1
|
Johnston RA, Atkins CL, Siddiqui SR, Jackson WT, Mitchell NC, Spencer CY, Pilkington AW, Kashon ML, Haque IU. Interleukin-11 receptor subunit α-1 is required for maximal airway responsiveness to methacholine after acute exposure to ozone. Am J Physiol Regul Integr Comp Physiol 2022; 323:R921-R934. [PMID: 36283092 PMCID: PMC9722265 DOI: 10.1152/ajpregu.00213.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-11, a multifunctional cytokine, contributes to numerous biological processes, including adipogenesis, hematopoiesis, and inflammation. Asthma, a respiratory disease, is notably characterized by reversible airway obstruction, persistent lung inflammation, and airway hyperresponsiveness (AHR). Nasal insufflation of IL-11 causes AHR in wild-type mice while lung inflammation induced by antigen sensitization and challenge, which mimics features of atopic asthma in humans, is attenuated in mice genetically deficient in IL-11 receptor subunit α-1 (IL-11Rα1-deficient mice), a transmembrane receptor that is required conjointly with glycoprotein 130 to transduce IL-11 signaling. Nevertheless, the contribution of IL-11Rα1 to characteristics of nonatopic asthma is unknown. Thus, based on the aforementioned observations, we hypothesized that genetic deficiency of IL-11Rα1 attenuates lung inflammation and increases airway responsiveness after acute inhalation exposure to ozone (O3), a criteria pollutant and nonatopic asthma stimulus. Accordingly, 4 and/or 24 h after cessation of exposure to filtered room air or O3, we assessed lung inflammation and airway responsiveness in wild-type and IL-11Rα1-deficient mice. With the exception of bronchoalveolar lavage macrophages and adiponectin, which were significantly increased and decreased, respectively, in O3-exposed IL-11Rα1-deficient as compared with O3-exposed wild-type mice, no other genotype-related differences in lung inflammation indices that we quantified were observed in O3-exposed mice. However, airway responsiveness to acetyl-β-methylcholine chloride (methacholine) was significantly diminished in IL-11Rα1-deficient as compared with wild-type mice after O3 exposure. In conclusion, these results demonstrate that IL-11Rα1 minimally contributes to lung inflammation but is required for maximal airway responsiveness to methacholine in a mouse model of nonatopic asthma.
Collapse
Affiliation(s)
- Richard A Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Saad R Siddiqui
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - William T Jackson
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Nicholas C Mitchell
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Albert W Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
2
|
Tovar A, Smith GJ, Thomas JM, Crouse WL, Harkema JR, Kelada SNP. Transcriptional Profiling of the Murine Airway Response to Acute Ozone Exposure. Toxicol Sci 2020; 173:114-130. [PMID: 31626304 PMCID: PMC6944221 DOI: 10.1093/toxsci/kfz219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ambient ozone (O3) exposure has serious consequences on respiratory health, including airway inflammation and injury. Decades of research have yielded thorough descriptions of these outcomes; however, less is known about the molecular processes that drive them. The aim of this study was to further describe the cellular and molecular responses to O3 exposure in murine airways, with a particular focus on transcriptional responses in 2 critical pulmonary tissue compartments: conducting airways (CA) and airway macrophages (AM). After exposing adult, female C57BL/6J mice to filtered air, 1 or 2 ppm O3, we assessed hallmark responses including airway inflammation (cell counts and cytokine secretion) and injury (epithelial permeability), followed by gene expression profiling of CA and AM by RNA-seq. As expected, we observed concentration-dependent increases in airway inflammation and injury. Conducting airways and AM both exhibited changes in gene expression to both 1 and 2 ppm O3 that were largely compartment-specific. In CA, genes associated with epithelial barrier function, detoxification processes, and cellular proliferation were altered, while O3 affected genes involved in innate immune signaling, cytokine production, and extracellular matrix remodeling in AM. Further, CA and AM also exhibited notable differences in concentration-response expression patterns for large numbers of genes. Overall, our study has described transcriptional responses to acute O3 exposure, revealing both shared and unique gene expression patterns across multiple concentrations of O3 and in 2 important O3-responsive tissues. These profiles provide broad mechanistic insight into pulmonary O3 toxicity, and reveal a variety of targets for focused follow-up studies.
Collapse
Affiliation(s)
- Adelaide Tovar
- Department of Genetics
- Curriculum in Genetics & Molecular Biology
| | - Gregory J Smith
- Department of Genetics
- Curriculum in Toxicology & Environmental Medicine
| | | | - Wesley L Crouse
- Department of Genetics
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jack R Harkema
- Department of Pathology & Diagnostic Investigation and Institute for Integrated Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Samir N P Kelada
- Department of Genetics
- Curriculum in Genetics & Molecular Biology
- Curriculum in Toxicology & Environmental Medicine
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
3
|
Xu M, Wang L, Wang M, Wang H, Zhang H, Chen Y, Wang X, Gong J, Zhang JJ, Adcock IM, Chung KF, Li F. Mitochondrial ROS and NLRP3 inflammasome in acute ozone-induced murine model of airway inflammation and bronchial hyperresponsiveness. Free Radic Res 2019; 53:780-790. [PMID: 31185753 DOI: 10.1080/10715762.2019.1630735] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a key mechanism underlying ozone-induced lung injury. Mitochondria can release mitochondrial reactive oxidative species (mtROS), which may lead to the activation of NLRP3 inflammasome. The goal of this study was to examine the roles of mtROS and NLRP3 inflammasome in acute ozone-induced airway inflammation and bronchial hyperresponsiveness (BHR). C57/BL6 mice (n = 8/group) were intraperitoneally treated with vehicle (phosphate buffered saline, PBS) or mitoTEMPO (mtROS inhibitor, 20 mg/kg), or orally treated with VX-765 (caspse-1 inhibitor, 100 mg/kg) 1 h before the ozone exposure (2.5 ppm, 3 h). Compared to the PBS-treated ozone-exposed mice, mitoTEMPO reduced the level of total malondialdehyde in bronchoalveolar lavage (BAL) fluid and increased the expression of mitochondrial complexes II and IV in the lung 24 h after single ozone exposure. VX-765 inhibited ozone-induced BHR, BAL total cells including neutrophils and eosinophils, and BAL inflammatory cytokines including IL-1α, IL-1β, KC, and IL-6. Both mitoTEMPO and VX-765 reduced ozone-induced mtROS and inhibited capase-1 activity in lung tissue whilst VX-765 further inhibited DRP1 and MFF expression, increased MFN2 expression, and down-regulated caspase-1 expression in the lung tissue. These results indicate that acute ozone exposure induces mitochondrial dysfunction and NLRP3 inflammasome activation, while the latter has a critical role in the pathogenesis of ozone-induced airway inflammation and BHR.
Collapse
Affiliation(s)
- Mengmeng Xu
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Lei Wang
- b Department of Otorhinolaryngology and Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Muyun Wang
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Hanying Wang
- b Department of Otorhinolaryngology and Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Hai Zhang
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Yuqing Chen
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Xiaohui Wang
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Jicheng Gong
- c Duke Global Health Institute and Nicholas School of the Environment, Duke University , Durham , NC , USA.,d College of Environmental Sciences and Engineering and BIC-ESAT, Peking University , Beijing , PR China
| | - Junfeng Jim Zhang
- d College of Environmental Sciences and Engineering and BIC-ESAT, Peking University , Beijing , PR China.,e Global Health Research Center, Duke Kun Shan University , Kunshan , PR China
| | - Ian M Adcock
- f Airway Disease Section, National Heart and Lung Institute, Imperial College London , London , UK.,g Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle , Newcastle , Australia
| | - Kian Fan Chung
- f Airway Disease Section, National Heart and Lung Institute, Imperial College London , London , UK
| | - Feng Li
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| |
Collapse
|
4
|
Curcumin Exerted Neuroprotection against Ozone-Induced Oxidative Damage and Decreased NF- κB Activation in Rat Hippocampus and Serum Levels of Inflammatory Cytokines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9620684. [PMID: 30693069 PMCID: PMC6332875 DOI: 10.1155/2018/9620684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Ozone is a harmful tropospheric pollutant, causing the formation of reactive oxygen and nitrogen species that lead to oxidative damage in living beings. NF-κB can be activated in response to oxidative damage, inducing an inflammatory response. Nowadays, there are no reliable results that consolidate the use of antioxidants to protect from damage caused by ozone, particularly in highly polluted cities. Curcumin has a strong antioxidant activity and is a potent inhibitor of NF-κB activation with no side effects. The aim of this study is to evaluate the effect of curcumin in preventive and therapeutic approaches against oxidative damage, NF-κB activation, and the rise in serum levels of IL-1β and TNF-α induced by acute and chronic exposure to ozone in rat hippocampus. One hundred male Wistar rats were distributed into five groups; the intact control, curcumin-fed control, the ozone-exposed group, and the preventive and therapeutic groups. These last two groups were exposed to ozone and received food supplemented with curcumin. Lipid peroxidation was determined by spectrophotometry, and protein oxidation was evaluated by immunodetection of carbonylated proteins and densitometry analysis. Activation of NF-κB was assessed by electrophoretic mobility shift assay (EMSA), and inflammatory cytokines (IL-1β and TNF-α) were determined by ELISA. Curcumin decreased NF-κB activation and serum levels of inflammatory cytokines as well as protein and lipid oxidation, in both therapeutic and preventive approaches. Curcumin has proven to be a phytodrug against the damage caused by the environmental exposure to ozone.
Collapse
|
5
|
Michaudel C, Mackowiak C, Maillet I, Fauconnier L, Akdis CA, Sokolowska M, Dreher A, Tan HTT, Quesniaux VF, Ryffel B, Togbe D. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J Allergy Clin Immunol 2018; 142:942-958. [DOI: 10.1016/j.jaci.2017.11.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
|
6
|
Malik F, Cromar KR, Atkins CL, Price RE, Jackson WT, Siddiqui SR, Spencer CY, Mitchell NC, Haque IU, Johnston RA. Chemokine (C-C Motif) Receptor-Like 2 is not essential for lung injury, lung inflammation, or airway hyperresponsiveness induced by acute exposure to ozone. Physiol Rep 2018; 5:5/24/e13545. [PMID: 29242308 PMCID: PMC5742705 DOI: 10.14814/phy2.13545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022] Open
Abstract
Inhalation of ozone (O3), a gaseous air pollutant, causes lung injury, lung inflammation, and airway hyperresponsiveness. Macrophages, mast cells, and neutrophils contribute to one or more of these sequelae induced by O3. Furthermore, each of these aforementioned cells express chemokine (C‐C motif) receptor‐like 2 (Ccrl2), an atypical chemokine receptor that facilitates leukocyte chemotaxis. Given that Ccrl2 is expressed by cells essential to the development of O3‐induced lung pathology and that chemerin, a Ccrl2 ligand, is increased in bronchoalveolar lavage fluid (BALF) by O3, we hypothesized that Ccrl2 contributes to the development of lung injury, lung inflammation, and airway hyperresponsiveness induced by O3. To that end, we measured indices of lung injury (BALF protein, BALF epithelial cells, and bronchiolar epithelial injury), lung inflammation (BALF cytokines and BALF leukocytes), and airway responsiveness to acetyl‐β‐methylcholine chloride (respiratory system resistance) in wild‐type and mice genetically deficient in Ccrl2 (Ccrl2‐deficient mice) 4 and/or 24 hours following cessation of acute exposure to either filtered room air (air) or O3. In air‐exposed mice, BALF chemerin was greater in Ccrl2‐deficient as compared to wild‐type mice. O3 increased BALF chemerin in mice of both genotypes, yet following O3 exposure, BALF chemerin was greater in Ccrl2‐deficient as compared to wild‐type mice. O3 increased indices of lung injury, lung inflammation, and airway responsiveness. Nevertheless, no indices were different between genotypes following O3 exposure. In conclusion, we demonstrate that Ccrl2 modulates chemerin levels in the epithelial lining fluid of the lungs but does not contribute to the development of O3‐induced lung pathology.
Collapse
Affiliation(s)
- Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Kevin R Cromar
- Marron Institute of Urban Management New York University, New York, New York
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - William T Jackson
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Saad R Siddiqui
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nicholas C Mitchell
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas .,Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
7
|
Functional and morphological differences of the lung upon acute and chronic ozone exposure in mice. Sci Rep 2018; 8:10611. [PMID: 30006538 PMCID: PMC6045627 DOI: 10.1038/s41598-018-28261-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Environmental air pollutants including ozone cause severe lung injury and aggravate respiratory diseases such as asthma and COPD. Here we compared the effect of ozone on respiratory epithelium injury, inflammation, hyperreactivity and airway remodeling in mice upon acute (1ppm, 1 h) and chronic exposure (1.5ppm, 2 h, twice weekly for 6 weeks). Acute ozone exposure caused respiratory epithelial disruption with protein leak and neutrophil recruitment in the broncho-alveolar space, leading to lung inflammation and airway hyperresponsiveness (AHR) to methacholine. All these parameters were increased upon chronic ozone exposure, including collagen deposition. The structure of the airways as assessed by automatic numerical image analysis showed significant differences: While acute ozone exposure increased bronchial and lumen circularity but decreased epithelial thickness and area, chronic ozone exposure revealed epithelial injury with reduced height, distended bronchioles, enlarged alveolar space and increased collagen deposition, indicative of peribronchiolar fibrosis and emphysema as characterized by a significant increase in the density and diameter of airspaces with decreased airspace numbers. In conclusion, morphometric numerical analysis enables an automatic and unbiased assessment of small airway remodeling. The structural changes of the small airways correlated with functional changes allowing to follow the progression from acute to chronic ozone induced respiratory pathology.
Collapse
|
8
|
Michaudel C, Maillet I, Fauconnier L, Quesniaux V, Chung KF, Wiegman C, Peter D, Ryffel B. Interleukin-1α Mediates Ozone-Induced Myeloid Differentiation Factor-88-Dependent Epithelial Tissue Injury and Inflammation. Front Immunol 2018; 9:916. [PMID: 29867931 PMCID: PMC5950844 DOI: 10.3389/fimmu.2018.00916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/13/2018] [Indexed: 02/04/2023] Open
Abstract
Air pollution associated with ozone exposure represents a major inducer of respiratory disease in man. In mice, a single ozone exposure causes lung injury with disruption of the respiratory barrier and inflammation. We investigated the role of interleukin-1 (IL-1)-associated cytokines upon a single ozone exposure (1 ppm for 1 h) using IL-1α-, IL-1β-, and IL-18-deficient mice or an anti-IL-1α neutralizing antibody underlying the rapid epithelial cell death. Here, we demonstrate the release of the alarmin IL-1α after ozone exposure and that the acute respiratory barrier injury and inflammation and airway hyperreactivity are IL-1α-dependent. IL-1α signaling via IL-1R1 depends on the adaptor protein myeloid differentiation factor-88 (MyD88). Importantly, epithelial cell signaling is critical, since deletion of MyD88 in lung type I alveolar epithelial cells reduced ozone-induced inflammation. In addition, intratracheal injection of recombinant rmIL-1α in MyD88acid mice led to reduction of inflammation in comparison with wild type mice treated with rmIL-1α. Therefore, a major part of inflammation is mediated by IL-1α signaling in epithelial cells. In conclusion, the alarmin IL-1α released upon ozone-induced tissue damage and inflammation is mediated by MyD88 signaling in epithelial cells. Therefore, IL-1α may represent a therapeutic target to attenuate ozone-induced lung inflammation and hyperreactivity.
Collapse
Affiliation(s)
- Chloé Michaudel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans, France
| | - Isabelle Maillet
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans, France
| | | | - Valérie Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans, France
| | - Kian Fan Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Coen Wiegman
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Daniel Peter
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans, France
| |
Collapse
|
9
|
Fei X, Bao W, Zhang P, Zhang X, Zhang G, Zhang Y, Zhou X, Zhang M. Inhalation of progesterone inhibits chronic airway inflammation of mice exposed to ozone. Mol Immunol 2017; 85:174-184. [PMID: 28279894 DOI: 10.1016/j.molimm.2017.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Chronic ozone exposure leads to a model of mice with lung inflammation, emphysema and oxidative stress. Progesterone plays an important role in attenuating the neuroinflammation. We assume that progesterone will reduce the chronic airway inflammation exposed to ozone and evaluate whether combination of progesterone with glucocorticoids results in synergistic effects. C57/BL6 mice were exposed to ozone (2.5ppm, 3h) 12 times over 6 weeks, and were administered with progesterone (0.03 or 0.3mg/L; inhaled) alone or combined with budesonide (BUD) (0.2g/L) after each exposure until the tenth week. Mice were studied 24h after final exposure, cells and inflammatory mediators were assessed in bronchoalveolar lavage fluid (BALF) and lungs used for evaluation of glucocorticoids receptors (GR), p38 mitogen-activated protein kinase (MAPK) phosphorylation and nuclear transcription factor κB (NF-κB) activation. Exposure to ozone resulted in a marked lung neutrophilia. Moreover, in ozone-exposed group, the levels of oxidative stress-related interleukin (IL)-1β, IL-6, IL-8, IL-17A, activated NF-κB and p38MAPK, airway inflammatory cells infiltration density, mean linear intercept (Lm) were greatly increased, FEV25 and glucocorticoids receptors (GR) were markedly decreased. Comparable to BUD, progesterone treatment dose-dependently led to a significant reduction of IL-1β, IL-6, IL-8, IL-17A, activated NF-κB and p38MAPK, and an increase of FEV25 and GR. Progesterone combined with BUD resulted in dramatic changes, compared to monotherapy of BUD or progesterone. Therefore, these results demonstrate that chronic ozone exposure has profound airway inflammatory effects counteracted by progesterone and progesterone acts synergistically with glucocorticoids in attenuating the airway inflammation dose-dependently.
Collapse
Affiliation(s)
- Xia Fei
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wuping Bao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pengyu Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqing Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhou
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Kasahara DI, Mathews JA, Ninin FMC, Wurmbrand AP, Liao JK, Shore SA. Role of ROCK2 in CD4 + cells in allergic airways responses in mice. Clin Exp Allergy 2017; 47:224-235. [PMID: 27886408 PMCID: PMC5280456 DOI: 10.1111/cea.12866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Rho kinases (ROCKs) contribute to allergic airways disease. ROCKs also play a role in lymphocyte proliferation and migration. OBJECTIVE To determine the role of ROCK2 acting within CD4+ cells in allergic airways responses. METHODS ROCK2-haploinsufficient (ROCK2+/- ) and wild-type mice were sensitized with ovalbumin (OVA). ROCK2+/- mice then received either CD4+ cells from ROCK2-sufficient OVA TCR transgenic (OT-II) mice or saline i.v. 48 h before challenge with aerosolized OVA. Wild-type mice received saline before challenge. Allergic airways responses were measured 48 h after the last challenge. Allergic airways responses were also assessed in mice lacking ROCK2 only in CD4+ cells (ROCK2CD4Cre mice) vs. control (CD4-Cre and ROCK2flox/flox ) mice. RESULTS OVA-induced increases in bronchoalveolar lavage lymphocytes, eosinophils, IL-13, IL-5, and eotaxin were reduced in ROCK2+/- vs. wild-type mice, as were airway hyperresponsiveness and mucous hypersecretion. In ROCK2+/- mice, adoptive transfer with CD4+ cells from OT-II mice restored effects of OVA on lymphocytes, eosinophils, IL-13, IL-5, and mucous hypersecretion to wild-type levels, whereas eotaxin and airway hyperresponsiveness were not affected. ROCK2 inhibitors reduced IL-13-induced release of eotaxin from airway smooth muscle (ASM), similar to effects of these inhibitors on ASM contractility. Despite the ability of adoptive transfer to restore allergic airways inflammation in ROCK2-insufficient mice, allergic inflammation was not different in ROCK2CD4Cre vs. control mice. CONCLUSION ROCK2 contributes to allergic airways responses likely via effects within ASM cells and within non-lymphocyte cells involved in lymphocyte activation and migration into the airways.
Collapse
Affiliation(s)
- David I. Kasahara
- Physiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115-6021
| | - Joel A. Mathews
- Physiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115-6021
| | - Fernanda M. C. Ninin
- Physiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115-6021
| | - Allison P. Wurmbrand
- Physiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115-6021
| | - James K. Liao
- Department of Medicine, University of Chicago, Chicago, IL
| | - Stephanie A. Shore
- Physiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115-6021
| |
Collapse
|
11
|
Brand JD, Mathews JA, Kasahara DI, Wurmbrand AP, Shore SA. Regulation of IL-17A expression in mice following subacute ozone exposure. J Immunotoxicol 2016; 13:428-38. [PMID: 27043160 DOI: 10.3109/1547691x.2015.1120829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to subacute ozone (O3) causes pulmonary neutrophil recruitment. In mice, this recruitment requires IL-17A. Ozone also causes expression of IL-23 and IL-1, which can induce IL-17A. The purpose of this study was to examine the hypothesis that IL-23 and IL-1 contribute to IL-17A expression and subsequent neutrophil recruitment after subacute O3 exposure. Wild-type, IL-23(-/-), and Flt3l(-/-) mice were exposed to air or 0.3 ppm O3 for 72 h. Flt3l(-/-) mice lack conventional dendritic cells (cDC) that can express IL-23 and IL-1. Other wild-type mice were pre-treated with saline or the IL-1R1 antagonist anakinra prior to O3 exposure. After exposure, bronchoalveolar lavage (BAL) was performed and lung tissue harvested. The results indicated that pulmonary Il17a mRNA abundance and IL-17A(+) F4/80(+) cells were significantly reduced in O3-exposed IL-23(-/-) vs in wild-type mice. In contrast, anakinra had no effect on Il23a or Il17a pulmonary mRNA abundance or on BAL concentrations of the neutrophil survival factor G-CSF, but anakinra did reduce BAL neutrophil numbers, likely because anakinra also reduced BAL IL-6. Compared to air, O3 caused a significant increase in DC numbers in wild-type, but not in Flt3(-/-) mice. However, there was no significant difference in Il23a or Il17a mRNA abundance or in BAL neutrophil count in O3-exposed Flt3(-/-) vs in wild-type mice. From these results, it was concluded that IL-23 but not IL-1 contributes to the IL-17A expression induced by subacute O3 exposure. Induction of IL-23 by O3 does not appear to require cDC.
Collapse
Affiliation(s)
- Jeffrey D Brand
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Joel A Mathews
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - David I Kasahara
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Alison P Wurmbrand
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Stephanie A Shore
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
12
|
Michaudel C, Couturier-Maillard A, Chenuet P, Maillet I, Mura C, Couillin I, Gombault A, Quesniaux VF, Huaux F, Ryffel B. Inflammasome, IL-1 and inflammation in ozone-induced lung injury. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2016; 5:33-40. [PMID: 27168953 PMCID: PMC4858604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Exposure to ambient ozone causes airway hyperreactivity and lung inflammation, which represent an important health concern in humans. Recent clinical and experimental studies contributed to the understanding of the mechanisms of epithelial injury, inflammation and airway hyperreactivity, which is reviewed here. The present data suggest that ozone induced oxidative stress causes inflammasome activation with the release of IL-1, other cytokines and proteases driving lung inflammation leading to the destruction of alveolar epithelia with emphysema and respiratory failure. Insights in the pathogenic pathway may allow to identify novel biomarkers of ozone-induced lung disease and therapeutic targets.
Collapse
Affiliation(s)
- Chloé Michaudel
- ArtImmune SAS13 Avenue Buffon, Orleans, France
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | | | - Pauline Chenuet
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Isabelle Maillet
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Catherine Mura
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Isabelle Couillin
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Aurélie Gombault
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Valérie F Quesniaux
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - François Huaux
- ULB, Bruxelles Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de LouvainBrussels, Belgium
| | - Bernhard Ryffel
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
- IDM, University of Cape TownRSA
| |
Collapse
|
13
|
Yang Q, Ge MQ, Kokalari B, Redai IG, Wang X, Kemeny DM, Bhandoola A, Haczku A. Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol 2016; 137:571-8. [PMID: 26282284 PMCID: PMC4747855 DOI: 10.1016/j.jaci.2015.06.037] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 06/09/2015] [Accepted: 06/29/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Asthmatic patients are highly susceptible to air pollution and in particular to the effects of ozone (O3) inhalation, but the underlying mechanisms remain unclear. OBJECTIVE Using mouse models of O3-induced airway inflammation and airway hyperresponsiveness (AHR), we sought to investigate the role of the recently discovered group 2 innate lymphoid cells (ILC2s). METHODS C57BL/6 and BALB/c mice were exposed to Aspergillus fumigatus, O3, or both (3 ppm for 2 hours). ILC2s were isolated by means of fluorescence-activated cell sorting and studied for Il5 and Il13 mRNA expression. ILC2s were depleted with anti-Thy1.2 mAb and replaced by means of intratracheal transfer of ex vivo expanded Thy1.1 ILC2s. Cytokine levels (ELISA and quantitative PCR), inflammatory cell profile, and AHR (flexiVent) were assessed in the mice. RESULTS In addition to neutrophil influx, O3 inhalation elicited the appearance of eosinophils and IL-5 in the airways of BALB/c but not C57BL/6 mice. Although O3-induced expression of IL-33, a known activator of ILC2s, in the lung was similar between these strains, isolated pulmonary ILC2s from O3-exposed BALB/c mice had significantly greater Il5 and Il13 mRNA expression than C57BL/6 mice. This suggested that an altered ILC2 function in BALB/c mice might mediate the increased O3 responsiveness. Indeed, anti-Thy1.2 treatment abolished but ILC2s added back dramatically enhanced O3-induced AHR. CONCLUSIONS O3-induced activation of pulmonary ILC2s was necessary and sufficient to mediate asthma-like changes in BALB/c mice. This previously unrecognized role of ILC2s might help explain the heightened susceptibility of human asthmatic airways to O3 exposure.
Collapse
Affiliation(s)
- Qi Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pa; T-Cell Biology and Development Section, Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Moyar Q Ge
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Lung Biology Center, Pulmonary, Critical Care & Sleep Medicine, University of California, Davis, Calif; Department of Microbiology, National University of Singapore, Singapore
| | - Blerina Kokalari
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Imre G Redai
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Xinxin Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pa
| | - David M Kemeny
- Department of Microbiology, National University of Singapore, Singapore
| | - Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pa; T-Cell Biology and Development Section, Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Angela Haczku
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Lung Biology Center, Pulmonary, Critical Care & Sleep Medicine, University of California, Davis, Calif.
| |
Collapse
|
14
|
Che L, Jin Y, Zhang C, Lai T, Zhou H, Xia L, Tian B, Zhao Y, Liu J, Wu Y, Wu Y, Du J, Li W, Ying S, Chen Z, Shen H. Ozone-induced IL-17A and neutrophilic airway inflammation is orchestrated by the caspase-1-IL-1 cascade. Sci Rep 2016; 6:18680. [PMID: 26739627 PMCID: PMC4703985 DOI: 10.1038/srep18680] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023] Open
Abstract
Ozone is a common environmental air pollutant leading to respiratory illness. The mechanisms regulating ozone-induced airway inflammation remain poorly understood. We hypothesize that ozone-triggered inflammasome activation and interleukin (IL)-1 production regulate neutrophilic airway inflammation through IL-17A. Pulmonary neutrophilic inflammation was induced by extended (72 h) low-dose (0.7 ppm) exposure to ozone. IL-1 receptor 1 (Il1r1)−/−, Il17a−/− mice and the caspase-1 inhibitor acetyl-YVAD-chloromethylketone (Ac-YVAD-cmk) were used for in vivo studies. Cellular inflammation and protein levels in bronchial alveolar lavage fluid (BALF), cytokines, and IL-17A-producing γδT-cells, as well as mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) release, and inflammasome activation in lung macrophages were analyzed. Ozone-induced neutrophilic airway inflammation, accompanied an increased production of IL-1β, IL-18, IL-17A, Granulocyte-colony stimulating factor (G-CSF), Interferon-γ inducible protein 10 (IP-10) and BALF protein in the lung. Ozone-induced IL-17A production was predominantly in γδT-cells, and Il17a-knockout mice exhibited reduced airway inflammation. Lung macrophages from ozone-exposed mice exhibited higher levels of mitochondrial ROS, enhanced cytosolic mtDNA, increased caspase-1 activation, and higher production of IL-1β. Il1r1-knockout mice or treatment with Ac-YVAD-cmk decreased the IL-17A production and subsequent airway inflammation. Taken together, we demonstrate that ozone-induced IL-17A and neutrophilic airway inflammation is orchestrated by the caspase-1-IL-1 cascade.
Collapse
Affiliation(s)
- Luanqing Che
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yan Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Respiratory Diseases, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Tianwen Lai
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Hongbin Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lixia Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Baoping Tian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Juan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yinfang Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yanping Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, The Ministry of Education, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China
| |
Collapse
|
15
|
Aleman MM, Kesic MJ, Mills KH, Peden DB, Hernandez ML. The IL-1 axis is associated with airway inflammation after O3 exposure in allergic asthmatic patients. J Allergy Clin Immunol 2015; 136:1099-101.e2. [PMID: 25959670 PMCID: PMC4600417 DOI: 10.1016/j.jaci.2015.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/10/2015] [Accepted: 03/20/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Maria M Aleman
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew J Kesic
- Doctor of Physical Therapy Program, Methodist University, Fayetteville, NC
| | - Katherine H Mills
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michelle L Hernandez
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
16
|
Razvi SS, Richards JB, Malik F, Cromar KR, Price RE, Bell CS, Weng T, Atkins CL, Spencer CY, Cockerill KJ, Alexander AL, Blackburn MR, Alcorn JL, Haque IU, Johnston RA. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1174-85. [PMID: 26386120 DOI: 10.1152/ajplung.00270.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/14/2015] [Indexed: 01/10/2023] Open
Abstract
Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines-including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)-promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology.
Collapse
Affiliation(s)
- Shehla S Razvi
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Cynthia S Bell
- Division of Nephrology, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Chantal Y Spencer
- Pediatric Pulmonary Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Katherine J Cockerill
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Amy L Alexander
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Joseph L Alcorn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; and
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
17
|
Cabello N, Mishra V, Sinha U, DiAngelo SL, Chroneos ZC, Ekpa NA, Cooper TK, Caruso CR, Silveyra P. Sex differences in the expression of lung inflammatory mediators in response to ozone. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1150-63. [PMID: 26342085 DOI: 10.1152/ajplung.00018.2015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/31/2015] [Indexed: 01/06/2023] Open
Abstract
Sex differences in the incidence of respiratory diseases have been reported. Women are more susceptible to inflammatory lung disease induced by air pollution and show worse adverse pulmonary health outcomes than men. However, the mechanisms underlying these differences remain unknown. In the present study, we hypothesized that sex differences in the expression of lung inflammatory mediators affect sex-specific immune responses to environmental toxicants. We focused on the effects of ground-level ozone, a major air pollutant, in the expression and regulation of lung immunity genes. We exposed adult male and female mice to 2 ppm of ozone or filtered air (control) for 3 h. We compared mRNA levels of 84 inflammatory genes in lungs harvested 4 h postexposure using a PCR array. We also evaluated changes in lung histology and bronchoalveolar lavage fluid cell counts and protein content at 24 and 72 h postexposure. Our results revealed sex differences in lung inflammation triggered by ozone exposure and in the expression of genes involved in acute phase and inflammatory responses. Major sex differences were found in the expression of neutrophil-attracting chemokines (Ccl20, Cxcl5, and Cxcl2), the proinflammatory cytokine interleukin-6, and oxidative stress-related enzymes (Ptgs2, Nos2). In addition, the phosphorylation of STAT3, known to mediate IL-6-related immune responses, was significantly higher in ozone-exposed mice. Together, our observations suggest that a differential regulation of the lung immune response could be implicated in the observed increased susceptibility to adverse health effects from ozone observed in women vs. men.
Collapse
Affiliation(s)
- Noe Cabello
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Vikas Mishra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Utkarshna Sinha
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Susan L DiAngelo
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zissis C Chroneos
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Ndifreke A Ekpa
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Timothy K Cooper
- Department of Comparative Medicine, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Carla R Caruso
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Humanities, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
18
|
Barker JS, Wu Z, Hunter DD, Dey RD. Ozone exposure initiates a sequential signaling cascade in airways involving interleukin-1beta release, nerve growth factor secretion, and substance P upregulation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:397-407. [PMID: 25734767 PMCID: PMC4491938 DOI: 10.1080/15287394.2014.971924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous studies demonstrated that interleukin-1β (IL-1β) and nerve growth factor (NGF) increase synthesis of substance P (SP) in airway neurons both after ozone (O3) exposure and by direct application. It was postulated that NGF mediates O3-induced IL-1β effects on SP. The current study specifically focused on the influence of O3 on IL-1β, NGF, and SP levels in mice bronchoalveolar lavage fluid (BALF) and whether these mediators may be linked in an inflammatory-neuronal cascade in vivo. The findings showed that in vivo O3 exposure induced an increase of all three proteins in mouse BALF and that O3-induced elevations in both NGF and SP are mediated by the inflammatory cytokine IL-1β. Further, inhibition of NGF reduced O3 induced increases of SP in both the lung BALF and lung tissue, demonstrating NGF serves as a mediator of IL-1β effects on SP. These data indicate that IL-1β is an early mediator of O3-induced rise in NGF and subsequent SP release in mice in vivo.
Collapse
Affiliation(s)
- Joshua S Barker
- a Department of Neurobiology and Anatomy , West Virginia School of Medicine , Morgantown , West Virginia , USA
| | | | | | | |
Collapse
|
19
|
Barreno RX, Richards JB, Schneider DJ, Cromar KR, Nadas AJ, Hernandez CB, Hallberg LM, Price RE, Hashmi SS, Blackburn MR, Haque IU, Johnston RA. Endogenous osteopontin promotes ozone-induced neutrophil recruitment to the lungs and airway hyperresponsiveness to methacholine. Am J Physiol Lung Cell Mol Physiol 2013; 305:L118-29. [PMID: 23666750 DOI: 10.1152/ajplung.00080.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Inhalation of ozone (O₃), a common environmental pollutant, causes pulmonary injury, pulmonary inflammation, and airway hyperresponsiveness (AHR) in healthy individuals and exacerbates many of these same sequelae in individuals with preexisting lung disease. However, the mechanisms underlying these phenomena are poorly understood. Consequently, we sought to determine the contribution of osteopontin (OPN), a hormone and a pleiotropic cytokine, to the development of O₃-induced pulmonary injury, pulmonary inflammation, and AHR. To that end, we examined indices of these aforementioned sequelae in mice genetically deficient in OPN and in wild-type, C57BL/6 mice 24 h following the cessation of an acute (3 h) exposure to filtered room air (air) or O₃ (2 parts/million). In wild-type mice, O₃ exposure increased bronchoalveolar lavage fluid (BALF) OPN, whereas immunohistochemical analysis demonstrated that there were no differences in the number of OPN-positive alveolar macrophages between air- and O₃-exposed wild-type mice. O₃ exposure also increased BALF epithelial cells, protein, and neutrophils in wild-type and OPN-deficient mice compared with genotype-matched, air-exposed controls. However, following O₃ exposure, BALF neutrophils were significantly reduced in OPN-deficient compared with wild-type mice. When airway responsiveness to inhaled acetyl-β-methylcholine chloride (methacholine) was assessed using the forced oscillation technique, O₃ exposure caused hyperresponsiveness to methacholine in the airways and lung parenchyma of wild-type mice, but not OPN-deficient mice. These results demonstrate that OPN is increased in the air spaces following acute exposure to O₃ and functionally contributes to the development of O₃-induced pulmonary inflammation and airway and lung parenchymal hyperresponsiveness to methacholine.
Collapse
Affiliation(s)
- Ramon X Barreno
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Feng F, Li Z, Potts-Kant EN, Wu Y, Foster WM, Williams KL, Hollingsworth JW. Hyaluronan activation of the Nlrp3 inflammasome contributes to the development of airway hyperresponsiveness. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1692-8. [PMID: 23010656 PMCID: PMC3546367 DOI: 10.1289/ehp.1205188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/24/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND The role of the Nlrp3 inflammasome in nonallergic airway hyperresponsiveness (AHR) has not previously been reported. Recent evidence supports both interleukin (IL) 1β and short fragments of hyaluronan (HA) as contributors to the biological response to inhaled ozone. OBJECTIVE Because extracellular secretion of IL-1β requires activation of the inflammasome, we investigated the role of the inflammasome proteins ASC, caspase1, and Nlrp3 in the biological response to ozone and HA. METHODS C57BL/6J wild-type mice and mice deficient in ASC, caspase1, or Nlrp3 were exposed to ozone (1 ppm for 3 hr) or HA followed by analysis of airway resistance, cellular inflammation, and total protein and cytokines in bronchoalveolar lavage fluid (BALF). Transcription levels of IL-1β and IL-18 were determined in two populations of lung macrophages. In addition, we examined levels of cleaved caspase1 and cleaved IL-1β as markers of inflammasome activation in isolated alveolar macrophages harvested from BALF from HA-treated mice. RESULTS We observed that genes of the Nlrp3 inflammasome were required for development of AHR following exposure to either ozone or HA fragments. These genes are partially required for the cellular inflammatory response to ozone. The expression of IL-1β mRNA in alveolar macrophages was up-regulated after either ozone or HA challenge and was not dependent on the Nlrp3 inflammasome. However, soluble levels of IL-1β protein were dependent on the inflammasome after challenge with either ozone or HA. HA challenge resulted in cleavage of macrophage-derived caspase1 and IL-1β, suggesting a role for alveolar macrophages in Nlrp3-dependent AHR. CONCLUSIONS The Nlrp3 inflammasome is required for the development of ozone-induced reactive airways disease.
Collapse
Affiliation(s)
- Feifei Feng
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kasahara DI, Kim HY, Williams AS, Verbout NG, Tran J, Si H, Wurmbrand AP, Jastrab J, Hug C, Umetsu DT, Shore SA. Pulmonary inflammation induced by subacute ozone is augmented in adiponectin-deficient mice: role of IL-17A. THE JOURNAL OF IMMUNOLOGY 2012; 188:4558-67. [PMID: 22474022 DOI: 10.4049/jimmunol.1102363] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pulmonary responses to ozone, a common air pollutant, are augmented in obese individuals. Adiponectin, an adipose-derived hormone that declines in obesity, has regulatory effects on the immune system. To determine the role of adiponectin in the pulmonary inflammation induced by extended (48-72 h) low-dose (0.3 parts per million) exposure to ozone, adiponectin-deficient (Adipo(-/-)) and wild-type mice were exposed to ozone or to room air. In wild-type mice, ozone exposure increased total bronchoalveolar lavage (BAL) adiponectin. Ozone-induced lung inflammation, including increases in BAL neutrophils, protein (an index of lung injury), IL-6, keratinocyte-derived chemokine, LPS-induced CXC chemokine, and G-CSF were augmented in Adipo(-/-) versus wild-type mice. Ozone also increased IL-17A mRNA expression to a greater extent in Adipo(-/-) versus wild-type mice. Moreover, compared with control Ab, anti-IL-17A Ab attenuated ozone-induced increases in BAL neutrophils and G-CSF in Adipo(-/-) but not in wild-type mice, suggesting that IL-17A, by promoting G-CSF release, contributed to augmented neutrophilia in Adipo(-/-) mice. Flow cytometric analysis of lung cells revealed that the number of CD45(+)/F4/80(+)/IL-17A(+) macrophages and γδ T cells expressing IL-17A increased after ozone exposure in wild-type mice and further increased in Adipo(-/-) mice. The IL-17(+) macrophages were CD11c(-) (interstitial macrophages), whereas CD11c(+) macrophages (alveolar macrophages) did not express IL-17A. Taken together, the data are consistent with the hypothesis that adiponectin protects against neutrophil recruitment induced by extended low-dose ozone exposure by inhibiting the induction and/or recruitment of IL-17A in interstitial macrophages and/or γδ T cells.
Collapse
Affiliation(s)
- David I Kasahara
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shore SA, Williams ES, Chen L, Benedito LAP, Kasahara DI, Zhu M. Impact of aging on pulmonary responses to acute ozone exposure in mice: role of TNFR1. Inhal Toxicol 2011; 23:878-88. [PMID: 22066571 DOI: 10.3109/08958378.2011.622316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Chamber studies in adult humans indicate reduced responses to acute ozone with increasing age. Age-related changes in TNFα have been observed. TNFα induced inflammation is predominantly mediated through TNFR1. OBJECTIVE To examine the impact of aging on inflammatory responses to acute ozone exposure in mice and determine the role of TNFR1 in age-related differences. MATERIALS AND METHODS Wildtype and TNFR1 deficient (TNFR1(-/-)) mice aged 7 or 39 weeks were exposed to ozone (2 ppm for 3 h). Four hours after exposure, bronchoalveolar lavage (BAL) was performed and BAL cells, cytokines, chemokines, and protein were examined. RESULTS Ozone-induced increases in BAL neutrophils and in neutrophil chemotactic factors were lower in 39- versus 7-week-old wildtype, but not (TNFR1(-/-)) mice. There was no effect of TNFR1 genotype in 7-week-old mice, but in 39-week-old mice, BAL neutrophils and BAL concentrations of MCP-1, KC, MIP-2, IL-6 and IP-10 were significantly greater following ozone exposure in TNFR1(-/-) versus wildtype mice. BAL concentrations of the soluble form of the TNFR1 receptor (sTNFR1) were substantially increased in 39-week-old versus 7-week-old mice, regardless of exposure. DISCUSSION AND CONCLUSION The data suggest that increased levels of sTNFR1 in the lungs of the 39-week-old mice may neutralize TNFα and protect these older mice against ozone-induced inflammation.
Collapse
Affiliation(s)
- Stephanie A Shore
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk.
Collapse
|
24
|
Provoost S, Maes T, Pauwels NS, Vanden Berghe T, Vandenabeele P, Lambrecht BN, Joos GF, Tournoy KG. NLRP3/Caspase-1–Independent IL-1β Production Mediates Diesel Exhaust Particle-Induced Pulmonary Inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:3331-7. [DOI: 10.4049/jimmunol.1004062] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Triantaphyllopoulos K, Hussain F, Pinart M, Zhang M, Li F, Adcock I, Kirkham P, Zhu J, Chung KF. A model of chronic inflammation and pulmonary emphysema after multiple ozone exposures in mice. Am J Physiol Lung Cell Mol Physiol 2011; 300:L691-700. [PMID: 21355040 DOI: 10.1152/ajplung.00252.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress plays a role in the pathophysiology of emphysema through the activation of tissue proteases and apoptosis. We examined the effects of ozone exposure by exposing BALB/c mice to either a single 3-h exposure or multiple exposures over 3 or 6 wk, with two 3-h exposures per week. Compared with air-exposed mice, the increase in neutrophils in bronchoalveolar lavage fluid and lung inflammation index was greatest in mice exposed for 3 and 6 wk. Lung volumes were increased in 3- and 6-wk-exposed mice but not in single-exposed. Alveolar space and mean linear intercept were increased in 6- but not 3-wk-exposed mice. Caspase-3 and apoptosis protease activating factor-1 immunoreactivity was increased in the airway and alveolar epithelium and macrophages of 3- and 6-wk-exposed mice. Interleukin-13, keratinocyte chemoattractant, caspase-3, and IFN-γ mRNA were increased in the 6-wk-exposed group, but heme oxygenase-1 (HO-1) mRNA decreased. matrix metalloproteinase-12 (MMP-12) and caspase-3 protein expression increased in lungs of 6-wk-exposed mice. Collagen area increased and epithelial area decreased in airway wall at 3- and 6-wk exposure. Exposure of mice to ozone for 6 wk induced a chronic inflammatory process, with alveolar enlargement and damage linked to epithelial apoptosis and increased protease expression.
Collapse
Affiliation(s)
- Kostas Triantaphyllopoulos
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Garantziotis S, Li Z, Potts EN, Lindsey JY, Stober VP, Polosukhin VV, Blackwell TS, Schwartz DA, Foster WM, Hollingsworth JW. TLR4 is necessary for hyaluronan-mediated airway hyperresponsiveness after ozone inhalation. Am J Respir Crit Care Med 2009; 181:666-75. [PMID: 20007931 PMCID: PMC2868499 DOI: 10.1164/rccm.200903-0381oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RATIONALE Ozone is a common environmental air pollutant that contributes to hospitalizations for respiratory illness. The mechanisms, which regulate ozone-induced airway hyperresponsiveness, remain poorly understood. We have previously reported that toll-like receptor 4 (TLR4)-deficient animals are protected against ozone-induced airway hyperresponsiveness (AHR) and that hyaluronan (HA) mediates ozone-induced AHR. However, the relation between TLR4 and hyaluronan in the airway response to ozone remains unexplored. OBJECTIVES We hypothesized that HA acts as an endogenous TLR4 ligand for the development of AHR after ozone-induced environmental airway injury. METHODS TLR4-deficient and wild-type C57BL/6 mice were exposed to either inhaled ozone or intratracheal HA and the inflammatory and AHR response was measured. MEASUREMENTS AND MAIN RESULTS TLR4-deficient mice have similar levels of cellular inflammation, lung injury, and soluble HA levels as those of C57BL/6 mice after inhaled ozone exposure. However, TLR4-deficient mice are partially protected from AHR after ozone exposure as well as after direct intratracheal instillation of endotoxin-free low molecular weight HA. Similar patterns of TLR4-dependent cytokines were observed in the bronchial alveolar lavage fluid after exposure to either ozone or HA. Exposure to ozone increased immunohistological staining of TLR4 on lung macrophages. Furthermore, in vitro HA exposure of bone marrow-derived macrophages induced NF-kappaB and production of a similar pattern of proinflammatory cytokines in a manner dependent on TLR4. CONCLUSIONS Our observations support the observation that extracellular matrix HA contributes to ozone-induced airways disease. Furthermore, our results support that TLR4 contributes to the biological response to HA by mediating both the production of proinflammatory cytokines and the development of ozone-induced AHR.
Collapse
Affiliation(s)
- Stavros Garantziotis
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhu M, Hug C, Kasahara DI, Johnston RA, Williams AS, Verbout NG, Si H, Jastrab J, Srivastava A, Williams ES, Ranscht B, Shore SA. Impact of adiponectin deficiency on pulmonary responses to acute ozone exposure in mice. Am J Respir Cell Mol Biol 2009; 43:487-97. [PMID: 19915153 DOI: 10.1165/rcmb.2009-0086oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Obese mice have increased responses to acute ozone (O(3)) exposure. T-cadherin is a binding protein for the high-molecular weight isoforms of adiponectin, an anti-inflammatory hormone that declines in obesity. The objective of the present study was to determine whether adiponectin affects pulmonary responses to O(3), and whether these effects are mediated through T-cadherin. We performed bronchoalveolar lavage (BAL) and measured pulmonary responsiveness to methacholine after acute air or O(3) exposure (2 ppm for 3 h) in adiponectin-deficient (Adipo(-/-)) or T-cadherin-deficient (T-Cad(-/-)) mice. O(3) increased pulmonary responses to methacholine and increased BAL neutrophils and protein to a greater extent in wild-type than in Adipo(-/-) mice, whereas T-cadherin deficiency had no effect. O(3)-induced increases in BAL IL-6 and keratinocyte-derived chemokine (KC), which contribute to O(3)-induced pulmonary neutrophilia, were also greater in wild-type than in Adipo(-/-) mice. In contrast, responses to O(3) were not altered by transgenic overexpression of adiponectin. To determine which adiponectin isoforms are present in the lung, Western blotting was performed. The hexameric isoform of adiponectin dominated in serum, whereas BAL was dominated by the high-molecular weight isoform of adiponectin. Interestingly, serum adiponectin was greater in T-Cad(-/-) versus wild-type mice, whereas BAL adiponectin was lower in T-Cad(-/-) versus wild-type mice, suggesting that T-cadherin may be important for transit of high-molecular weight adiponectin from the blood to the lung. Our results indicate that adiponectin deficiency inhibits pulmonary inflammation induced by acute O(3) exposure, and that T-cadherin does not mediate the effects of adiponectin responsible for these events.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shore SA, Lang JE, Kasahara DI, Lu FL, Verbout NG, Si H, Williams ES, Terry RD, Lee A, Johnston RA. Pulmonary responses to subacute ozone exposure in obese vs. lean mice. J Appl Physiol (1985) 2009; 107:1445-52. [PMID: 19745193 DOI: 10.1152/japplphysiol.00456.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine whether obesity affects pulmonary responses following a 3-day ozone exposure. Obese db/db and lean wild-type mice were exposed to ozone (0.3 ppm) for 72 h. In wild-type mice, ozone exposure caused pulmonary injury and inflammation, and these events were associated with reduced pulmonary compliance. In db/db mice, ozone-induced neutrophil recruitment to the lung was reduced and no reduction in compliance was observed. Similar results were obtained in obese Cpe(fat) mice, indicating that loss of leptin signaling in db/db mice does not account for these obesity-related changes. To examine the role of interleukin (IL)-6 in this obesity-related difference in ozone responsiveness, wild-type and IL-6-deficient mice were raised on 10% or 60% fat diets. Compared with 10% fat-fed mice, wild-type 60% fat-fed mice were obese and had reduced neutrophil recruitment following ozone. IL-6 deficiency reduced ozone-induced neutrophil recruitment in 10% fat-fed mice. In contrast, in obese mice, no effect of IL-6 deficiency on neutrophil recruitment was observed. Obesity-related differences in the effect of ozone on compliance were observed in both wild-type and IL-6-deficient mice. Obesity-related differences in serum IL-6 were observed and may account for obesity-related differences in the effect of IL-6 deficiency on neutrophil recruitment. In summary, the neutrophilic inflammation induced by prolonged low level ozone exposure was attenuated in obese mice and appeared to result from an absence of IL-6-dependent neutrophil recruitment in the obese mice.
Collapse
Affiliation(s)
- Stephanie A Shore
- Molecular and Integrative Physiological Sciences Program, Dept. of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115-6021, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Adler KB, Matalon S. Highlights of the July Issue. Am J Respir Cell Mol Biol 2009. [DOI: 10.1165/rcmb.2009-2007ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Lindauer ML, Wong J, Iwakura Y, Magun BE. Pulmonary inflammation triggered by ricin toxin requires macrophages and IL-1 signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:1419-26. [PMID: 19561099 DOI: 10.4049/jimmunol.0901119] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ricin is a potent ribotoxin considered to be a potentially dangerous bioterrorist agent due to its wide availability and the possibility of aerosol delivery to human populations. Studies in rodents and nonhuman primates have demonstrated that ricin delivered to the pulmonary system leads to acute lung injury and symptoms resembling acute respiratory distress syndrome. Increasing evidence suggests that the inflammatory effects triggered by ricin are responsible for its lethality. We demonstrated previously that ricin administered to the lungs of mice causes death of pulmonary macrophages and the release of proinflammatory cytokines, suggesting macrophages may be a primary target of ricin. Here we examined the requirement for macrophages in the development of ricin-mediated pulmonary inflammation by employing transgenic (MAFIA) mice that express an inducible gene driven by the c-fms promoter for Fas-mediated apoptosis of macrophages upon injection of a synthetic dimerizer, AP20187. Administration of aerosolized ricin to macrophage-depleted mice led to reduced inflammatory responses, including recruitment of neutrophils, expression of proinflammatory transcripts, and microvascular permeability. When compared with control mice treated with ricin, macrophage-depleted mice treated with ricin displayed a reduction in pulmonary IL-1beta. Employing mice deficient in IL-1, we found that ricin-induced inflammatory responses were suppressed, including neutrophilia. Neutrophilia could be restored by co-administering ricin and exogenous IL-1beta to IL-1alpha/beta(-/-) mice. Furthermore, IL1Ra/anakinra cotreatment inhibited ricin-mediated inflammatory responses, including recruitment of neutrophils, expression of proinflammatory genes, and histopathology. These data suggest a central role for macrophages and IL-1 signaling in the inflammatory process triggered by ricin.
Collapse
Affiliation(s)
- Meghan L Lindauer
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
31
|
Shore SA, Williams ES, Zhu M. No effect of metformin on the innate airway hyperresponsiveness and increased responses to ozone observed in obese mice. J Appl Physiol (1985) 2008; 105:1127-33. [PMID: 18703763 DOI: 10.1152/japplphysiol.00117.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have previously reported that obese db/db mice exhibit innate airway hyperresponsiveness. These mice also have enhanced inflammatory responses to ozone, a common air pollutant that exacerbates asthma. Since db/db mice are diabetic as well as obese, the purpose of the present study was to determine whether metformin, an antihyperglycemic agent, alters the pulmonary phenotype of db/db mice. Lean wild-type (C57BL/6J) and obese db/db mice were treated by gavage with water or metformin (300 microg/g) once a day for 2 wk. Twenty-four hours after the last treatment, in mice of both genotypes, we either measured airway responsiveness to methacholine by forced oscillation, or we exposed the mice to ozone (2 parts per million for 3 h) and examined the ensuing inflammatory response. Compared with water, treatment with metformin caused a significant decrease in fasting blood glucose in obese mice. Airway responsiveness was increased in db/db versus wild-type mice, but metformin did not affect responsiveness in either group. Four hours after exposure to ozone, there was a significant increase in bronchoalveolar lavage fluid neutrophils and chemokines in mice of both genotypes, but the magnitude of these changes was greater in db/db than wild-type mice. Metformin did not affect ozone-induced inflammation in mice of either genotype. The results indicate that hyperglycemia is unlikely to account for the pulmonary phenotype of obese mice.
Collapse
Affiliation(s)
- Stephanie A Shore
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA.
| | | | | |
Collapse
|
32
|
Verhein KC, Jacoby DB, Fryer AD. IL-1 receptors mediate persistent, but not acute, airway hyperreactivity to ozone in guinea pigs. Am J Respir Cell Mol Biol 2008; 39:730-8. [PMID: 18617681 DOI: 10.1165/rcmb.2008-0045oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ozone exposure in the lab and environment causes airway hyperreactivity lasting at least 3 days in humans and animals. In guinea pigs 1 day after ozone exposure, airway hyperreactivity is mediated by eosinophils that block neuronal M(2) muscarinic receptor function, thus increasing acetylcholine release from airway parasympathetic nerves. However, mechanisms of ozone-induced airway hyperreactivity change over time, so that depleting eosinophils 3 days after ozone makes airway hyperreactivity worse rather than better. Ozone exposure increases IL-1beta in bone marrow, which may contribute to acute and chronic airway hyperreactivity. To test whether IL-1beta mediates ozone-induced airway hyperreactivity 1 and 3 days after ozone exposure, guinea pigs were pretreated with an IL-1 receptor antagonist (anakinra, 30 mg/kg, intraperitoneally) 30 minutes before exposure to filtered air or to ozone (2 ppm, 4 h). One or three days after exposure, airway reactivity was measured in anesthetized guinea pigs. The IL-1 receptor antagonist prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone exposure. Ozone-induced airway hyperreactivity was vagally mediated, since bronchoconstriction induced by intravenous acetylcholine was not changed by ozone. The IL-1 receptor antagonist selectively prevented ozone-induced reduction of eosinophils around nerves and prevented ozone-induced deposition of extracellular eosinophil major basic protein in airways. These data demonstrate that IL-1 mediates ozone-induced airway hyperreactivity at 3 days, but not 1 day, after ozone exposure. Furthermore, preventing hyperreactivity was accompanied by decreased eosinophil major basic protein deposition within the lung, suggesting that IL-1 affects eosinophil activation 3 days after ozone exposure.
Collapse
Affiliation(s)
- Kirsten C Verhein
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|