3
|
Hu M, Che P, Han X, Cai GQ, Liu G, Antony V, Luckhardt T, Siegal GP, Zhou Y, Liu RM, Desai LP, O'Reilly PJ, Thannickal VJ, Ding Q. Therapeutic targeting of SRC kinase in myofibroblast differentiation and pulmonary fibrosis. J Pharmacol Exp Ther 2014; 351:87-95. [PMID: 25047515 DOI: 10.1124/jpet.114.216044] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myofibroblasts are effector cells in fibrotic disorders that synthesize and remodel the extracellular matrix (ECM). This study investigated the role of the Src kinase pathway in myofibroblast activation in vitro and fibrogenesis in vivo. The profibrotic cytokine, transforming growth factor β1 (TGF-β1), induced rapid activation of Src kinase, which led to myofibroblast differentiation of human lung fibroblasts. The Src kinase inhibitor AZD0530 (saracatinib) blocked TGF-β1-induced Src kinase activation in a dose-dependent manner. Inhibition of Src kinase significantly reduced α-smooth muscle actin (α-SMA) expression, a marker of myofibroblast differentiation, in TGF-β1-treated lung fibroblasts. In addition, the induced expression of collagen and fibronectin and three-dimensional collagen gel contraction were also significantly inhibited in AZD0530-treated fibroblasts. The therapeutic efficiency of Src kinase inhibition in vivo was tested in the bleomycin murine lung fibrosis model. Src kinase activation and collagen accumulation were significantly reduced in the lungs of AZD0530-treated mice when compared with controls. Furthermore, the total fibrotic area and expression of α-SMA and ECM proteins were significantly decreased in lungs of AZD0530-treated mice. These results indicate that Src kinase promotes myofibroblast differentiation and activation of lung fibroblasts. Additionally, these studies provide proof-of-concept for targeting the noncanonical TGF-β signaling pathway involving Src kinase as an effective therapeutic strategy for lung fibrosis.
Collapse
Affiliation(s)
- Meng Hu
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Pulin Che
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaosi Han
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Guo-Qiang Cai
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Gang Liu
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena Antony
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Tracy Luckhardt
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Gene P Siegal
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Zhou
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Rui-ming Liu
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Leena P Desai
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Philip J O'Reilly
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor J Thannickal
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Qiang Ding
- Departments of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine (M.H., G.Q.-C., G.L., V.A., T.L., Y.Z., R.L., L.P.D., P.J.O., V.J.T., Q.D.), Cell, Development, and Integrative Biology (P.C.), Neurology (X.H.), and Pathology (G.P.S.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Chen YH, Peng YL, Wang Y, Weng Y, Li T, Zhang Y, Chen ZB. TGF-β1-induced synthesis of collagen fibers in skeletal muscle-derived stem cells. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2013; 33:238-243. [PMID: 23592137 DOI: 10.1007/s11596-013-1104-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Indexed: 06/02/2023]
Abstract
The aim of this study was to investigate the mechanism of deposition of extracellular matrix induced by TGF-β1 in skeletal muscle-derived stem cells (MDSCs). Rat skeletal MDSCs were obtained by using preplate technique, and divided into four groups: group A (control group), group B (treated with TGF-β1, 10 ng/mL), group C (treated with TGF-β1 and anti-connective tissue growth factor (CTGF), both in 10 ng/mL), and group D (treated with anti-CTGF, 10 ng/mL). The expression of CTGF, collagen type-I (COL-I) and collagen type-III (COL-III) in MDSCs was examined by using RT-PCR, Western blot and immunofluorescent stain. It was found that one day after TGF-β1 treatment, the expression of CTGF, COL-I and COL-III was increased dramatically. CTGF expression reached the peak on the day 2, and then decreased rapidly to a level of control group on the day 5. COL-I and COL-III mRNA levels were overexpresed on the day 2 and 3 respectively, while their protein expression levels were up-regulated on the day 2 and reached the peak on the day 7. In group C, anti-CTGF could partly suppress the overexpression of COL-I and COL-II induced by TGF-β1 one day after adding CTGF antibody. It was concluded that TGF-β1 could induce MDSCs to express CTGF, and promote the production of COL-I and COL-III. In contrast, CTGF antibody could partially inhibit the effect of TGF-β1 on the MDSCs by reducing the expression of COL-I and COL-III. Taken together, we demonstrated that TGF-β1-CTGF signaling played a crucial role in MDSCs synthesizing collagen proteins in vitro, which provided theoretical basis for exploring the methods postponing skeletal muscle fibrosis after nerve injury.
Collapse
Affiliation(s)
- Yan-Hua Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun-Long Peng
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiong Weng
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen-Bing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|