1
|
Sferra SR, Biancotti JC, Ahmad R, Sescleifer AM, Bubb CR, Kovler ML, Kunisaki SM. Comparative Transcriptome Analysis of Human and Mouse Canalicular Lungs in Fetal Diaphragmatic Hernia. J Pediatr Surg 2024; 59:161656. [PMID: 39181781 DOI: 10.1016/j.jpedsurg.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The nitrofen model of congenital diaphragmatic hernia (CDH) is widely used in translational research. However, the molecular pathways associated with pulmonary hypoplasia in this model compared to the human CDH phenotype have not been well described. The aim of this study was to investigate differentially expressed genes (DEG) and signaling pathways in early stage fetal lungs in mouse and human CDH. METHODS CDH lung tissue was obtained from human fetuses (21-23 weeks gestation) and nitrofen mouse pups (E15.5). NovaSeq Flowcell RNA-seq was performed to evaluate differentially expressed transcriptional and molecular pathways (DEGs) in fetal mice with CDH, compared with age-matched normal mouse lungs and human CDH samples. RESULTS There were thirteen overlapping DEGs in human and mouse CDH lung samples compared to controls. These genes were involved in extracellular matrix, myogenesis, cilia, and immune modulation pathways. Human CDH was associated with an upregulation of collagen formation and extracellular matrix reorganization whereas mouse CDH was associated with an increase in muscular contraction. The most common cell types upregulated in human and mouse CDH samples were ciliated airway cells. CONCLUSIONS This study highlights the unique gene transcriptional patterns in early fetal mouse and human lungs with CDH. These data have implications when determining the translational potential of novel therapies in CDH using nitrofen-based animal models. LEVEL OF EVIDENCE Level IV. STUDY TYPE Basic science/case series.
Collapse
Affiliation(s)
- Shelby R Sferra
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Raheel Ahmad
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Anne M Sescleifer
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ciaran R Bubb
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Mark L Kovler
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
2
|
Zani A, Chung WK, Deprest J, Harting MT, Jancelewicz T, Kunisaki SM, Patel N, Antounians L, Puligandla PS, Keijzer R. Congenital diaphragmatic hernia. Nat Rev Dis Primers 2022; 8:37. [PMID: 35650272 DOI: 10.1038/s41572-022-00362-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a rare birth defect characterized by incomplete closure of the diaphragm and herniation of fetal abdominal organs into the chest that results in pulmonary hypoplasia, postnatal pulmonary hypertension owing to vascular remodelling and cardiac dysfunction. The high mortality and morbidity rates associated with CDH are directly related to the severity of cardiopulmonary pathophysiology. Although the aetiology remains unknown, CDH has a polygenic origin in approximately one-third of cases. CDH is typically diagnosed with antenatal ultrasonography, which also aids in risk stratification, alongside fetal MRI and echocardiography. At specialized centres, prenatal management includes fetal endoscopic tracheal occlusion, which is a surgical intervention aimed at promoting lung growth in utero. Postnatal management focuses on cardiopulmonary stabilization and, in severe cases, can involve extracorporeal life support. Clinical practice guidelines continue to evolve owing to the rapidly changing landscape of therapeutic options, which include pulmonary hypertension management, ventilation strategies and surgical approaches. Survivors often have long-term, multisystem morbidities, including pulmonary dysfunction, gastroesophageal reflux, musculoskeletal deformities and neurodevelopmental impairment. Emerging research focuses on small RNA species as biomarkers of severity and regenerative medicine approaches to improve fetal lung development.
Collapse
Affiliation(s)
- Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada. .,Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Wendy K Chung
- Department of Paediatrics, Columbia University, New York, NY, USA
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child and Clinical Department of Obstetrics and Gynaecology, University Hospitals, KU Leuven, Leuven, Belgium.,Institute for Women's Health, UCL, London, UK
| | - Matthew T Harting
- Department of Paediatric Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA.,The Comprehensive Center for CDH Care, Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Tim Jancelewicz
- Division of Pediatric Surgery, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shaun M Kunisaki
- Division of General Paediatric Surgery, Johns Hopkins Children's Center, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neil Patel
- Department of Neonatology, Royal Hospital for Children, Glasgow, UK
| | - Lina Antounians
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pramod S Puligandla
- Department of Paediatric Surgery, Harvey E. Beardmore Division of Paediatric Surgery, Montreal Children's Hospital of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Paediatric Surgery, Paediatrics & Child Health, Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Kunisaki SM, Jiang G, Biancotti JC, Ho KKY, Dye BR, Liu AP, Spence JR. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of the congenital diaphragmatic hernia fetal lung. Stem Cells Transl Med 2020; 10:98-114. [PMID: 32949227 PMCID: PMC7780804 DOI: 10.1002/sctm.20-0199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 08/09/2020] [Indexed: 01/06/2023] Open
Abstract
Three‐dimensional lung organoids (LOs) derived from pluripotent stem cells have the potential to enhance our understanding of disease mechanisms and to enable novel therapeutic approaches in neonates with pulmonary disorders. We established a reproducible ex vivo model of lung development using transgene‐free human induced pluripotent stem cells generated from fetuses and infants with Bochdalek congenital diaphragmatic hernia (CDH), a polygenic disorder associated with fetal lung compression and pulmonary hypoplasia at birth. Molecular and cellular comparisons of CDH LOs revealed impaired generation of NKX2.1+ progenitors, type II alveolar epithelial cells, and PDGFRα+ myofibroblasts. We then subjected these LOs to disease relevant mechanical cues through ex vivo compression and observed significant changes in genes associated with pulmonary progenitors, alveolar epithelial cells, and mesenchymal fibroblasts. Collectively, these data suggest both primary cell‐intrinsic and secondary mechanical causes of CDH lung hypoplasia and support the use of this stem cell‐based approach for disease modeling in CDH.
Collapse
Affiliation(s)
- Shaun M Kunisaki
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guihua Jiang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan C Biancotti
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Briana R Dye
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Morgan JT, Stewart WG, McKee RA, Gleghorn JP. The mechanosensitive ion channel TRPV4 is a regulator of lung development and pulmonary vasculature stabilization. Cell Mol Bioeng 2018; 11:309-320. [PMID: 30713588 DOI: 10.1007/s12195-018-0538-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction – Clinical observations and animal models suggest a critical role for the dynamic regulation of transmural pressure and peristaltic airway smooth muscle contractions for proper lung development. However, it is currently unclear how such mechanical signals are transduced into molecular and transcriptional changes at the cell level. To connect these physical findings to a mechanotransduction mechanism, we identified a known mechanosensor, TRPV4, as a component of this pathway. Methods – Embryonic mouse lung explants were cultured on membranes and in submersion culture to modulate explant transmural pressure. Time-lapse imaging was used to capture active changes in lung biology, and whole-mount images were used to visualize the organization of the epithelial, smooth muscle, and vascular compartments. TRPV4 activity was modulated by pharmacological agonism and inhibition. Results – TRPV4 expression is present in the murine lung with strong localization to the epithelium and major pulmonary blood vessels. TRPV4 agonism and inhibition resulted in hyper- and hypoplastic airway branching, smooth muscle differentiation, and lung growth, respectively. Smooth muscle contractions also doubled in frequency with agonism and were reduced by 60% with inhibition demonstrating a functional role consistent with levels of smooth muscle differentiation. Activation of TRPV4 increased the vascular capillary density around the distal airways, and inhibition resulted in a near complete loss of the vasculature. Conclusions – These studies have identified TRPV4 as a potential mechanosensor involved in transducing mechanical forces on the airways to molecular and transcriptional events that regulate the morphogenesis of the three essential tissue compartments in the lung.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
- Present Address: Department of Bioengineering, University of California, Riverside, CA USA
| | - Wade G Stewart
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Robert A McKee
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
- Department of Biological Sciences, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| |
Collapse
|
5
|
Gurrado A, Isernia RM, De Luca A, Ferraro V, Virgintino D, Napoli A, Cavallaro G, Maiorano E, Pezzolla A, Testini M. Congenital diaphragmatic disease: An unusual presentation in adulthood. Case report. Int J Surg Case Rep 2018; 48:34-37. [PMID: 29783140 PMCID: PMC6026686 DOI: 10.1016/j.ijscr.2018.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Congenital diaphragmatic disease is a quite common condition that usually occurs in the neonatal period, and the diagnosis of congenital diaphragmatic disease in adulthood is rare. CASE PRESENTATION A 64-years-old Caucasian woman was admitted in emergency at our Department, due to a bowel obstruction and dyspnea. A CT-scan showed a diaphragmatic herniation in the left area, with malposition of dilated transverse and descending colon in the chest. An emergency laparatomy was performed, showing a toxic megacolon, in the absence of a true diaphragmatic hernia, and a left diaphragm and left liver hypoplasia. An intraoperative bronchoscopy revealed concomitant hypoplasia of the left lung. A subtotal colectomy with ileo-rectal anastomosis was performed. The postoperative course was uneventful. Histological examination demonstrated hyperplasia of the muscularis mucosae of the colon and cytoplasmic vacuolization of the Auerbach plexus ganglia. The karyotype genetic analysis excluded concomitant microdeletion or duplication syndromes. DISCUSSION To our knowledge, this seems to be the first reported case of toxic megacolon in a patient with congenital hypoplasia of the left bronchial-lung system, of the left liver, and of the left diaphragm. CONCLUSION The correct development of the diaphragm is essential for the neighboring organs. The observed clinical pattern could be related to a partial modification of neural crest cell detachment or migration, which could be responsible for bowel and diaphragm defects, even though it was not included in typical neural crest cell syndromes. Further researches should be performed in order to define the sporadic or syndromic source of these multiorgan defects.
Collapse
Affiliation(s)
- Angela Gurrado
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, University Medical School "A. Moro'', Bari, Italy.
| | - Roberta Maria Isernia
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, University Medical School "A. Moro'', Bari, Italy
| | - Alessandro De Luca
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, University Medical School "A. Moro'', Bari, Italy
| | - Valentina Ferraro
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, University Medical School "A. Moro'', Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University Medical School "A. Moro'', Bari, Italy
| | - Anna Napoli
- Department of Pathology, University Medical School "A. Moro'', Bari, Italy
| | | | - Eugenio Maiorano
- Department of Pathology, University Medical School "A. Moro'', Bari, Italy
| | - Angela Pezzolla
- Department of Emergency and Organs Transplantation, University Medical School "A. Moro'', Bari, Italy
| | - Mario Testini
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, University Medical School "A. Moro'', Bari, Italy
| |
Collapse
|
6
|
Bower DV, Lansdale N, Navarro S, Truong TV, Bower DJ, Featherstone NC, Connell MG, Al Alam D, Frey MR, Trinh LA, Fernandez GE, Warburton D, Fraser SE, Bennett D, Jesudason EC. SERCA directs cell migration and branching across species and germ layers. Biol Open 2017; 6:1458-1471. [PMID: 28821490 PMCID: PMC5665464 DOI: 10.1242/bio.026039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022] Open
Abstract
Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding.
Collapse
Affiliation(s)
- Danielle V Bower
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland, and the Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Nick Lansdale
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Division of Child Health, Institute of Translational Medicine, University of Liverpool, Liverpool L12 2AP, UK
| | - Sonia Navarro
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Craniofacial Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Thai V Truong
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Dan J Bower
- Center for Space and Habitability, University of Bern, 3012 Bern, Switzerland
| | - Neil C Featherstone
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Marilyn G Connell
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Denise Al Alam
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Mark R Frey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Le A Trinh
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - David Warburton
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Scott E Fraser
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daimark Bennett
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edwin C Jesudason
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- NHS Lothian, Edinburgh, EH14 1TY, UK
| |
Collapse
|
7
|
Turkmen GG, Timur H, Tokmak A, Yilmaz Z, Kirbas A, Daglar K, Sanhal CY, Uygur D. Levels of serum vitamin D and calcium in pregnancies complicated with fetal congenital diaphragmatic hernia and normal pregnancies. J Matern Fetal Neonatal Med 2016; 30:990-994. [DOI: 10.1080/14767058.2016.1196662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Riccardi D, Brennan SC, Chang W. The extracellular calcium-sensing receptor, CaSR, in fetal development. Best Pract Res Clin Endocrinol Metab 2013; 27:443-53. [PMID: 23856271 PMCID: PMC4462341 DOI: 10.1016/j.beem.2013.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In fetal mammals, serum levels of both total and ionized calcium significantly exceed those in the adult. This relative fetal hypercalcemia is crucial for skeletal development and is maintained irrespectively of maternal serum calcium levels. Elegant studies by Kovacs and Kronenberg have previously addressed the role of the CaSR in creating and maintaining this relative fetal hypercalcemia, through the regulation of parathyroid hormone-related peptide secretion. More recently we have shown that the CaSR is widely distributed throughout the developing fetus, where the receptor plays major, unexpected roles in ensuring growth and maturation of several organs. In this article, we present evidence for a role of the CaSR in the control of skeletal development, and how fetal hypercalcemia, acting through the CaSR, regulates lung development.
Collapse
Affiliation(s)
- Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sarah C Brennan
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Wenhan Chang
- University of California San Francisco, California, USA
| |
Collapse
|
9
|
Corbett HJ, Connell MG, Fernig DG, Losty PD, Jesudason EC. ANG-1 TIE-2 and BMPR signalling defects are not seen in the nitrofen model of pulmonary hypertension and congenital diaphragmatic hernia. PLoS One 2012; 7:e35364. [PMID: 22539968 PMCID: PMC3335125 DOI: 10.1371/journal.pone.0035364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/14/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a lethal disease that is associated with characteristic histological abnormalities of the lung vasculature and defects of angiopoetin-1 (ANG-1), TIE-2 and bone morphogenetic protein receptor (BMPR)-related signalling. We hypothesized that if these signalling defects cause PH generically, they will be readily identifiable perinatally in congenital diaphragmatic hernia (CDH), where the typical pulmonary vascular changes are present before birth and are accompanied by PH after birth. METHODS CDH (predominantly left-sided, LCDH) was created in Sprague-Dawley rat pups by e9.5 maternal nitrofen administration. Left lungs from normal and LCDH pups were compared at fetal and postnatal time points for ANG-1, TIE-2, phosphorylated-TIE-2, phosphorylated-SMAD1/5/8 and phosphorylated-ERK1/2 by immunoprecipitation and Western blotting of lung protein extracts and by immunohistochemistry on lung sections. RESULTS In normal lung, pulmonary ANG-1 protein levels fall between fetal and postnatal life, while TIE-2 levels increase. Over the corresponding time period, LCDH lung retained normal expression of ANG-1, TIE-2, phosphorylated-TIE-2 and, downstream of BMPR, phosphorylated-SMAD1/5/8 and phosphorylated-p44/42. CONCLUSION In PH and CDH defects of ANG-1/TIE-2/BMPR-related signalling are not essential for the lethal vasculopathy.
Collapse
Affiliation(s)
- Harriet Jane Corbett
- Division of Child Health, Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
10
|
Thompson SM, Connell MG, van Kuppevelt TH, Xu R, Turnbull JE, Losty PD, Fernig DG, Jesudason EC. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation? BMC DEVELOPMENTAL BIOLOGY 2011; 11:38. [PMID: 21672206 PMCID: PMC3127989 DOI: 10.1186/1471-213x-11-38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 06/14/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. RESULTS The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme.We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. CONCLUSIONS The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.
Collapse
Affiliation(s)
- Sophie M Thompson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Labbé A, Coste K, Déchelotte PJ. [Congenital diaphragmatic hernia - mechanisms of pulmonary hypoplasia]. Rev Mal Respir 2011; 28:463-74. [PMID: 21549902 DOI: 10.1016/j.rmr.2010.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/04/2010] [Indexed: 11/26/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a common cause of severe neonatal respiratory distress. Mortality and morbidity are determined by the amount of pulmonary hypoplasia (PH) that occurs and by the development of therapy-resistant pulmonary hypertension. The pathogenesis and aetiology of CDH and its associated anomalies are still largely unknown despite all research efforts. The pathogenesis of CDH is based on an assumption linking herniation of abdominal viscera into the thorax with compression of the developing lung. PH, however, can also result from reduced distension of the developing lung secondary to impaired fetal breathing movements. Our understanding of CDH has also been aided by basic research with the use of dietary, teratogen-induced, and knockout models of CDH. These studies indicate that lung hypoplasia may involve disturbances of mitogenic signalling pathways fundamental to embryonic lung development. Recent data reveal the role of disruption of a retinoid-signalling pathway in the pathogenesis of CDH. Although multifactorial inheritance may best explain most cases of CDH in humans, much has been learned about the genetic factors that play a role in the development of CDH by studies of patients with CDH caused by specific genetic syndromes and chromosome anomalies. More research is warranted to improve our understanding of normal and abnormal lung development in relation to CDH. Such investigations will help in the design of new treatment strategies to improve the natural course or even to prevent this anomaly.
Collapse
Affiliation(s)
- A Labbé
- Unité de réanimation néonatale et pédiatrique, CHU d'Estaing, 1, place Lucie-Aubrac, 63003 Clermont-Ferrand, France.
| | | | | |
Collapse
|
12
|
Gupta S, Hudak J, Killeen E, Larson JE, Cohen JC. Transient in utero nicotine exposure stimulates mechanosensory-dependent lung development. Exp Lung Res 2010; 36:491-8. [PMID: 20939754 DOI: 10.3109/01902141003690371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nicotine receptors are present in the developing lung yet their function is unknown. The transient role of nicotine receptors in lung development has not been addressed. In this study, nicotine's direct effect on smooth muscle contraction, necessary for mechanosensory-dependent fetal lung development, is examined after transient nicotine stimulation to determine the relationship between nicotine exposure, smooth muscle contraction, and fetal lung development. Rat fetuses at 16 days’ gestation were exposed in utero to 5 different concentrations of nicotine or control injected directly into the amniotic fluid. Specific concentrations of in utero nicotine increased the phosphorylated Western blot analysis and immunohistochemistry of muscle contraction proteins. Respiratory function tests on nicotine-exposed rat pups showed a statistically significant decrease in airway resistance earlier in life compared to control and an upward shift of the pressure-volume curve pointing towards a structural maturation of the in utero nicotine-exposed lung. These results are consistent with transient nicotine exposure during intrauterine life stimulating stretch-induced lung organogenesis by altering phosphorylation of muscle contraction proteins. The increase in smooth muscle phosphorylation may stimulate stretch-induced lung organogenesis, which affects lung development and accelerates lung maturation in rats.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Pediatrics, Stonybrook University, Stonybrook, NY 11794, USA
| | | | | | | | | |
Collapse
|
13
|
Thompson SM, Jesudason EC, Turnbull JE, Fernig DG. Heparan sulfate in lung morphogenesis: The elephant in the room. ACTA ACUST UNITED AC 2010; 90:32-44. [PMID: 20301217 DOI: 10.1002/bdrc.20169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heparan sulfate (HS) is a structurally complex polysaccharide located on the cell surface and in the extracellular matrix, where it participates in numerous biological processes through interactions with a vast number of regulatory proteins such as growth factors and morphogens. HS is crucial for lung development; disruption of HS synthesis in flies and mice results in a major aberration of airway branching, and in mice, it results in neonatal death as a consequence of malformed lungs and respiratory distress. Epithelial-mesenchymal interactions governing lung morphogenesis are directed by various diffusible proteins, many of which bind to, and are regulated by HS, including fibroblast growth factors, sonic hedgehog, and bone morphogenetic proteins. The majority of research into the molecular mechanisms underlying defective lung morphogenesis and pulmonary pathologies, such as bronchopulmonary dysplasia and pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH), has focused on abnormal protein expression. The potential contribution of HS to abnormalities of lung development has yet to be explored to any significant extent, which is somewhat surprising given the abnormal lung phenotype exhibited by mutant mice synthesizing abnormal HS. This review summarizes our current understanding of the role of HS and HS-binding proteins in lung morphogenesis and will present in vitro and in vivo evidence for the fundamental importance of HS in airway development. Finally, we will discuss the future possibility of HS-based therapeutics for ameliorating insufficient lung growth associated with lung diseases such as CDH.
Collapse
Affiliation(s)
- Sophie M Thompson
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom.
| | | | | | | |
Collapse
|
14
|
Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol 2010; 90:73-158. [PMID: 20691848 DOI: 10.1016/s0070-2153(10)90003-3] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the "molecular embryology" of the lung was first comprehensively reviewed, new challenges have emerged-and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wallace HL, Connell MG, Losty PD, Jesudason EC, Southern KW. Embryonic lung growth is normal in a cftr-knockout mouse model. Exp Lung Res 2009; 34:717-27. [PMID: 19085568 DOI: 10.1080/01902140802389719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The role of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in embryonic lung growth remains uncertain. The authors used an established embryonic lung culture model to investigate the impact of cftr knockout on lung growth, airway peristalsis, and airway smooth muscle (ASM) distribution. Lung area, perimeter, lung bud count, and frequency of contraction were similar in wild-type (cftr +/+) and cftr knockout mice (cftr -/-). The percentage of mitotic cells was also consistent between genotypes in mesenchyme and epithelium. Smooth muscle distribution surrounding the airway appeared normally distributed in all genotypes. These data suggest that normal embryonic lung growth, ASM differentiation and airway peristalsis are CFTR independent.
Collapse
Affiliation(s)
- Helen L Wallace
- Department of Physiology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
16
|
Cohen JC, Larson JE, Killeen E, Love D, Takemaru KI. CFTR and Wnt/beta-catenin signaling in lung development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:70. [PMID: 18601749 PMCID: PMC2464600 DOI: 10.1186/1471-213x-8-70] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 07/06/2008] [Indexed: 01/16/2023]
Abstract
BACKGROUND Cystic fibrosis transmembrane conductance regulator (CFTR) was shown previously to modify stretch induced differentiation in the lung. The mechanism for CFTR modulation of lung development was examined by in utero gene transfer of either a sense or antisense construct to alter CFTR expression levels. The BAT-gal transgenic reporter mouse line, expressing beta-galactosidase under a canonical Wnt/beta-catenin-responsive promoter, was used to assess the relative roles of CFTR, Wnt, and parathyroid hormone-related peptide (PTHrP) in lung organogenesis. Adenoviruses containing full-length CFTR, a short anti-sense CFTR gene fragment, or a reporter gene as control were used in an intra-amniotic gene therapy procedure to transiently modify CFTR expression in the fetal lung. RESULTS A direct correlation between CFTR expression levels and PTHrP levels was found. An inverse correlation between CFTR and Wnt signaling activities was demonstrated. CONCLUSION These data are consistent with CFTR participating in the mechanicosensory process essential to regulate Wnt/beta-Catenin signaling required for lung organogenesis.
Collapse
Affiliation(s)
- J Craig Cohen
- The Brady Laboratory, Section of Neonatology, Department of Pediatrics, Stony Brook University, School of Medicine, Stony Brook, New York, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis."You may delay, but time will not" Benjamin Franklin, USA Founding Father.
Collapse
Affiliation(s)
- J Craig Cohen
- The Brady Laboratory, Section of Neonatology, Department of Pediatrics, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
18
|
Santos M, Moura RS, Gonzaga S, Nogueira-Silva C, Ohlmeier S, Correia-Pinto J. Embryonic Essential Myosin Light Chain Regulates Fetal Lung Development in Rats. Am J Respir Cell Mol Biol 2007; 37:330-8. [PMID: 17541012 DOI: 10.1165/rcmb.2006-0349oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is currently the most life-threatening congenital anomaly the major finding of which is lung hypoplasia. Lung hypoplasia pathophysiology involves early developmental molecular insult in branching morphogenesis and a late mechanical insult by abdominal herniation in maturation and differentiation processes. Since early determinants of lung hypoplasia might appear as promising targets for prenatal therapy, proteomics analysis of normal and nitrofen-induced hypoplastic lungs was performed at 17.5 days after conception. The major differentially expressed protein was identified by mass spectrometry as myosin light chain 1a (MLC1a). Embryonic essential MLC1a and regulatory myosin light chain 2 (MLC2) were characterized throughout normal and abnormal lung development by immunohistochemistry and Western blot. Disruption of MLC1a expression was assessed in normal lung explant cultures by antisense oligodeoxynucleotides. Since early stages of normal lung development, MLC1a was expressed in vascular smooth muscle (VSM) cells of pulmonary artery, and MLC2 was present in parabronchial smooth muscle and VSM cells of pulmonary vessels. In addition, early smooth muscle differentiation delay was observed by immunohistochemistry of alpha-smooth muscle actin and transforming growth factor-beta1. Disruption of MLC1a expression during normal pulmonary development led to significant growth and branching impairment, suggesting a role in branching morphogenesis. Both MLC1a and MLC2 were absent from hypoplastic fetal lungs during pseudoglandular stage of lung development, whereas their expression partially recovered by prenatal treatment with vitamin A. Thus, a deficiency in contractile proteins MLC1a and MLC2 might have a role among the early molecular determinants of lung hypoplasia in the rat model of nitrofen-induced CDH.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/embryology
- Abnormalities, Drug-Induced/metabolism
- Abnormalities, Drug-Induced/pathology
- Animals
- Cardiac Myosins/metabolism
- Female
- Hernia, Diaphragmatic/embryology
- Hernia, Diaphragmatic/metabolism
- Hernias, Diaphragmatic, Congenital
- Humans
- Infant, Newborn
- Lung/abnormalities
- Lung/drug effects
- Lung/embryology
- Lung/metabolism
- Muscle, Smooth/abnormalities
- Muscle, Smooth/embryology
- Muscle, Smooth/metabolism
- Myosin Light Chains/antagonists & inhibitors
- Myosin Light Chains/genetics
- Myosin Light Chains/metabolism
- Phenyl Ethers/toxicity
- Pregnancy
- Proteomics
- Rats
- Rats, Sprague-Dawley
- Tissue Culture Techniques
- Vitamin A/pharmacology
Collapse
Affiliation(s)
- Marta Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Impaired lung development afflicts a range of newborns cared for by paediatric surgeons. As a result the speciality has led in the development of surgical models that illustrate the biomechanical regulation of lung growth. Using transgenic mutants, biologists have similarly discovered much about the biochemical regulation of prenatal lung growth. Airway smooth muscle (ASM) and its prenatal contractility airway peristalsis (AP) represent a novel link between these areas: ASM progenitors produce an essential biochemical factor for lung morphogenesis, whilst calcium-driven biomechanical ASM activity appears to regulate the same. In this invited paper, I take the opportunity both to review our recent findings on lung growth and prenatal ASM, and also to discuss mechanisms by which ASM contractility can regulate growth. Finally, I will introduce some novel ideas for exploration: ASM contractility could help to schedule parturition (pulmonary parturition clock) and could even be a generic model for smooth muscle regulation of morphogenesis in similar organs.
Collapse
Affiliation(s)
- Edwin C Jesudason
- Academy of Medical Sciences Clinician Scientist/Consultant Paediatric Surgeon, Alder Hey Children's Hospital, The Division of Child Health, University of Liverpool, Liverpool L12 2AP, UK. .
| |
Collapse
|
20
|
Bielinska M, Jay PY, Erlich JM, Mannisto S, Urban Z, Heikinheimo M, Wilson DB. Molecular genetics of congenital diaphragmatic defects. Ann Med 2007; 39:261-74. [PMID: 17558598 PMCID: PMC2174621 DOI: 10.1080/07853890701326883] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is accompanied by malformations of the lung, heart, testis, and other organs. Patients with CDH may have any combination of these extradiaphragmatic defects, suggesting that CDH is often a manifestation of a global embryopathy. This review highlights recent advances in human and mouse genetics that have led to the identification of genes involved in CDH. These include genes for transcription factors, molecules involved in cell migration, and extracellular matrix components. The expression patterns of these genes in the developing embryo suggest that mesenchymal cell function is compromised in the diaphragm and other affected organs in patients with CDH. We discuss potential mechanisms underlying the seemingly random combination of diaphragmatic, pulmonary, cardiovascular, and gonadal defects in these patients.
Collapse
Affiliation(s)
- Malgorzata Bielinska
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Patrick Y. Jay
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Department of Genetics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Jonathan M. Erlich
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Susanna Mannisto
- Program for Developmental & Reproductive Biology, Biomedicum Helsinki and Children's Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Zsolt Urban
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Department of Genetics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Program for Developmental & Reproductive Biology, Biomedicum Helsinki and Children's Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - David B. Wilson
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Department of Molecular Biology & Pharmacology, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| |
Collapse
|