1
|
Gonzaga ZJC, Zhang J, Rehm BHA. Intranasal Delivery of Antigen-Coated Polymer Particles Protects against Pseudomonas aeruginosa Infection. ACS Infect Dis 2022; 8:744-756. [PMID: 35238554 DOI: 10.1021/acsinfecdis.1c00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is intrinsically resistant to multiple antibiotics, causing severe and persistent infections in immunocompromised individuals. This bacterium has been listed as a priority pathogen by the WHO in 2017, and there is no vaccine available for human use. In this study, 10 vaccine candidate antigens were selected for particulate vaccine design. We engineered Escherichia coli to assemble biopolymer particles (BPs) that were either coated with epitopes (Ag) derived from OprF/I-AlgE proteins or PopB or PopB-Ag or coated with single or double copies of epitopes (10Ag and 10Ag(2x)) derived from OprF, OprI, AlgE, OprL, PopB, PilA, PilO, FliC, Hcp1, and CdrA. Antigen-coated BPs showed a diameter of 0.93-1.16 μm with negative surface charge. Antigens attached to BPs were identified by mass spectrometry. Vaccination with BP-Ag, BP-PopB, BP-PopBAg, PB-10Ag, and BP-10Ag(2x) with and without Alhydrogel adjuvant induced significant antigen-specific humoral and cell-mediated immune responses in mice. All particulate vaccines with Alhydrogel induced protection in an acute pneumonia murine model of P. aeruginosa infection, contributing to up to 80% survival when administered intramuscularly, and the addition of Alhydrogel boosted immunity. The BP-10Ag(2x) vaccine candidate showed the best performance and even induced protective immunity in the absence of Alhydrogel. Intramuscular administration of the BP-10Ag(2x) without Alhydrogel vaccine resulted in 60% survival. Intranasal vaccination induced immunity, contributing to about 90% survival. Overall, our data suggest that vaccination with BPs coated with P. aeruginosa antigens induce protective immunity against P. aeruginosa infections. The possibility of intranasal delivery will strongly facilitate administration and use of BP vaccines.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
2
|
Cazzola M, Ora J, Cavalli F, Rogliani P, Matera MG. An Overview of the Safety and Efficacy of Monoclonal Antibodies for the Chronic Obstructive Pulmonary Disease. Biologics 2021; 15:363-374. [PMID: 34475751 PMCID: PMC8407524 DOI: 10.2147/btt.s295409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Several mAbs have been tested or are currently under clinical evaluation for the treatment of COPD. They can be subdivided into those that aim to block specific pro-inflammatory and pro-neutrophilic cytokines and chemokines, such as TNF-α, IL-1β, CXCL8 and IL-1β, and those that act on T2-mediated inflammation, respectively, by blocking IL-5 and/or its receptor, preventing IL-4 and IL-13 signaling, affecting IL-33 pathway and blocking TSLP. None of these approaches has proved to be effective, probably because in COPD there is no dominant cytokine or chemokine and, therefore, a single mAb cannot be effective on all pathways. With a more in-depth understanding of the numerous pheno/endotypic pathways that play a role in COPD, it may eventually be possible to identify those specific patients in whom some of these cytokines or chemokines might predominate. In this case, it will be possible to implement a personalized treatment, but the use of each mAb will only be reserved for a very limited number of subjects.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Francesco Cavalli
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
3
|
Gonzaga ZJC, Merakou C, DiGiandomenico A, Priebe GP, Rehm BHA. A Pseudomonas aeruginosa-Derived Particulate Vaccine Protects against P. aeruginosa Infection. Vaccines (Basel) 2021; 9:803. [PMID: 34358220 PMCID: PMC8309987 DOI: 10.3390/vaccines9070803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 01/05/2023] Open
Abstract
Despite numerous efforts to develop an effective vaccine against Pseudomonas aeruginosa, no vaccine has yet been approved for human use. This study investigates the utility of the P. aeruginosa inherently produced polyhydroxyalkanaote (PHA) inclusions and associated host-cell proteins (HCP) as a particulate vaccine platform. We further engineered PHA inclusions to display epitopes derived from the outer membrane proteins OprF/OprI/AlgE (Ag) or the type III secretion system translocator PopB. PHA and engineered PHA beads induced antigen-specific humoral, cell-mediated immune responses, anti-HCP and anti-polysaccharide Psl responses in mice. Antibodies mediated opsonophagocytic killing and serotype-independent protective immunity as shown by 100% survival upon challenge with P. aeruginosa in an acute pneumonia murine model. Vaccines were stable at 4 °C for at least one year. Overall, our data suggest that vaccination with subcellular empty PHA beads was sufficient to elicit multiple immune effectors that can prevent P. aeruginosa infection.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD 4111, Australia;
| | - Christina Merakou
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (C.M.); (G.P.P.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Antonio DiGiandomenico
- Discovery Microbiome, Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 34321, USA;
| | - Gregory P. Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (C.M.); (G.P.P.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD 4111, Australia;
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
4
|
Dosumu OA, Rotimi SO, Adeleye OO, Akamo AJ, Osinuga KT, Taiwo OA, Omotosho OO, Sani LO. Vitamin K protects against 7,12-dimethylbenz(A)anthracene induced hepatotoxicity in Wistar rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:362-373. [PMID: 33063951 DOI: 10.1002/tox.23042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/06/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Humans are daily exposed to 7,12-dimethylbenz(a)anthracene (DMBA), a well known polycyclic aromatic hydrocarbons (PAH). This study investigated the role of dietary intake of Vitamin K (VK), a polyphenolic compound, with potential antioxidative properties, against DMBA-induced hepatotoxicity. Sixty experimental animals (120-150 g) were divided into six groups (A-F): Control, DMBA (80 mg/kg bw) only, VK (0.00 g/10 kg) diet only, VK (7.5 g/10 kg) diet only, DMBA + VK (0.0 g/10 kg) diet and DMBA + VK (7.5 g/10 kg) diet. Single oral administration of DMBA (80 mg/kg body weight) to Wistar rats resulted in hepatic damage after 16 weeks. DMBA significantly (P < .05) decreased the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione peroxidase (GPx). Levels of reduced glutathione (GSH) and Vitamin C were significantly decreased with increase in malondialdehyde (MDA) and nitric oxide (NO) levels in serum and liver. Aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), γ-glutamyltransferase (GGT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were significantly (P < .05) elevated in the serum but reduced in the liver of DMBA-administered group. Ingestion of 7.5 g/10 kg VK diet prevented the up regulations in inflammatory biomarkers (granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin 17A (IL-17A)) which elicited liver damaged in the DMBA-treated group. DMBA induced hepatic alterations in DMBA-treated group but was restored to near normal in VK (7.5 g/10 kg) diet group. These findings suggest the protective potential of increased dietary intake of vitamin K against DMBA-induced hepatic dysfunction.
Collapse
Affiliation(s)
| | | | | | - Adio Jamiu Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Odunayo Anthonia Taiwo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Biochemistry, Chrisland University, Abeokuta, Nigeria
| | | | | |
Collapse
|
5
|
Park B, Liu GY. Staphylococcus aureus and Hyper-IgE Syndrome. Int J Mol Sci 2020; 21:ijms21239152. [PMID: 33271763 PMCID: PMC7729741 DOI: 10.3390/ijms21239152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/30/2022] Open
Abstract
Hyper-immunoglobulin E syndrome (HIES) is a primary immunodeficiency disease characterized by recurrent Staphylococcus aureus (S. aureus) infections, eczema, skeletal abnormalities and high titers of serum immunoglobulin E. Although the genetic basis of HIES was not known for almost a half century, HIES most frequently exhibits autosomal dominant trait that is transmitted with variable expressivity. Careful genetic studies in recent years identified dominant-negative mutations in human signal transducer and activator of transcription 3 (STAT3) gene as the cause of sporadic and dominant forms of HIES. The STAT3 mutations were localized to DNA-binding, SRC homology 2 (SH2) and transactivating domains and disrupted T helper 17 (TH17) cell differentiation and downstream expression of TH17 cytokines IL-17 and IL-22. Deficiency of IL-17 and IL-22 in turn is responsible for suboptimal expression of anti-staphylococcal host factors, such as neutrophil-recruiting chemokines and antimicrobial peptides, by human keratinocytes and bronchial epithelial cells. TH17 cytokines deficiency thereby explains the recurrent staphylococcal lung and skin infections of HIES patients.
Collapse
Affiliation(s)
- Bonggoo Park
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - George Y. Liu
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence:
| |
Collapse
|
6
|
Houston CJ, Taggart CC, Downey DG. The role of inflammation in cystic fibrosis pulmonary exacerbations. Expert Rev Respir Med 2020; 14:889-903. [PMID: 32544353 DOI: 10.1080/17476348.2020.1778469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cystic Fibrosis pulmonary exacerbations are critical events in the lives of people with CF that have deleterious effects on lung function, quality of life, and life expectancy. There are significant unmet needs in the management of exacerbations. We review here the associated inflammatory changes that underlie these events and are of interest for the development of biomarkers of exacerbation. AREAS COVERED Inflammatory responses in CF are abnormal and contribute to a sustained proinflammatory lung microenvironment, abundant in proinflammatory mediators and deficient in counter-regulatory mediators that terminate and resolve inflammation. There is increasing interest in these inflammatory pathways to discover novel biomarkers for pulmonary exacerbation management. In this review, we explore the inflammatory changes occurring during intravenous antibiotic therapy for exacerbation and how they may be applied as biomarkers to guide exacerbation therapy. A literature search was conducted using the PubMed database in February 2020. EXPERT OPINION Heterogeneity in inflammatory responses to treatment of a pulmonary exacerbation, a disease process with complex pathophysiology, limits the clinical utility of individual biomarkers. Biomarker panels may be a more successful strategy to capture informative changes within the CF population to improve pulmonary exacerbation management and outcomes.
Collapse
Affiliation(s)
- Claire J Houston
- Airway Innate Immunity Group (Aiir), Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast , Northern Ireland
| | - Clifford C Taggart
- Airway Innate Immunity Group (Aiir), Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast , Northern Ireland
| | - Damian G Downey
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast , Northern Ireland.,Northern Ireland Regional Adult CF Centre, Belfast Health and Social Care Trust , Belfast, UK
| |
Collapse
|
7
|
Baker SM, McLachlan JB, Morici LA. Immunological considerations in the development of Pseudomonas aeruginosa vaccines. Hum Vaccin Immunother 2019; 16:412-418. [PMID: 31368828 DOI: 10.1080/21645515.2019.1650999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen capable of causing a wide range of potentially life-threatening infections. With multidrug-resistant P. aeruginosa infections on the rise, the need for a rationally-designed vaccine against this pathogen is critical. A number of vaccine platforms have shown promising results in pre-clinical studies, but no vaccine has successfully advanced to licensure. Growing evidence suggests that an effective P. aeruginosa vaccine may require Th17-type CD4+ T cells to prevent infection. In this review, we summarize recent pre-clinical studies of P. aeruginosa vaccines, specifically focusing on those that induce Th17-type cellular immunity. We also highlight the importance of adjuvant selection and immunization route in vaccine design in order to target vaccine-induced immunity to infected tissues. Advances in cellular immunology and adjuvant biology may ultimately influence better P. aeruginosa vaccine platforms that can protect targeted human populations.
Collapse
Affiliation(s)
- Sarah M Baker
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - James B McLachlan
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lisa A Morici
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
8
|
Téo FH, de Oliveira RTD, Villarejos L, Mamoni RL, Altemani A, Menezes FH, Blotta MHSL. Characterization of CD4 + T Cell Subsets in Patients with Abdominal Aortic Aneurysms. Mediators Inflamm 2018; 2018:6967310. [PMID: 30686933 PMCID: PMC6327259 DOI: 10.1155/2018/6967310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/28/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mediators produced by CD4+ T lymphocytes are involved in the pathogenesis of aneurysmal lesions in abdominal aortic aneurysm (AAA) patients. The aim of this study was to identify and characterize the CD4+ T cell subsets involved in human AAA. METHODS The CD4+ T cell subsets in 30 human aneurysmal lesions were determined using flow cytometry (FC) and immunohistochemistry (IHC). The peripheral blood mononuclear cells (PBMCs) from patients with AAA were also analyzed by FC and compared with control subjects. RESULTS Human aneurysmal lesions contained IFN-γ, IL-12p35, IL-4, IL-23p19, IL-17R, and IL-22 positive cells. PBMCs from AAA patients had higher expression levels of IFN-γ, TNF-α, IL-4, and IL-22 when compared to controls. CONCLUSIONS Our results show the presence of TH1, TH2, TH17, and TH22 subsets in aneurysmal lesions of AAA patients and suggest that these cells may be mainly activated in situ, where they can induce tissue degradation and contribute to the pathogenesis of AAA.
Collapse
Affiliation(s)
- Fábio Haach Téo
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Rômulo Tadeu Dias de Oliveira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Liana Villarejos
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Ronei Luciano Mamoni
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
- Faculty of Medicine of Jundiai, Jundiai, São Paulo 13202-550, Brazil
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Fabio Husemann Menezes
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Maria Heloisa Souza Lima Blotta
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| |
Collapse
|
9
|
Merakou C, Schaefers MM, Priebe GP. Progress Toward the Elusive Pseudomonas aeruginosa Vaccine. Surg Infect (Larchmt) 2018; 19:757-768. [PMID: 30388058 DOI: 10.1089/sur.2018.233] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The gram-negative bacterial pathogen Pseudomonas aeruginosa causes a wide range of infections, mostly in hospitalized and immunocompromised patients, those with burns, surgical wounds, or combat-related wounds, and in people with cystic fibrosis. The increasing antibiotic resistance of P. aeruginosa confers a pressing need for vaccines, yet there are no P. aeruginosa vaccines approved for human use, and recent promising candidates have failed in large clinical trials. Discussion: In this review, we summarize recent clinical trials and pre-clinical studies of P. aeruginosa vaccines and provide a suggested framework for the makeup of a future successful vaccine. Murine models of infection suggest that antibodies, specifically opsonophagocytic killing antibodies (OPK), antitoxin antibodies, and anti-attachment antibodies, combined with T cell immunity, specifically TH17 responses, are needed for broad and potent protection against P. aeruginosa infection. A better understanding of the human immune response to P. aeruginosa infections, and to vaccine candidates, will eventually pave the way to a successful vaccine for this wily pathogen.
Collapse
Affiliation(s)
- Christina Merakou
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Matthew M Schaefers
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Gregory P Priebe
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts.,3 Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
10
|
Schaefers MM, Duan B, Mizrahi B, Lu R, Reznor G, Kohane DS, Priebe GP. PLGA-encapsulation of the Pseudomonas aeruginosa PopB vaccine antigen improves Th17 responses and confers protection against experimental acute pneumonia. Vaccine 2018; 36:6926-6932. [PMID: 30314911 DOI: 10.1016/j.vaccine.2018.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
The Pseudomonas aeruginosa type III secretion system protein PopB and its chaperon protein PcrH, when co-administered with the adjuvant curdlan, elicit Th17 responses after intranasal immunization of mice. These PopB/PcrH-curdlan vaccines protect mice against acute lethal pneumonia in an IL-17-dependent fashion involving CD4 helper T cells secreting IL-17 (Th17 cells). In this study, we tested whether encapsulation of PopB/PcrH in poly-lactic-co-glycolic acid (PLGA) nanoparticles could elicit Th17 responses to PopB. Recombinant PopB/PcrH or PcrH alone was encapsulated into PLGA nanoparticles. Mice (FVB/N) were intranasally immunized with the PLGA-PopB/PcrH nanoparticles, PLGA-PcrH nanoparticles, PLGA alone, or PopB/PcrH alone. The protective efficacy was assessed in an acute lung infection model with a lethal dose of an ExoU-producing version of P. aeruginosa strain PAO1. Th17 responses were assayed by intracellular flow cytometry and by ELISA for IL-17 in supernatants of splenocytes co-cultured with purified PopB/PcrH. PLGA-PopB/PcrH-immunized mice showed 3-4-fold higher Th17 responses both in the lung and in the spleen compared to mice immunized with empty PLGA or PopB/PcrH alone. After challenge with P. aeruginosa, PLGA-PopB/PcrH-immunized mice showed significantly lower bacterial counts in the lungs and improved survival. In conclusion, encapsulation of PopB/PcrH in PLGA nanoparticles can elicit Th17 responses to intranasal vaccination and protect mice against acute lethal P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Matthew M Schaefers
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA.
| | - Biyan Duan
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Boaz Mizrahi
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Roger Lu
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Gally Reznor
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Daniel S Kohane
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 USA; Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Gregory P Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
11
|
Cai T, Qiu J, Ji Y, Li W, Ding Z, Suo C, Chang J, Wang J, He R, Qian Y, Guo X, Zhou L, Sheng H, Shen L, Qiu J. IL-17-producing ST2 + group 2 innate lymphoid cells play a pathogenic role in lung inflammation. J Allergy Clin Immunol 2018; 143:229-244.e9. [PMID: 29625134 DOI: 10.1016/j.jaci.2018.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/01/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND IL-17 plays a pathogenic role in asthma. ST2- inflammatory group 2 innate lymphoid cells (ILC2s) driven by IL-25 can produce IL-17, whereas ST2+ natural ILC2s produce little IL-17. OBJECTIVE We characterized ST2+IL-17+ ILC2s during lung inflammation and determined the pathogenesis and molecular regulation of ST2+IL-17+ ILC2s. METHODS Lung inflammation was induced by papain or IL-33. IL-17 production by lung ILC2s from wild-type, Rag1-/-, Rorcgfp/gfp, and aryl hydrocarbon receptor (Ahr)-/- mice was examined by using flow cytometry. Bone marrow transfer experiments were performed to evaluate hematopoietic myeloid differentiation primary response gene-88 (MyD88) signaling in regulating IL-17 production by ILC2s. mRNA expression of IL-17 was analyzed in purified naive ILC2s treated with IL-33, leukotrienes, and inhibitors for nuclear factor of activated T cells, p38, c-Jun N-terminal kinase, or nuclear factor κ light-chain enhancer of activated B cells. The pathogenesis of IL-17+ ILC2s was determined by transferring wild-type or Il17-/- ILC2s to Rag2-/-Il2rg-/- mice, which further induced lung inflammation. Finally, expression of 106 ILC2 signature genes was compared between ST2+IL-17+ ILC2s and ST2+IL-17- ILC2s. RESULTS Papain or IL-33 treatment boosted IL-17 production from ST2+ ILC2s (referred to by us as ILC217s) but not ST2- ILC2s. Ahr, but not retinoic acid receptor-related orphan receptor γt, facilitated the production of IL-17 by ILC217s. The hematopoietic compartment of MyD88 signaling is essential for ILC217 induction. IL-33 works in synergy with leukotrienes, which signal through nuclear factor of activated T-cell activation to promote IL-17 in ILC217s. Il17-/- ILC2s were less pathogenic in lung inflammation. ILC217s concomitantly expressed IL-5 and IL-13 but expressed little GM-CSF. CONCLUSION During lung inflammation, IL-33 and leukotrienes synergistically induce ILC217s. ILC217s are a highly pathogenic and unexpected source for IL-17 in lung inflammation.
Collapse
Affiliation(s)
- Ting Cai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Ji
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjing Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaoyun Ding
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Caixia Suo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiali Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Fla
| | - Huiming Sheng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Lawrence SM, Ruoss JL, Wynn JL. IL-17 in neonatal health and disease. Am J Reprod Immunol 2017; 79:e12800. [PMID: 29243317 DOI: 10.1111/aji.12800] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Over the last few years, scientific interest in the cytokine IL-17A has intensified as its role in human health and disease has been elucidated. Discovered almost a quarter century ago, IL-17A is known to have poor biologic activity when acting alone, but attains robust actions when working synergistically with potent mediators of proinflammatory immune responses, such as IL-6 and IL-8. IL-17A is produced by specialized innate immune cells that protect host barriers from the outside world. Like sentries, these innate immune cells can "sound the alarm" through increased production of IL-17A, causing activation and recruitment of primed neutrophils and monocytes when pathogens escape initial host defenses. In this way, IL-17A promulgates mechanisms responsible for pathogen death and clearance. However, when IL-17A pathways are triggered during fetal development, due to chorioamnionitis or in utero inflammatory conditions, IL-17A can instigate and/or exacerbate fetal inflammatory responses that increase neonatal morbidities and mortality associated with common neonatal conditions such as sepsis, bronchopulmonary dysplasia (BPD), patent ductus arteriosus (PDA), and necrotizing enterocolitis (NEC). This review details the ontogeny of IL-17A in the fetus and newborn, discusses how derangements in its production can lead to pathology, and describes known and evolving therapies that may attenuate IL-17A-mediated human conditions.
Collapse
Affiliation(s)
- Shelley M Lawrence
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, College of Medicine, University of California, San Diego, La Jolla, CA, USA.,Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Lauren Ruoss
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - James L Wynn
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Matera MG, Page C, Rogliani P, Calzetta L, Cazzola M. Therapeutic Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 2016; 76:1257-1270. [DOI: 10.1007/s40265-016-0625-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Lendermon EA, Dodd-o JM, Coon TA, Miller HL, Ganguly S, Popescu I, O'Donnell CP, Cardenes N, Levine M, Rojas M, Weathington NM, Zhao J, Zhao Y, McDyer JF. CD8(+)IL-17(+) T Cells Mediate Neutrophilic Airway Obliteration in T-bet-Deficient Mouse Lung Allograft Recipients. Am J Respir Cell Mol Biol 2015; 52:622-33. [PMID: 25286244 DOI: 10.1165/rcmb.2014-0059oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet(-/-) recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet(-/-) recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8(+) T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ-dominant responses in WT mice. CD4(+) T cells produced IL-17 but not IFN-γ responses in T-bet(-/-) recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8(+)IFN-γ(+) responses in both T-bet(-/-) and WT mice but had no attenuating effect on lung rejection pathology in T-bet(-/-) recipients or on the development of obliterative airway inflammation that occurred only in T-bet(-/-) recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade-resistant rejection pathology and airway inflammation in T-bet(-/-) recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet(-/-) allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet-deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade-resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8(+)IL-17(+) T cells. Our data support T-bet-deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation.
Collapse
Affiliation(s)
- Elizabeth A Lendermon
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Spann KM, Loh Z, Lynch JP, Ullah A, Zhang V, Baturcam E, Werder RB, Khajornjiraphan N, Rudd P, Loo YM, Suhrbier A, Gale M, Upham JW, Phipps S. IRF-3, IRF-7, and IPS-1 promote host defense against acute human metapneumovirus infection in neonatal mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1795-806. [PMID: 24726644 DOI: 10.1016/j.ajpath.2014.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/27/2014] [Accepted: 02/18/2014] [Indexed: 12/16/2022]
Abstract
Human metapneumovirus (hMPV) is a leading cause of respiratory tract disease in children and is associated with acute bronchiolitis, pneumonia, and asthma exacerbations, yet the mechanisms by which the host immune response to hMPV is regulated are poorly understood. By using gene-deleted neonatal mice, we examined the contributions of the innate receptor signaling molecules interferon (IFN)-β promoter stimulator 1 (IPS-1), IFN regulatory factor (IRF) 3, and IRF7. Viral load in the lungs was markedly greater in IPS-1(-/-) > IRF3/7(-/-) > IRF3(-/-), but not IRF7(-/-), mice compared with wild-type mice. IFN-β and IFN-λ2/3 (IL-28A/B) production was attenuated in the bronchoalveolar lavage fluid in all factor-deficient mice compared with wild-type mice at 1 day after infection, although IFN-λ2/3 was greater in IRF3/7(-/-) mice at 5 days after infection. IRF7(-/-) and IRF3/7(-/-) mice presented with airway eosinophilia, whereas only IRF3/7(-/-) mice developed an exaggerated type 1 and 17 helper T-cell response, characterized by natural killer T-cell and neutrophilic inflammation. Despite having the highest viral load, IPS-1(-/-) mice did not develop a proinflammatory cytokine or granulocytic response to hMPV infection. Our findings demonstrate that IFN-β, but not IFN-λ2/3, produced via an IPS-1-IRF3 signaling pathway, is important for hMPV clearance. In the absence of a robust type I IFN-α/β response, targeting the IPS-1 signaling pathway may limit the overexuberant inflammatory response that occurs as a consequence of viral persistence.
Collapse
Affiliation(s)
- Kirsten M Spann
- Clinical Medical Virology Centre, University of Queensland, St. Lucia, Australia; Sir Albert Sakzewski Virus Research Centre, Children's Hospital Queensland, Australia; Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia.
| | - Zhixuan Loh
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | - Jason P Lynch
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | - Ashik Ullah
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Vivian Zhang
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | - Engin Baturcam
- Clinical Medical Virology Centre, University of Queensland, St. Lucia, Australia; Sir Albert Sakzewski Virus Research Centre, Children's Hospital Queensland, Australia; Queensland Childrens Medical Research Institute, University of Queensland, Herston, Australia
| | - Rhiannon B Werder
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | | | - Penny Rudd
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia; QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| | - Yeuh-Ming Loo
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia; QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
| | - John W Upham
- Lung and Allergy Research Centre, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Australia; Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, Australia
| | - Simon Phipps
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia; School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
16
|
Priebe GP, Goldberg JB. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev Vaccines 2014; 13:507-19. [PMID: 24575895 DOI: 10.1586/14760584.2014.890053] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the recognition of Pseudomonas aeruginosa as an opportunistic pathogen, no vaccine against this bacteria has come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed.
Collapse
|
17
|
Rzepecka J, Siebeke I, Coltherd JC, Kean DE, Steiger CN, Al-Riyami L, McSharry C, Harnett MM, Harnett W. The helminth product, ES-62, protects against airway inflammation by resetting the Th cell phenotype. Int J Parasitol 2013; 43:211-23. [PMID: 23291461 PMCID: PMC3584281 DOI: 10.1016/j.ijpara.2012.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 12/23/2022]
Abstract
We previously demonstrated inhibition of ovalbumin-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct targeting of mast cells remained unclear as suppression of the Th2 phenotype of the inflammatory response, as measured by eosinophilia and IL-4 levels in the lungs, was also observed. We now show that inhibition of the lung Th2 phenotype is reflected in ex vivo analyses of draining lymph node recall cultures and accompanied by a decrease in the serum levels of total and ovalbumin-specific IgE. Moreover, ES-62 also suppresses the lung infiltration by neutrophils that is associated with severe asthma and is generally refractory to conventional anti-inflammatory therapies, including steroids. Protection against Th2-associated airway inflammation does not reflect induction of regulatory T cell responses (there is no increased IL-10 or Foxp3 expression) but rather a switch in polarisation towards increased Tbet expression and IFNγ production. This ES-62-driven switch in the Th1/Th2 balance is accompanied by decreased IL-17 responses, a finding in line with reports that IFNγ and IL-17 are counter-regulatory. Consistent with ES-62 mediating its effects via IFNγ-mediated suppression of pathogenic Th2/Th17 responses, we found that neutralising anti-IFNγ antibodies blocked protection against airway inflammation in terms of pro-inflammatory cell infiltration, particularly by neutrophils, and lung pathology. Collectively, these studies indicate that ES-62, or more likely small molecule analogues, could have therapeutic potential in asthma, in particular for those subtypes of patients (e.g. smokers, steroid-resistant) who are refractory to current treatments.
Collapse
Affiliation(s)
- Justyna Rzepecka
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The key role of interleukin-17 (IL-17) and T helper 17 (T(H)17) cells in tissue inflammation, autoimmunity and host defence led to the experimental targeting of these molecules in mouse models of diseases as well as in clinical settings. Moreover, the demonstration that IL-17 and T(H)17 cells contribute to local and systemic aspects of disease pathogenesis, as well as the finding that the IL-17-T(H)17 cell pathway is regulated by IL-23, prompted the identification of inhibitors. These inhibitors include biotechnology products that target IL-23 as well as the leading member of the IL-17 family, IL-17A, and one of its receptors, IL-17 receptor A. Several clinical trials of these inhibitors are underway, and positive results have been obtained in psoriasis, rheumatoid arthritis and ankylosing spondylitis. This Review focuses on the current knowledge of the IL-17-T(H)17 cell pathway to better understand the positive as well as potential negative consequences of targeting them.
Collapse
|
19
|
Spertini F, Reymond C, Leimgruber A. Allergen-specific immunotherapy of allergy and asthma: current and future trends. Expert Rev Respir Med 2012; 3:37-51. [PMID: 20477281 DOI: 10.1586/17476348.3.1.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Allergen-specific immunotherapy is the only immunomodulatory and etiological therapy of allergy and asthma. Conventional specific immunotherapy (SIT) with whole-allergen extract is antigen specific, effective on multiple organs, efficient on asthma in defined conditions, provides long-lasting protection and is cost effective. Moreover, SIT is able to prevent the course of rhinitis to asthma. SIT has its drawbacks: the long duration of treatment, the unsatisfactory standardization of allergen extracts and a questionable safety level. Novel approaches are aimed at drastically reducing adverse anaphylactic events, shortening the duration of therapy and improving its efficacy. Novel promising approaches have based their formulation on a limited set of recombinant allergens or chimeric molecules as well as on hypoallergenic allergen fragments or peptides. The simultaneous use of adjuvants with immunomodulatory properties may contribute to improve both the safety and efficacy of allergen-SIT of allergy and asthma.
Collapse
Affiliation(s)
- François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
20
|
Vultaggio A, Nencini F, Pratesi S, Petroni G, Romagnani S, Maggi E. Poly(I:C) promotes the production of IL-17A by murine CD1d-driven invariant NKT cells in airway inflammation. Allergy 2012; 67:1223-32. [PMID: 22882449 DOI: 10.1111/j.1398-9995.2012.02876.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 01/08/2023]
Affiliation(s)
- A. Vultaggio
- Immunoallergology Unit; Azienda Ospedaliero-Universitaria Careggi; University of Florence; Florence; Italy
| | | | | | | | | | | |
Collapse
|
21
|
Vultaggio A, Nencini F, Pratesi S, Petroni G, Romagnani S, Maggi E. Poly(I:C) promotes the production of IL-17A by murine CD1d-driven invariant NKT cells in airway inflammation. Allergy 2012. [PMID: 22882449 DOI: 10.1111/j.1398-9995.2012.02876.x.] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND IL-17A is associated with different asthma phenotypes as virus-associated or steroid-resistant asthma. Invariant natural killer T (iNKT) cells play an important role in the pathogenesis of asthma. The aim of the study was to evaluate the activity of polyinosinic-polycytidylic acid [poly(I:C)] on IL-17A production by CD1d-activated iNKT cells. METHODS We analysed the in vitro effect of poly(I:C) on the release of IL-17A by spleen and lung CD1d-activated iNKT cells with α-galactosylceramide (α-GalCer). Its activity was also investigated in an α-GalCer-induced murine models, including lung inflammation. The inhibition of IL-17A by Toll-like receptor (TLR) 7 agonists in the same in vitro and in vivo models has been analysed. RESULTS Poly(I:C) upregulated the in vitro IL-17A production by CD1d-activated NK1.1- CD4- iNKT subset, without modifying type 1 and type 2 cytokines. The two stimuli selectively upregulated IL-17A serum levels in vivo. Their intratracheal administration resulted in increased airway hyper-reactivity (AHR), neutrophilia in bronchoalveolar lavage and airway inflammation, which were inhibited by anti-IL-17A antibody. Poly(I:C) effects were attributable to IL1β and IL-23 release from dendritic cells, as showed by inhibition with neutralizing antibodies. TLR7 agonists inhibited the IL-17A production by poly(I:C) plus α-GalCer in the same models. Such effect was associated with the increased production by DC of IL-17A-inhibiting cytokines and the dampening of IL-1β and IL-23. CONCLUSIONS Synthetic dsRNA selectively expand a CD1d-driven IL-17A-producing iNKT cell subset, thus explaining the worsening of airway inflammation by some viral infections. TLR3- and TLR7-triggering viral sequences can exert variable and opposite effects on adaptive immune response.
Collapse
Affiliation(s)
- A Vultaggio
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Asthma is perceived as a heterogeneous disease with several clinical phenotypes and triggering factors. In general, cytokines from T-helper 2 cells are believed to be critical contributors of asthma. In recent years, IL-17, another T-helper lymphocyte-associated cytokine, has been put forward as another potentially important mediator of asthma. Currently, several drugs that target IL-17 signaling are being tested in clinical trials. With the aim to find whether there are any specific features of this heterogeneous disease that potentially could be relieved by the use of IL-17-targeting drugs, this review scrutinizes the evidence for an involvement of IL-17 in human asthma.
Collapse
Affiliation(s)
- Elin Silverpil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | | |
Collapse
|
23
|
Carmona EM, Kottom TJ, Hebrink DM, Moua T, Singh RD, Pagano RE, Limper AH. Glycosphingolipids mediate pneumocystis cell wall β-glucan activation of the IL-23/IL-17 axis in human dendritic cells. Am J Respir Cell Mol Biol 2012; 47:50-9. [PMID: 22343219 PMCID: PMC3402796 DOI: 10.1165/rcmb.2011-0159oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 02/02/2012] [Indexed: 01/04/2023] Open
Abstract
Pneumocystis species are opportunistic fungal organisms that cause severe pneumonia in immune-compromised hosts, with resultant high morbidity and mortality. Recent work indicates that IL-17 responses are important components of host defense against fungal pathogens. In the present study, we demonstrate that cell-surface β-glucan components of Pneumocystis (PCBG) stimulate human dendritic cells (DCs) to secrete IL-23 and IL-6. These cytokines are well established to stimulate a T helper-17 (Th17) phenotype. Accordingly, we further observe that PCBG-stimulated human DCs interact with lymphocytes to drive the secretion of IL-17 and IL-22, both Th17-produced cytokines. The activation of DCs was shown to involve the dectin-1 receptor with a downstream activation of the Syk kinase and subsequent translocation of both the canonical and noncanonical components of the NF-κB transcription factor family. Finally, we demonstrate that glycosphingolipid-rich microdomains of the plasma membrane participate in the activation of DCs by PCBG through the accumulation of lactosylceramide at the cell surface during stimulation with PCBG. These data strongly support the idea that the β-glucan surface components of Pneumocystis drive the activation of the IL-23/IL-17 axis during this infection, through a glycosphingolipid-initiated mechanism.
Collapse
Affiliation(s)
- Eva M. Carmona
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Theodore J. Kottom
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Deanne M. Hebrink
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Teng Moua
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Raman-Deep Singh
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Richard E. Pagano
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Andrew H. Limper
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| |
Collapse
|
24
|
Mizutani N, Goshima H, Nabe T, Yoshino S. Complement C3a-induced IL-17 plays a critical role in an IgE-mediated late-phase asthmatic response and airway hyperresponsiveness via neutrophilic inflammation in mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:5694-705. [PMID: 22539791 DOI: 10.4049/jimmunol.1103176] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Allergen-specific IgE plays an essential role in the pathogenesis of allergic asthma. Although there has been increasing evidence suggesting the involvement of IL-17 in the disease, the relationship between IL-17 and IgE-mediated asthmatic responses has not yet been defined. In this study, we attempted to elucidate the contribution of IL-17 to an IgE-mediated late-phase asthmatic response and airway hyperresponsiveness (AHR). BALB/c mice passively sensitized with an OVA-specific IgE mAb were challenged with OVA intratracheally four times. The fourth challenge caused a late-phase increase in airway resistance associated with elevated levels of IL-17(+)CD4(+) cells in the lungs. Multiple treatments with a C3a receptor antagonist or anti-C3a mAb during the challenges inhibited the increase in IL-17(+)CD4(+) cells. Meanwhile, a single treatment with the antagonist or the mAb at the fourth challenge suppressed the late-phase increase in airway resistance, AHR, and infiltration by neutrophils in bronchoalveolar lavage fluid. Because IL-17 production in the lungs was significantly repressed by both treatments, the effect of an anti-IL-17 mAb was examined. The late-phase increase in airway resistance, AHR, and infiltration by neutrophils in bronchoalveolar lavage fluid was inhibited. Furthermore, an anti-Gr-1 mAb had a similar effect. Collectively, we found that IgE mediated the increase of IL-17(+)CD4(+) cells in the lungs caused by repeated Ag challenges via C3a. The mechanisms leading to the IgE-mediated late-phase asthmatic response and AHR are closely associated with neutrophilic inflammation through the production of IL-17 induced by C3a.
Collapse
Affiliation(s)
- Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, Higashinada, Kobe 658-8558, Japan.
| | | | | | | |
Collapse
|
25
|
Liu C, Swaidani S, Qian W, Kang Z, Sun P, Han Y, Wang C, Gulen MF, Yin W, Zhang C, Fox PL, Aronica M, Hamilton TA, Misra S, Deng J, Li X. A CC' loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17- and IL-25-induced inflammation. Sci Signal 2011; 4:ra72. [PMID: 22045852 DOI: 10.1126/scisignal.2001843] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin-17 (IL-17) and IL-25 signaling induce the expression of genes encoding inflammatory factors and are implicated in the pathology of various inflammatory diseases. Nuclear factor κB (NF-κB) activator 1 (Act1) is an adaptor protein and E3 ubiquitin ligase that is critical for signaling by either IL-17 or IL-25, and it is recruited to their receptors (IL-17R and IL-25R) through heterotypic interactions between the SEFIR [SEF (similar expression to fibroblast growth factor genes) and IL-17R] domain of Act1 and that of the receptor. SEFIR domains have structural similarity with the Toll-IL-1 receptor (TIR) domains of Toll-like receptors and IL-1R. Whereas the BB' loop of TIR is required for TIR-TIR interactions, we found that deletion of the BB' loop from Act1 or IL-17RA (a common subunit of both IL-17R and IL-25R) did not affect Act1-IL-17RA interactions; rather, deletion of the CC' loop from Act1 or IL-17RA abolished the interaction between both proteins. Surface plasmon resonance measurements showed that a peptide corresponding to the CC' loop of Act1 bound directly to IL-17RA. A cell-permeable decoy peptide based on the CC' loop sequence inhibited IL-17- or IL-25-mediated signaling in vitro, as well as IL-17- and IL-25-induced pulmonary inflammation in mice. Together, these findings provide the molecular basis for the specificity of SEFIR-SEFIR versus TIR-TIR domain interactions and consequent signaling. Moreover, we suggest that the CC' loop motif of SEFIR domains is a promising target for therapeutic strategies against inflammatory diseases associated with IL-17 or IL-25 signaling.
Collapse
Affiliation(s)
- Caini Liu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kitajima M, Lee HC, Nakayama T, Ziegler SF. TSLP enhances the function of helper type 2 cells. Eur J Immunol 2011; 41:1862-71. [PMID: 21484783 DOI: 10.1002/eji.201041195] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/07/2011] [Accepted: 04/08/2011] [Indexed: 12/22/2022]
Abstract
The cytokine thymic stromal lymphopoietin (TSLP) has been implicated in the development and progression of allergic inflammation in both humans and mice. TSLP has been shown to promote a Th2-type response through upregulation of OX40L on dendritic cells, and through direct induction of IL-4 production in naïve CD4+ T cells. However, its direct effect on effector Th cells has not been extensively investigated. In this study, we show that the level of TSLP receptor (TSLPR) expression on mouse effector Th2 cells is higher than on Th1 and Th17 cells, and that TSLP induced proliferation of effector Th2, but not Th1 nor Th17 cells. TSLP also induced the phosphorylation of signal transducer and activator of transcription (Stat) 5, and expression of the anti-apoptotic factor Bcl-2 in Th2 cells. Finally, TSLP-mediated proliferation on Th2 cells was enhanced by TCR stimulation, through IL-4-mediated induction of TSLPR expression. Taken together, these results indicate that TSLP is involved in exacerbation of mouse Th2-mediated allergic inflammation in a Th2 environment through direct stimulation of Th2 effector cells.
Collapse
Affiliation(s)
- Masayuki Kitajima
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | | | | | | |
Collapse
|
27
|
Jan RH, Lin TY, Hsu YC, Lee SS, Lo SY, Chang M, Chen LK, Lin YL. Immuno-modulatory activity of Ganoderma lucidum-derived polysacharide on human monocytoid dendritic cells pulsed with Der p 1 allergen. BMC Immunol 2011; 12:31. [PMID: 21612588 PMCID: PMC3127845 DOI: 10.1186/1471-2172-12-31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/25/2011] [Indexed: 02/04/2023] Open
Abstract
Background Ganoderma lucidum-derived polysaccharide (PS-G) can rapidly and effectively promote the activation and maturation of immature dendritic cells (DCs), suggesting that PS-G possesses the capacity to regulate immune responses. This study aimed to clarify the immunologic effect of PS-G on monocyte-derived dendritic cells (MD-DCs) from asthmatic children allergic to house dust mites. The MD-DCs were stimulated for 24 h with the related allergen, Der p 1, in the presence or absence of PS-G. Cell surface markers and phagocytic capacity were assessed by FACS analysis, and key polarizing cytokines (IL-12 p40, IL-12 p70, IL-6, IL-23, and IL-10) were quantified. The subsequent regulatory effect of pulsed MD-DCs on naïve T cells was evaluated by determining the T-cell cytokine profile. Results PS-G induced the maturation of MD-DCs and decreased phagocytic capacity, even if pulsed with Der p 1. After incubation with PS-G and Der p 1, MD-DCs produced higher amounts of IL-12 p70, IL-12 p40, IL-6, IL-23, and IL10 than Der p 1-pulsed DCs. Furthermore, type 1 helper T (Th1) cell cytokine (INF-γ) production was highly increased when naïve autologous T cells were co-cultured with Der p 1-pulsed MD-DCs. Naïve T cells stimulated by MD-DCs pulsed with Der p 1 failed to produce proliferation of T-cells, whereas the addition of PS-G to Der p 1 induced a significant proliferation of T-cells similar to that observed with PS-G alone. Conclusion The presence of PS-G in an allergen pulse promoted allergic MD-DCs to produce IL-12 p70, IL-12 p40, IL-6, IL-23, and IL-10, and exerted an effect on shifting the immune balance towards Th1 in children with allergic asthma.
Collapse
Affiliation(s)
- Rong-Hwa Jan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Qian X, Ning H, Zhang J, Hoft DF, Stumpo DJ, Blackshear PJ, Liu J. Posttranscriptional regulation of IL-23 expression by IFN-gamma through tristetraprolin. THE JOURNAL OF IMMUNOLOGY 2011; 186:6454-64. [PMID: 21515794 DOI: 10.4049/jimmunol.1002672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-23 plays an essential role in maintenance of IL-17-producing Th17 cells that are involved in the pathogenesis of several autoimmune diseases. Regulation of Th17 cells is tightly controlled by multiple factors such as IL-27 and IFN-γ. However, the detailed mechanisms responsible for IFN-γ-mediated Th17 cell inhibition are still largely unknown. In this study, we demonstrate that IFN-γ differentially regulates IL-12 and IL-23 production in both dendritic cells and macrophages. IFN-γ suppresses IL-23 expression by selectively targeting p19 mRNA stability through its 3'-untranslated region (3'UTR). Furthermore, IFN-γ enhances LPS-induced tristetraprolin (TTP) mRNA expression and protein production. Overexpression of TTP suppresses IL-23 p19 mRNA expression and p19 3'UTR-dependent luciferase activity. Additionally, deletion of TTP completely abolishes IFN-γ-mediated p19 mRNA degradation. We further demonstrate that IFN-γ suppresses LPS-induced p38 phosphorylation, and blockade of p38 MAPK signaling pathway with SB203580 inhibits IFN-γ- and LPS-induced p19 mRNA expression, whereas overexpression of p38 increases p19 mRNA expression via reducing TTP binding to the p19 3'UTR. Finally, inhibition of p38 phosphorylation by IFN-γ leads to TTP dephosphorylation that could result in stronger binding of the TTP to the adenosine/uridine-rich elements in the p19 3'UTR and p19 mRNA degradation. In summary, our results reveal a direct link among TTP, IFN-γ, and IL-23, indicating that IFN-γ-mediated Th17 cell suppression might act through TTP by increasing p19 mRNA degradation and therefore IL-23 inhibition.
Collapse
Affiliation(s)
- Xuesong Qian
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kim H, Kim JY, Song HS, Park KU, Mun KC, Ha E. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 383:555-62. [DOI: 10.1007/s00210-011-0633-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/28/2011] [Indexed: 11/30/2022]
|
30
|
Vultaggio A, Nencini F, Pratesi S, Maggi L, Guarna A, Annunziato F, Romagnani S, Parronchi P, Maggi E. The TLR7 ligand 9-benzyl-2-butoxy-8-hydroxy adenine inhibits IL-17 response by eliciting IL-10 and IL-10-inducing cytokines. THE JOURNAL OF IMMUNOLOGY 2011; 186:4707-15. [PMID: 21389257 DOI: 10.4049/jimmunol.1002398] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study evaluates the ability of a novel TLR7 ligand (9-benzyl-2-butoxy-8-hydroxy adenine, called SA-2) to affect IL-17 response. The SA-2 activity on the expression of IL-17A and IL-17-related molecules was evaluated in acute and chronic models of asthma as well as in in vivo and in vitro α-galactosyl ceramide (α-GalCer)-driven systems. SA-2 prepriming reduced neutrophils in bronchoalveolar lavage fluid and decreased methacoline-induced airway hyperresponsiveness in murine asthma models. These results were associated with the reduction of IL-17A (and type 2 cytokines) as well as of molecules favoring Th17 (and Th2) development in lung tissue. The IL-17A production in response to α-GalCer by spleen mononuclear cells was inhibited in vitro by the presence of SA-2. Reduced IL-17A (as well as IFN-γ and IL-13) serum levels in mice treated with α-GalCer plus SA-2 were also observed. The in vitro results indicated that IL-10 produced by B cells and IL-10-promoting molecules such as IFN-α and IL-27 by dendritic cells are the major player for SA-2-driven IL-17A (and also IFN-γ and IL-13) inhibition. The in vivo experiments with anti-cytokine receptor Abs provided evidence of an early IL-17A inhibition essentially due to IL-10 produced by resident peritoneal cells and of a delayed IL-17A inhibition sustained by IFN-α and IL-27, which in turn drive effector T cells to IL-10 production. These findings suggest that such TLR7 agonist downregulating Th17 (as well as Th2) response has to be considered a valid candidate for novel vaccine formulations in allergy.
Collapse
|
31
|
Liu Y, Mei J, Gonzales L, Yang G, Dai N, Wang P, Zhang P, Favara M, Malcolm KC, Guttentag S, Worthen GS. IL-17A and TNF-α exert synergistic effects on expression of CXCL5 by alveolar type II cells in vivo and in vitro. THE JOURNAL OF IMMUNOLOGY 2011; 186:3197-205. [PMID: 21282514 DOI: 10.4049/jimmunol.1002016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CXCL5, a member of the CXC family of chemokines, contributes to neutrophil recruitment during lung inflammation, but its regulation is poorly understood. Because the T cell-derived cytokine IL-17A enhances host defense by triggering production of chemokines, particularly in combination with TNF-α, we hypothesized that IL-17A would enhance TNF-α-induced expression of CXCL5. Intratracheal coadministration of IL-17A and TNF-α in mice induced production of CXCL1, CXCL2, and CXCL5, which was associated with increased neutrophil influx in the lung at 8 and 24 h. The synergistic effects of TNF-α and IL17A were greatly attenuated in Cxcl5(-/-) mice at 24 h, but not 8 h, after exposure, a time when CXCL5 expression was at its peak in wild-type mice. Bone marrow chimeras produced using Cxcl5(-/-) donors and recipients demonstrated that lung-resident cells were the source of CXCL5. Using differentiated alveolar epithelial type II (ATII) cells derived from human fetal lung, we found that IL-17A enhanced TNF-α-induced CXCL5 transcription and stabilized TNF-α-induced CXCL5 transcripts. Whereas expression of CXCL5 required activation of NF-κB, IL-17A did not increase TNF-α-induced NF-κB activation. Apical costimulation of IL-17A and TNF-α provoked apical secretion of CXCL5 by human ATII cells in a transwell system, whereas basolateral costimulation led to both apical and basolateral secretion of CXCL5. The observation that human ATII cells secrete CXCL5 in a polarized fashion may represent a mechanism to recruit neutrophils in host defense in a fashion that discriminates the site of initial injury.
Collapse
Affiliation(s)
- Yuhong Liu
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19014, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Picard D, Janela B, Descamps V, D'Incan M, Courville P, Jacquot S, Rogez S, Mardivirin L, Moins-Teisserenc H, Toubert A, Benichou J, Joly P, Musette P. Drug reaction with eosinophilia and systemic symptoms (DRESS): a multiorgan antiviral T cell response. Sci Transl Med 2010; 2:46ra62. [PMID: 20739682 DOI: 10.1126/scitranslmed.3001116] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug reaction with eosinophilia and systemic symptoms (DRESS) is a severe, drug-induced reaction that involves both the skin and the viscera. Evidence for reactivation of herpes family viruses has been seen in some DRESS patients. To understand the immunological components of DRESS and their relationship to viral reactivation, we prospectively assessed 40 patients exhibiting DRESS in response to carbamazepine, allopurinol, or sulfamethoxazole. Peripheral blood T lymphocytes from the patients were evaluated for phenotype, cytokine secretion, and repertoire of CD4+ and CD8+ and for viral reactivation. We found Epstein-Barr virus (EBV), human herpes virus 6 (HHV-6), or HHV-7 reactivation in 76% of the patients. In all patients, circulating CD8+ T lymphocytes were activated, exhibited increased cutaneous homing markers, and secreted large amounts of tumor necrosis factor-alpha and interferon-gamma. The production of these cytokines was particularly high in patients with the most severe visceral involvement. In addition, expanded populations of CD8+ T lymphocytes sharing the same T cell receptor repertoire were detected in the blood, skin, liver, and lungs of patients. Nearly half of these expanded blood CD8+ T lymphocytes specifically recognized one of several EBV epitopes. Finally, we found that the culprit drugs triggered the production of EBV in patients' EBV-transformed B lymphocytes. Thus, cutaneous and visceral symptoms of DRESS are mediated by activated CD8+ T lymphocytes, which are largely directed against herpes viruses such as EBV.
Collapse
Affiliation(s)
- Damien Picard
- INSERM U905, Rouen University Hospital, Rouen 76000, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cochrane M, Armitage CW, O’Meara CP, Beagley KW. Towards a Chlamydia trachomatis vaccine: how close are we? Future Microbiol 2010; 5:1833-56. [DOI: 10.2217/fmb.10.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable blindness worldwide. The incidence of chlamydial sexually transmitted infections has increased rapidly and current antibiotic therapy has failed as an intervention strategy. The most accepted strategy for protection and/or control of chlamydial infections is a vaccine that induces both local neutralizing antibodies to prevent infections by the extracellular elementary bodies and a cell-mediated immune response to target the intracellular infection. This article will discuss the challenges in vaccine design for the prevention of chlamydial urogenital infection and/or disease, including selection of target antigens, discussion of effective delivery systems, immunization routes and adjuvants for induction of protective immunity at the targeted mucosal surface whilst minimizing severe inflammatory disease sequelae.
Collapse
Affiliation(s)
- Melanie Cochrane
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Charles W Armitage
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Connor P O’Meara
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | | |
Collapse
|
34
|
Wang YH, Voo KS, Liu B, Chen CY, Uygungil B, Spoede W, Bernstein JA, Huston DP, Liu YJ. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. ACTA ACUST UNITED AC 2010; 207:2479-91. [PMID: 20921287 PMCID: PMC2964570 DOI: 10.1084/jem.20101376] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inflammatory cytokine interleukin (IL)-17 is involved in the pathogenesis of allergic diseases. However, the identity and functions of IL-17-producing T cells during the pathogenesis of allergic diseases remain unclear. Here, we report a novel subset of T(H)2 memory/effector cells that coexpress the transcription factors GATA3 and RORγt and coproduce T(H)17 and T(H)2 cytokines. Classical T(H)2 memory/effector cells had the potential to produce IL-17 after stimulation with proinflammatory cytokines IL-1β, IL-6, and IL-21. The number of IL-17-T(H)2 cells was significantly increased in blood of patients with atopic asthma. In a mouse model of allergic lung diseases, IL-17-producing CD4(+) T(H)2 cells were induced in the inflamed lung and persisted as the dominant IL-17-producing T cell population during the chronic stage of asthma. Treating cultured bronchial epithelial cells with IL-17 plus T(H)2 cytokines induced strong up-regulation of chemokine eotaxin-3, Il8, Mip1b, and Groa gene expression. Compared with classical T(H)17 and T(H)2 cells, antigen-specific IL-17-producing T(H)2 cells induced a profound influx of heterogeneous inflammatory leukocytes and exacerbated asthma. Our findings highlight the plasticity of T(H)2 memory cells and suggest that IL-17-producing T(H)2 cells may represent the key pathogenic T(H)2 cells promoting the exacerbation of allergic asthma.
Collapse
Affiliation(s)
- Yui-Hsi Wang
- Division of Allergy and Immunology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The role of interleukin (IL)-17 and the IL-17-producing T helper (Th)17 cells in cancer has recently become the focus of extensive investigation. An expanding body of literature implicates Th17 cells and their hallmark cytokine in both pro- and anti-tumourigenic processes. In this review we describe their biological activities and outline the reciprocal interactions between Th17 cells and other cells of the immune system. We also discuss the evidence regarding their dual role in the tumour microenvironment. An understanding of the processes that regulate the pro- or anti-tumour activities of Th17 cell and IL-17 will allow the development of more effective means for cancer immunotherapy.
Collapse
|
36
|
Durrant DM, Metzger DW. Emerging roles of T helper subsets in the pathogenesis of asthma. Immunol Invest 2010; 39:526-49. [PMID: 20450290 DOI: 10.3109/08820131003615498] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cardinal features of asthma include pulmonary inflammation and airway hyperresponsiveness (AHR). Classically, asthma, specifically allergic asthma, has been attributed to a hyperactive Th2 cell immune response. However, the Th2 cell-mediated inflammation model has failed to adequately explain many of the clinical and molecular aspects of asthma. In addition, the outcomes of Th2-targeted therapeutic trials have been disappointing. Thus, asthma is now believed to be a complex and heterogeneous disorder, with several molecular mechanisms underlying the airway inflammation and AHR that is associated with asthma. The original classification of Th1 and Th2 pathways has recently been expanded to include additional effector Th cell subsets. These include Th17, Th9 and Treg cells. Emerging data highlight the involvement of these new Th cell subsets in the initiation and augmentation of airway inflammation and asthmatic responses. We now review the roles of these recently classified effector Th cell subsets in asthmatic inflammation and the insights they may provide in addition to the traditional Th2 paradigm. The hope is that a clearer understanding of the inflammatory pathways involved and the mediators of inflammation will yield better targeted therapeutics.
Collapse
Affiliation(s)
- Douglas M Durrant
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
37
|
Abstract
Inflammatory diseases of the lung are common, cause significant morbidity, and can be refractory to therapy. Airway responses to injury, noxious stimuli, or microbes lead to leukocyte recruitment for host defense. As leukocytes respond, they interact with lung resident cells and can elaborate specific mediators that are enzymatically generated from polyunsaturated fatty acids via transcellular biosynthesis. These bioactive, lipid-derived, small molecules serve as agonists at specific receptors and are rapidly inactivated in the local environment. This review will focus on the biosynthesis, receptors, cellular responses, and in vivo actions of lipoxins, resolvins, and protectins as exemplary molecular signaling circuits in the airway that are anti-inflammatory and proresolving.
Collapse
Affiliation(s)
- Troy Carlo
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
| | | |
Collapse
|
38
|
Kim SR, Lee YC. PTEN as a unique promising therapeutic target for occupational asthma. Immunopharmacol Immunotoxicol 2010; 30:793-814. [PMID: 18671162 DOI: 10.1080/08923970802285164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue deleted on chromosome ten (PTEN) dephophorylates phosphatidylinositol 3,4,5-triphosphate (PIP3) and is a key negative regulator of phosphoinositide kinase-3 (PI3K) signaling pathway. PTEN also suppresses cellular motility through mechanisms that may be partially independent of phosphatase activity. PTEN is one of the most commonly lost tumor suppressors in human cancers, and its down-regulation is also implicated in several other diseases including airway inflammatory diseases. There is increasing evidence regarding the protective effects of PTEN on the bronchial asthma which is induced by complex signaling networks. Very recently, as for the occupational asthma (OA) with considerable controversy for its pathobiologic mechanisms, PTEN has been considered as a key molecule which is capable of protecting toluene diisocyanate (TDI)-induced asthma, suggesting that PTEN is located at switching point of various molecular signals in OA. Knowledge of the mechanisms of PTEN regulation/function could direct to the pharmacological manipulation of PTEN. This article reviews the latest knowledge and studies on the roles and mechanisms of PTEN in OA.
Collapse
Affiliation(s)
- So Ri Kim
- Department of Internal Medicine, Airway Remodeling Laboratory, Chonbuk National University Medical School, Jeonju, South Korea
| | | |
Collapse
|
39
|
Abstract
IL-23/IL-17 axis is an important regulator in various inflammatory diseases. However, the role of IL-23 in allergic airway inflammation is not well understood. In this study, we show that in an allergen-induced asthma model, mice with transgenic overexpression of IL-23R exhibited increased airway infiltration of eosinophils and Th2 cytokine production, whereas those deficient in IL-23 displayed reduced airway inflammation. In vitro, IL-23-IL-23R signaling promoted GATA-3 expression and enhanced Th2 cytokine expression. Conversely, in the absence of this signal, Th2 cell differentiation was partially inhibited. Therefore, IL-23 signaling may regulate allergic asthma through modulation of Th2 cell differentiation.
Collapse
|
40
|
TGF-β and IL-17 serum levels and specific immunotherapy. Int Immunopharmacol 2009; 9:1247-9. [PMID: 19622397 DOI: 10.1016/j.intimp.2009.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 07/03/2009] [Accepted: 07/13/2009] [Indexed: 11/22/2022]
|
41
|
Zhang X, Gao L, Lei L, Zhong Y, Dube P, Berton MT, Arulanandam B, Zhang J, Zhong G. A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum. THE JOURNAL OF IMMUNOLOGY 2009; 183:1291-300. [PMID: 19542374 DOI: 10.4049/jimmunol.0803075] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We found that IL-17, a signature cytokine of Th17, was produced early in the innate immunity phase after an intranasal infection with the obligate intracellular pathogen Chlamydia muridarum. The airway IL-17, which peaked at 48 h after infection, was dependent on live chlamydial organism replication and MyD88-mediated signaling pathways. Treatment with antibiotics or knockout of the MyD88 gene, but not Toll/IL receptor domain-containing adapter-inducing IFN-beta, can block the early IL-17 production. Treatment of mice with an anti-IL-17-neutralizing mAb enhanced growth of chlamydial organisms in the lung, dissemination to other organs, and decreased mouse survival, whereas treatment with an isotype-matched control IgG had no effect. Although IL-17 did not directly affect chlamydial growth in cell culture, it enhanced the production of other inflammatory cytokines and chemokines by Chlamydia-infected cells and promoted neutrophil infiltration in mouse airways during chlamydial infection, which may contribute to the antichlamydial effect of IL-17. These observations suggest that an early IL-17 response as an innate immunity component plays an important role in initiating host defense against infection with intracellular bacterial pathogens in the airway.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The discovery of IL-17 and of the Th17 pathway has been a step in the classification of human diseases. Th17 targeting appears rather straightforward in diseases associated with inflammation and matrix destruction, such as rheumatoid arthritis, psoriasis, and Crohn's disease. In other conditions where IL-17 is expressed and Th17 activated, it is unclear whether this is a primary or secondary event, making the use of Th17 inhibitors less obvious.
Collapse
Affiliation(s)
- Pierre Miossec
- Department of Immunology and Rheumatology, Immunogenomics and inflammation Unit, University of Lyon, Lyon Cedex, France
| |
Collapse
|
43
|
Wang YH, Liu YJ. Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clin Exp Allergy 2009; 39:798-806. [PMID: 19400908 DOI: 10.1111/j.1365-2222.2009.03241.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Allergic diseases are often triggered by environmental allergens that induce dominant type 2 immune responses, characterized by the infiltrated T-helper type 2 (TH2) lymphocytes, eosinophils, and elevated TH2 cytokines. In addition to TH2 type immune responses, epithelial stress and injury linked to tissue remodelling are often observed, suggesting that epithelial cells may play important role in regulating allergic responses. Dendritic cells (DCs), the professional antigen-presenting cells with the capabilities of sampling allergens, are considered as the key player on instructing TH2 immune responses. Whether inflamed epithelium can regulate innate immunity, such as macrophages and DCs, which in turn instructs adaptive immunity has long been hypothesized. Studies of thymic stromal lymphopoietin (TSLP), an epithelial cells-derived cytokine, that can strongly activate DCs, provide important evidences that the epithelial barrier can trigger allergic diseases by regulating immune responses. The finding that OX40/OX40Ligand (OX40L) interactions are the molecular trigger responsible for the induction and maintenance of TH2 responses by TSLP-activated DCs provides a plausible molecular explanation for TSLP-mediated allergy. Recent progresses in characterizing the pro-inflammatory IL-17 cytokine family have added an additional layer of complexity on the regulation of allergic inflammation. TSLP-DCs can induce a robust expansion of TH2 memory cells and strengthen functional attributes by up-regulating their surface expression of IL-17RB (IL-25R), the receptor for cytokine IL-17E (IL-25), a distinct member of IL-17 cytokine family. IL-17E (also known as IL-25) produced by epithelial cells, and other innate cells, such as eosinphils, basophils, and mast cells, are shown to regulate adaptive immunity by enhancing TH2 cytokine productions. These exciting findings expand our knowledge of the complex immunological cascades that result in allergic inflammation and may provide novel therapeutic approaches for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Y-H Wang
- Department of Immunology and Center of Cancer Immunology Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
44
|
Saenz SA, Taylor BC, Artis D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 2009; 226:172-90. [PMID: 19161424 DOI: 10.1111/j.1600-065x.2008.00713.x] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is compelling evidence that epithelial cells (ECs) at mucosal surfaces, beyond their role in creating a physical barrier, are integral components of innate and adaptive immunity. The capacity of these cells to license the functions of specific immune cell populations in the airway and gastrointestinal tract offers the prospect of novel therapeutic strategies to target multiple inflammatory diseases in which barrier immunity is dysregulated. In this review, we discuss the critical functions of EC-derived thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25), and IL-33 in the development and regulation of T-helper 2 (Th2) cytokine-dependent immune responses. We first highlight recent data that have provided new insights into the factors that control expression of this triad of cytokines and their receptors. In addition, we review their proinflammatory and immunoregulatory functions in models of mucosal infection and inflammation. Lastly, we discuss new findings indicating that despite their diverse structural features and differential expression of their receptors, TSLP, IL-25, and IL-33 cross-regulate one another and share overlapping properties that influence Th2 cytokine-dependent responses at mucosal sites.
Collapse
Affiliation(s)
- Steven A Saenz
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | | | | |
Collapse
|
45
|
Bhalla DK, Hirata F, Rishi AK, Gairola CG. Cigarette smoke, inflammation, and lung injury: a mechanistic perspective. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:45-64. [PMID: 19117209 DOI: 10.1080/10937400802545094] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Inflammation is a common feature in the pathogenesis of cigarette smoke-associated diseases. The recruitment of inflammatory cells into the lung following cigarette smoke exposure presents a risk of tissue damage through the release of toxic mediators, including proteolytic enzymes and reactive oxygen species. This review represents a toxicological approach to investigation of cigarette smoke-induced lung injury, with a focus on laboratory studies and an emphasis on inflammatory mechanisms. The studies discussed in this review analyze the role of inflammation and inflammatory mediators in the development of injury. In cases where information relating to cigarette smoke is limited, examples are taken from other models of lung injury applicable to cigarette smoke. The primary aim of the review is to summarize published work so as to permit (1) an evaluation of chronic lung injury and inflammatory responses in animal models, (2) a discussion of inflammatory mediators in the development of chronic injury, and (3) identification of immunological mechanisms of injury. These studies discuss the currently understood roles of cytokines, cell adhesion molecules, and oxidative stress in inflammatory reactions and lung injury. A role for lipocortin 1 (annexin 1), a naturally occurring defense factor against inflammation, is discussed because of the possibility that impaired synthesis and degradation of lipocortin 1 will influence immune responses in animals exposed to cigarette smoke either by augmenting T helper cell Th1 response or by shifting Th1 to Th2 response. While Th1 augmentation will increase the risk for development of emphysema, Th1 to Th2 shift will favor development of asthma.
Collapse
Affiliation(s)
- Deepak K Bhalla
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
46
|
Priebe GP, Walsh RL, Cederroth TA, Kamei A, Coutinho-Sledge YS, Goldberg JB, Pier GB. IL-17 is a critical component of vaccine-induced protection against lung infection by lipopolysaccharide-heterologous strains of Pseudomonas aeruginosa. THE JOURNAL OF IMMUNOLOGY 2008; 181:4965-75. [PMID: 18802100 DOI: 10.4049/jimmunol.181.7.4965] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In a murine model of acute fatal pneumonia, we previously showed that nasal immunization with a live-attenuated aroA deletant of Pseudomonas aeruginosa strain PAO1 elicited LPS serogroup-specific protection, indicating that opsonic Ab to the LPS O Ag was the most important immune effector. Because P. aeruginosa strain PA14 possesses additional virulence factors, we hypothesized that a live-attenuated vaccine based on PA14 might elicit a broader array of immune effectors. Thus, an aroA deletant of PA14, denoted PA14DeltaaroA, was constructed. PA14DeltaaroA-immunized mice were protected against lethal pneumonia caused not only by the parental strain but also by cytotoxic variants of the O Ag-heterologous P. aeruginosa strains PAO1 and PAO6a,d. Remarkably, serum from PA14DeltaaroA-immunized mice had very low levels of opsonic activity against strain PAO1 and could not passively transfer protection, suggesting that an antibody-independent mechanism was needed for the observed cross-serogroup protection. Compared with control mice, PA14DeltaaroA-immunized mice had more rapid recruitment of neutrophils to the airways early after challenge. T cells isolated from P. aeruginosa DeltaaroA-immunized mice proliferated and produced IL-17 in high quantities after coculture with gentamicin-killed P. aeruginosa. Six hours following challenge, PA14DeltaaroA-immunized mice had significantly higher levels of IL-17 in bronchoalveolar lavage fluid compared with unimmunized, Escherichia coli-immunized, or PAO1DeltaaroA-immunized mice. Antibody-mediated depletion of IL-17 before challenge or absence of the IL-17 receptor abrogated the PA14DeltaaroA vaccine's protection against lethal pneumonia. These data show that IL-17 plays a critical role in antibody-independent vaccine-induced protection against LPS-heterologous strains of P. aeruginosa in the lung.
Collapse
Affiliation(s)
- Gregory P Priebe
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Shimokawa N, Nishiyama C, Hirota T, Tamari M, Hara M, Ikeda S, Okumura K, Ogawa H. Functional analysis of a polymorphism in the promoter region of the IL-12/23p40 gene. Clin Exp Allergy 2008; 39:228-35. [PMID: 19134014 DOI: 10.1111/j.1365-2222.2008.03165.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Human IL-12B gene on chromosome 5q31 encodes the common p40 subunit of IL-12 and IL-23. IL-12 is known to play critical roles in the generation of T-helper type 1 (TH(1)) cells, whereas IL-23 is involved in maintenance and/or population expansion of TH(17) cells. Although several reports suggested an association between a polymorphism (-6415CTCTAA/GC) in IL-12B and asthma, the molecular mechanism how this polymorphism is involved in allergic inflammation is still unclear. METHODS The transcription activity was analysed by reporter assay. A transcription factor binding to -6415 polymorphic site was identified by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. The amount of cytokines produced from peripheral monocytes were determined by ELISA. RESULTS Reporter assay showed that the transcription activity of the GC allele was higher than that of the CTCTAA allele. A transcription factor Sp1 bound to the region including the GC allele with a higher affinity than that of the CTCTAA allele in EMSA. In vivo binding of Sp1 to IL-12B gene carrying -6415GC was confirmed by ChIP assay. Overexpression of Sp1 up-regulated transcription activity of promoter carrying GC allele sequence, whereas the CTCTAA promoter was not affected by Sp1. We examined the correlation between -6415CTCTA/GC polymorphism and production of cytokine IL-12/23p40, IL-12p70, and IL-23 on peripheral blood monocytes, and monocytes with the GC/GC allele exhibited significantly higher expression of IL-12p70 protein than those with the CTCTAA/CTCTAA allele (P=0.009). CONCLUSIONS The -6415 polymorphism is involved in cytokine production potential by affecting Sp1-mediated transcription activity.
Collapse
Affiliation(s)
- N Shimokawa
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang YH, Liu YJ. The IL-17 cytokine family and their role in allergic inflammation. Curr Opin Immunol 2008; 20:697-702. [PMID: 18832032 DOI: 10.1016/j.coi.2008.09.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/31/2008] [Accepted: 09/08/2008] [Indexed: 12/21/2022]
Abstract
Allergic diseases and asthma has long been hypothesized as the results of the dysregulation of type 2 immune responses to environmental allergens. Recent progresses in characterizing the proinflammatory IL-17 cytokine family have added additional layer of complexity on the regulation of allergic inflammation. The delineation of IL-17-producing CD4+ T cell subset (Th17) has led to the revision of Th1/Th2 paradigm and impacts our perspectives on the basis of chronic tissue inflammation. In addition, the distinctive expression patterns and biological activities of individual IL-17 cytokine member may play different roles in the regulation of the pathogenesis of allergic diseases. Understanding the cellular source and targeting cells of IL-17 cytokine family member will provide the basis to elucidate the cellular mechanism underlying allergic inflammation and improve our therapeutic approaches for allergy.
Collapse
Affiliation(s)
- Yui-Hsi Wang
- Division of Allergy and Immunology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
49
|
Kao CY, Kim C, Huang F, Wu R. Requirements for two proximal NF-kappaB binding sites and IkappaB-zeta in IL-17A-induced human beta-defensin 2 expression by conducting airway epithelium. J Biol Chem 2008; 283:15309-18. [PMID: 18362142 PMCID: PMC2397472 DOI: 10.1074/jbc.m708289200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Among a panel of 21 cytokines (IL-1α, -1β, -2–13, and -15–18; interferon-γ; granulocyte-macrophage colony-stimulating factor; and tumor necrosis factor α), we have recently observed that IL-17A is the most potent inducer for human β-defensin 2 (hBD-2) in conducting airway epithelial cells (Kao, C. Y., Chen, Y., Thai, P., Wachi, S., Huang, F., Kim, C., Harper, R. W., and Wu, R. (2004) J. Immunol. 173, 3482–3491). The molecular basis of this regulation is not known. In this study, we demonstrated a coordinated degradation of inhibitory κB(IκB)-α followed by a nuclear translocation of p50 and p65 NF-κB subunits and their binding to NF-κB sites of hBD-2 promoter region. With site-directed mutagenesis, we demonstrated the requirement of two proximal NF-κB binding sites (pκB1, -205 to -186; pκB2, -596 to -572) but not the distal site (dκB, -2193 to -2182) in supporting IL-17A-induced hBD-2 promoter activity. These results are consistent with the data of the chromatin immunoprecipitation assay, which showed enhanced p50 binding to these pκB sites but not the dκB site in cells after IL-17A treatment. We also found that the NF-κB binding cofactor, IκB-ζ, was up-regulated by IL-17A, and the knockdown of IκB-ζ significantly diminished the IL-17A-induced hBD-2 expression. This is the first demonstration of the involvement of two proximal NF-κB sites and IκB-ζ in the regulation of hBD-2 by IL-17A, two important genes responsible for host defense.
Collapse
Affiliation(s)
- Cheng-Yuan Kao
- Center for Comparative Respiratory Biology and Medicine, University of California-Davis, 451 Health Science Drive, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
50
|
Kim SR, Lee KS, Park SJ, Min KH, Lee KY, Choe YH, Lee YR, Kim JS, Hong SJ, Lee YC. PTEN down-regulates IL-17 expression in a murine model of toluene diisocyanate-induced airway disease. THE JOURNAL OF IMMUNOLOGY 2007; 179:6820-9. [PMID: 17982072 DOI: 10.4049/jimmunol.179.10.6820] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Toluene diisocyanate (TDI)-induced airway disease is a disorder characterized by chronic airway inflammation and airway remodeling. A recently discovered group of cytokines is the IL-17 family, which has been introduced as an important regulator of immune and inflammatory responses, including airway inflammation. Recently, we have reported that phosphatase and tensin homologue deleted on chromosome 10 (PTEN) plays a pivotal role in the pathogenesis of bronchial asthma. However, there are no available data for the effects of PTEN or IL-17 on TDI-induced airway disease and the relationship between PTEN and IL-17. We used a murine model to determine the role of PTEN in the pathogenesis of TDI-induced airway disease and the regulation of IL-17 production. These mice developed the typical pathophysiological features of TDI-induced airway disease and increased IL-17 expression in the lungs. Administration of phosphoinositide 3-kinase inhibitors or adenoviruses carrying PTEN cDNA (AdPTEN) reduced the pathophysiological features of TDI-induced airway disease and decreased the increased levels of IL-17 expression. Our results also showed that PI3K inhibitors or AdPTEN down-regulated a transcription factor, NF-kappaB activity, and BAY 11-7085 substantially reduced the increased levels of IL-17 after TDI inhalation. We also found that inhibition of IL-17 activity with an anti-IL-17 Ab reduced airway inflammation and airway hyperresponsiveness. These results suggest that PTEN plays a protective role in the pathogenesis of TDI-induced airway disease, at least in part through the regulation of IL-17 expression. Thus, PTEN may be a useful target for treating TDI-induced airway disease by modulating IL-17 expression.
Collapse
Affiliation(s)
- So Ri Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|