric viral LRTD. Three randomized trials demonstrated improved oxygenation and reduced duration of mechanical ventilation and paediatric intensive care unit stay in young children with viral LRTD after administration of exogenous surfactant. This suggest that exogenous surfactant is the first beneficial treatment for ventilated infants with viral LRTD. Additionally, in vitro and animal studies demonstrated that surfactant associated proteins SP-A and SP-D bind to respiratory viruses, play a role in eliminating these viruses and induce an inflammatory response. Although these immunomodulating effects are promising, the available data are inconclusive and the findings are unconfirmed in humans. In summary, exogenous surfactant in ventilated infants with viral LRTD could be a useful therapeutic approach. Its beneficial role in improving oxygenation has already been established in clinical trials, whereas the immunomodulating effects are promising but remain to be elucidated.
Collapse
Affiliation(s)
- Martin CJ Kneyber
- Department of Pediatric Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Frans B Plötz
- Department of Pediatric Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Jan LL Kimpen
- Department of Pediatrics, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
5
|
Casals C, García-Verdugo I. Molecular and Functional Properties of Surfactant Protein A. LUNG BIOLOGY IN HEALTH AND DISEASE 2005. [DOI: 10.1201/b14169-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Kannan TR, Provenzano D, Wright JR, Baseman JB. Identification and characterization of human surfactant protein A binding protein of Mycoplasma pneumoniae. Infect Immun 2005; 73:2828-34. [PMID: 15845487 PMCID: PMC1087375 DOI: 10.1128/iai.73.5.2828-2834.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 12/15/2004] [Accepted: 01/05/2005] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae infections represent a major primary cause of human respiratory diseases, exacerbate other respiratory disorders, and are associated with extrapulmonary pathologies. Cytadherence is a critical step in mycoplasma colonization, aided by a network of mycoplasma adhesins and cytadherence accessory proteins which mediate binding to host cell receptors. Furthermore, the respiratory mucosa is enriched with extracellular matrix components, including surfactant proteins, fibronectin, and mucin, which provide additional in vivo targets for mycoplasma parasitism. In this study we describe interactions between M. pneumoniae and human surfactant protein-A (hSP-A). Initially, we found that viable M. pneumoniae cells bound to immobilized hSP-A in a dose- and calcium (Ca(2+))-dependent manner. Mild trypsin treatment of intact mycoplasmas reduced binding markedly (80 to 90%) implicating a surface-associated mycoplasma protein(s). Using hSP-A-coupled Sepharose affinity chromatography and polyacrylamide gel electrophoresis, we identified a 65-kDa hSP-A binding protein of M. pneumoniae. The presence of Ca(2+) enhanced binding of the 65-kDa protein to hSP-A, which was reduced by the divalent cation-chelating agent, EDTA. The 65-kDa hSP-A binding protein of M. pneumoniae was identified by sequence analysis as a novel protein (MPN372) possessing a putative S1-like subunit of pertussis toxin at the amino terminus (amino acids 1 to 226), with the remaining amino acids (227 to 591) exhibiting no homology with other subunits of pertussis toxin, other known toxins, or any reported proteins. Recombinant MPN372 (MPN372) bound to hSP-A in a dose-dependent manner, which was markedly reduced by preincubation with mouse recombinant MPN372 antisera. Also, adherence of viable M. pneumoniae cells to hSP-A was inhibited by recombinant MPN372 antisera, demonstrating that MPN372, a previously designated hypothetical protein, is surface exposed and mediates mycoplasma attachment to hSP-A.
Collapse
Affiliation(s)
- T R Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Collectins are a family of collagenous calcium-dependent defense lectins in animals. Their polypeptide chains consist of four regions: a cysteine-rich N-terminal domain, a collagen-like region, an alpha-helical coiled-coil neck domain and a C-terminal lectin or carbohydrate-recognition domain. These polypeptide chains form trimers that may assemble into larger oligomers. The best studied family members are the mannan-binding lectin, which is secreted into the blood by the liver, and the surfactant proteins A and D, which are secreted into the pulmonary alveolar and airway lining fluid. The collectins represent an important group of pattern recognition molecules, which bind to oligosaccharide structures and/or lipid moities on the surface of microorganisms. They bind preferentially to monosaccharide units of the mannose type, which present two vicinal hydroxyl groups in an equatorial position. High-affinity interactions between collectins and microorganisms depend, on the one hand, on the high density of the carbohydrate ligands on the microbial surface, and on the other, on the degree of oligomerization of the collectin. Apart from binding to microorganisms, the collectins can interact with receptors on host cells. Binding of collectins to microorganisms may facilitate microbial clearance through aggregation, complement activation, opsonization and activation of phagocytosis, and inhibition of microbial growth. In addition, the collectins can modulate inflammatory and allergic responses, affect apoptotic cell clearance and modulate the adaptive immune system.
Collapse
Affiliation(s)
- J Koenraad van de Wetering
- Department of Biochemistry and Cell Biology, Graduate School of Animal Health, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | | | | |
Collapse
|
8
|
Beutler T, Höflich C, Stevens PA, Krüger DH, Prösch S. Downregulation of the epidermal growth factor receptor by human cytomegalovirus infection in human fetal lung fibroblasts. Am J Respir Cell Mol Biol 2003; 28:86-94. [PMID: 12495936 DOI: 10.1165/rcmb.4881] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epidermal growth factor plays a key role in late fetal lung development and differentiation as well as in regulating surfactant protein A synthesis, which is involved in innate immunity of the lung. Here we show that human cytomegalovirus (HCMV), a known lung pathogen in connatal and postnatal infection of neonates as well as transplant recipients, completely down-regulates EGF receptor (EGF-R) on the surface of human fetal lung fibroblasts. Inhibition of EGF-R synthesis occurs on the transcriptional rather than on the posttranscriptional level. The effect essentially depends on expression of viral immediate early and/or early genes, as binding of ultraviolet light-inactivated virus to the cells had no effect on EGF-R expression. Furthermore, the anti-HCMV drug ganciclovir, which blocks HCMV DNA replication and late gene expression, cannot overcome HCMV-mediated inhibition of EGF-R, suggesting that immediate early or early gene products may be responsible for down-regulation of EGF-R. Interestingly, the glucocorticoid dexamethasone, which is used for its antiinflammatory action to prevent chronic lung disease in preterm infants, promotes HCMV-associated downregulation of the EGF-R by stimulation of viral gene expression. From these data it can be hypothesized that the pathogenesis of HCMV lung infection involves down-regulation of EGF-R and that congenital HCMV infection may cause retardation in lung maturation and surfactant protein synthesis.
Collapse
Affiliation(s)
- Thomas Beutler
- Institute of Virology and Department of Neonatology, University Hospital Charité, Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Abstract
Resident alveolar macrophages play a key role in the initial defense against inhaled pathogens. Surface molecules bind opsonized as well as nonopsonized microbes and mediate their internalization by the macrophage. The recent discovery that specific C-type lectins can bind to the surface of a wide range of pathogens has led to the hypothesis that these lectins are involved in the initial phases of microbe recognition by the macrophage. Studies in our laboratory focus on the role of the lung-specific lectin surfactant associated protein A (SP-A) in host defense against pulmonary pathogens. SP-A contains a carbohdyrate recognition domain that appears to bind specifically to exposed carbohydrate residues on the surface of microorganisms. This lectin-microorganism interaction leads to entry of specific pathogens into macrophages and activation of intracellular pathways, resulting in the production of antimicrobial mediators such as nitric oxide. Many studies, including those involving SP-A-deficient mice, underscore the importance of this protein in pulmonary innate immunity. However, the intramacrophage mechanisms underlying the effects of SP-A are still unclear. This article describes our current knowledge of SP-A and its interactions with immune cells and pathogens with a focus on recent findings from our laboratory regarding SP-A interactions with mycobacteria.
Collapse
Affiliation(s)
- V L Shepherd
- Department of Veterans' Affairs Medical Center, Nashville, TN 37212, USA.
| | | |
Collapse
|
10
|
Abstract
The human collectin system comprises the serum protein, mannose- binding lectin and the hydrophilic surfactant proteins A and D. The three proteins possess structural and functional similarities and are important components of innate immunity. Through a variety of mechanisms, including direct opsonisation and complement activation, they assist in host defence against a wide array of micro-organisms. Investigation of the roles of the surfactant proteins in pulmonary disease has been assisted recently by the development of transgenic knockout mice. Animals deficient in these proteins display susceptibility to certain bacterial and viral pathogens, stimulating research into the role of polymorphisms in these genes in human respiratory disease. The role of MBL in human pulmonary disease is less well established, although accumulating evidence suggests that it is a modifier for lung disease in tuberculosis and cystic fibrosis.
Collapse
Affiliation(s)
- J Davies
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital and Department of Gene Therapy, Imperial College, London, UK
| | | | | |
Collapse
|