1
|
Hypoxia increases expression of selected blood-brain barrier transporters GLUT-1, P-gp, SLC7A5 and TFRC, while maintaining barrier integrity, in brain capillary endothelial monolayers. Fluids Barriers CNS 2022; 19:1. [PMID: 34983574 PMCID: PMC8725498 DOI: 10.1186/s12987-021-00297-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Brain capillary endothelial cells (BCECs) experience hypoxic conditions during early brain development. The newly formed capillaries are tight and functional before astrocytes and pericytes join the capillaries and establish the neurovascular unit. Brain endothelial cell phenotype markers P-gp (ABCB1), LAT-1(SLC7A5), GLUT-1(SLC2A1), and TFR(TFRC) have all been described to be hypoxia sensitive. Therefore, we hypothesized that monolayers of BCECs, cultured under hypoxic conditions, would show an increase in LAT-1, GLUT-1 and TFR expression and display tight endothelial barriers. Methods and results Primary bovine BCECs were cultured under normoxic and hypoxic conditions. Chronic hypoxia induced HIF-1α stabilization and translocation to the nucleus, as judged by immunocytochemistry and confocal laser scanning imaging. Endothelial cell morphology, claudin-5 and ZO-1 localization and barrier integrity were unaffected by hypoxia, indicating that the tight junctions in the BBB model were not compromised. SLC7A5, SLC2A1, and TFRC-mRNA levels were increased in hypoxic cultures, while ABCB1 remained unchanged as shown by real-time qPCR. P-gp, TfR and GLUT-1 were found to be significantly increased at protein levels. An increase in uptake of [3H]-glucose was demonstrated, while a non-significant increase in the efflux ratio of the P-gp substrate [3H]-digoxin was observed in hypoxic cells. No changes were observed in functional LAT-1 as judged by uptake studies of [3H]-leucine. Stabilization of HIF-1α under normoxic conditions with desferrioxamine (DFO) mimicked the effects of hypoxia on endothelial cells. Furthermore, low concentrations of DFO caused an increase in transendothelial electrical resistance (TEER), suggesting that a slight activation of the HIF-1α system may actually increase brain endothelial monolayer tightness. Moreover, exposure of confluent monolayers to hypoxia resulted in markedly increase in TEER after 24 and 48 h, which corresponded to a higher transcript level of CLDN5. Conclusions Our findings collectively suggest that hypoxic conditions increase some BBB transporters' expression via HIF-1α stabilization, without compromising monolayer integrity. This may in part explain why brain capillaries show early maturation, in terms of barrier tightness and protein expression, during embryogenesis, and provides a novel methodological tool for optimal brain endothelial culture. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00297-6.
Collapse
|
2
|
Huang J, Ding J, Wu X, Jia Y, Liu Q, Yuan S, Yan F. Chronic hypoxia prolongs postoperative mechanical ventilation and reduces the left atrial pressure threshold in children with tetralogy of Fallot. Front Pediatr 2022; 10:965703. [PMID: 36683799 PMCID: PMC9854109 DOI: 10.3389/fped.2022.965703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Chronic hypoxia induces pulmonary microvascular endothelial dysfunction. The left atrial pressure (LAP) represents the hydrostatic pressure of pulmonary microcirculation. The conjunction of the LAP and any abnormal pulmonary microvascular endothelial barrier function will have an impact on pulmonary exudation, resulting in prolonged mechanical ventilation. This study aimed to investigate the tolerance threshold of the pulmonary microcirculation to LAP in children with tetralogy of Fallot (TOF) to avoid prolonged mechanical ventilation after surgery. METHODS This retrospective study included 297 Chinese patients who underwent TOF correction at Fuwai Hospital. Patients were categorized according to their preoperative oxygen saturation (SpO2) level. One-to-one propensity score matching (PSM) revealed a total of 126 participants in the SpO2 < 90% and SpO2 ≥ 90% groups. Between-group comparisons were conducted to verify the correlation between hypoxia and prolonged mechanical ventilation. A subgroup analysis was performed to reveal the significant role of postoperative LAP stewardship on prolonged mechanical ventilation. RESULTS Failure to extubate within the first 48 h (23.81% vs. 9.52%, P = 0.031) and prolonged mechanical ventilation (26.98% vs. 11.11%, P = 0.023) were more commonly observed in children with preoperative SpO2 < 90%. The incidence of prolonged mechanical ventilation consistently increased with LAP in both the SpO2 < 90% and SpO2 ≥ 90% groups, although LAP was still within the normal range (6-12 mmHg). Children in chronic hypoxic conditions tolerated lower LAP well. The tolerance threshold for postoperative LAP in children diagnosed with TOF under chronic hypoxic conditions was identified as 7 mmHg. CONCLUSIONS Children in a chronic hypoxic state may suffer from a high incidence of prolonged mechanical ventilation after surgical correction of TOF and may not tolerate higher postoperative LAP. To improve pulmonary prognosis, it is better to control and maintain the postoperative LAP at a lower state (≤7 mmHg) in children with chronic hypoxia.
Collapse
Affiliation(s)
- Jiangshan Huang
- Department of Anesthesiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ding
- Department of Anesthesiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xie Wu
- Department of Anesthesiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Jia
- Department of Anesthesiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Liu
- Department of Anesthesiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Su Yuan
- Department of Anesthesiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fuxia Yan
- Department of Anesthesiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Li J, Xia Y, Huang Z, Zhao Y, Xiong R, Li X, Huang Q, Shan F. Novel HIF-1-target gene isthmin1 contributes to hypoxia-induced hyperpermeability of pulmonary microvascular endothelial cells monolayers. Am J Physiol Cell Physiol 2021; 321:C671-C680. [PMID: 34469202 DOI: 10.1152/ajpcell.00124.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
Hypoxia-induced pulmonary microvascular endothelial cell (PMVEC) monolayers hyperpermeability is vital for vascular leakage, which participates in vascular diseases, such as acute lung injury (ALI) and high-altitude pulmonary edema (HAPE). We previously observed that PMVEC permeability was markedly elevated in hypoxia when cocultured with primary type II alveolar epithelial cells (AECII) in which isthmin1 (ISM1) was highly upregulated. However, whether the upregulation of ISM1 plays a role in hypoxia-induced PMVEC hyperpermeability is unclear. In this study, we assessed the role of AECII-derived ISM1 in hypoxia-induced PMVEC hyperpermeability with an AECII/PMVEC coculture system and uncovered the underlying mechanism whereby hypoxia stimulates ISM1 gene expression. We found that ISM1 gene expression was upregulated in cultured AECII cells exposed to hypoxia (3% O2) and that AECII-derived ISM1 participated in hypoxia-induced hyperpermeability of PMVEC monolayers, as small interference RNA (siRNA)-mediated knockdown of ISM1 in AECII markedly attenuated the increase in PMVEC permeability in coculture system under hypoxia. In addition, we confirmed that ISM1 was regulated by hypoxia-inducible factor-1α (HIF1α) according to the evidence that silencing of HIF1α inhibited the hypoxia-mediated upregulation of ISM1. Mechanismly, overexpression of HIF1α transcriptionally activated ISM1 gene expression by directly binding to the conserved regulatory elements upstream of the ism1 locus. We identified a novel HIF-1-target gene ISM1, which involves in hyperpermeability of pulmonary microvascular endothelial cell monolayers under hypoxia. Our in vitro cell experiments implied that the upregulated ISM1 derived from alveolar epithelium might be a vital modulator in hypoxia-induced endothelial hyperpermeability and thereby implicates with hypoxic pulmonary-related diseases.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yiming Xia
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhizhong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Renping Xiong
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoxu Li
- College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Qingyuan Huang
- College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Lee JY, Stevens RP, Kash M, Alexeyev MF, Balczon R, Zhou C, Renema P, Koloteva A, Kozhukhar N, Pastukh V, Gwin MS, Voth S, deWeever A, Wagener BM, Pittet JF, Eslaamizaad Y, Siddiqui W, Nawaz T, Clarke C, Fouty BW, Audia JP, Alvarez DF, Stevens T. Carbonic Anhydrase IX and Hypoxia Promote Rat Pulmonary Endothelial Cell Survival During Infection. Am J Respir Cell Mol Biol 2021; 65:630-645. [PMID: 34251286 DOI: 10.1165/rcmb.2020-0537oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Low tidal volume ventilation protects the lung in mechanically ventilated patients. The impact of the accompanying permissive hypoxemia and hypercapnia on endothelial cell recovery from injury is poorly understood. Carbonic anhydrase IX (CA IX) is expressed in pulmonary microvascular endothelial cells (PMVECs), where it contributes to CO2 and pH homeostasis, bioenergetics and angiogenesis. We hypothesized that CA IX is important for PMVEC survival, and CA IX expression and release from PMVECs are increased during infection. While plasma CA IX was unchanged in human and rat pneumonia, there was a trend towards increasing CA IX in bronchoalveolar fluid of mechanically ventilated critically ill pneumonia patients and a significant increase in CA IX in lung tissue lysate of rat pneumonia. To investigate functional implications of the lung CA IX increase, we generated PMVEC cell lines harboring domain-specific CA IX mutations. Using these cells, we found that infection promotes intracellular expression, release and metalloproteinase-mediated extracellular cleavage of CA IX in PMVECs. Intracellular domain deletion uniquely impaired CA IX membrane localization. Loss of the CA IX intracellular domain promoted cell death following infection, suggesting the important role of intracellular domain in PMVEC survival. We also found that hypoxia improves survival, whereas hypercapnia reverses the protective effect of hypoxia, during infection. Thus, we report that: (1) CA IX increases in rat pneumonia lung; and, (2) the CA IX intracellular domain and hypoxia promote PMVEC survival during infection.
Collapse
Affiliation(s)
- Ji Young Lee
- University of South Alabama, 5557, Mobile, Alabama, United States;
| | - Reece P Stevens
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Mary Kash
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | - Ronald Balczon
- University of South Alabama, 5557, Biochemistry and Molecular Biology, Mobile, Alabama, United States
| | - Chun Zhou
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Phoibe Renema
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Anna Koloteva
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | | | - Meredith S Gwin
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Sarah Voth
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Althea deWeever
- University of South Alabama College of Medicine, 12214, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Brant M Wagener
- The University of Alabama at Birmingham, 9968, Department of Anesthesiology and Perioperative Medicine, Birmingham, Alabama, United States
| | - Jean-François Pittet
- The University of Alabama at Birmingham, 9968, Department of Anesthesiology and Perioperative Medicine, Birmingham, Alabama, United States
| | | | - Waqar Siddiqui
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Talha Nawaz
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | - Brian W Fouty
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Jonathon P Audia
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Diego F Alvarez
- Sam Houston State University, 4038, Huntsville, Texas, United States
| | - Troy Stevens
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| |
Collapse
|
5
|
The influence of hypoxia and energy depletion on the response of endothelial cells to the vascular disrupting agent combretastatin A-4-phosphate. Sci Rep 2020; 10:9926. [PMID: 32555222 PMCID: PMC7303175 DOI: 10.1038/s41598-020-66568-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Combretastatin A-4 phosphate (CA4P) is a microtubule-disrupting tumour-selective vascular disrupting agent (VDA). CA4P activates the actin-regulating RhoA-GTPase/ ROCK pathway, which is required for full vascular disruption. While hypoxia renders tumours resistant to many conventional therapies, little is known about its influence on VDA activity. Here, we found that active RhoA and ROCK effector phospho-myosin light chain (pMLC) were downregulated in endothelial cells by severe hypoxia. CA4P failed to activate RhoA/ROCK/pMLC but its activity was restored upon reoxygenation. Hypoxia also inhibited CA4P-mediated actinomyosin contractility, VE-cadherin junction disruption and permeability rise. Glucose withdrawal downregulated pMLC, and coupled with hypoxia, reduced pMLC faster and more profoundly than hypoxia alone. Concurrent inhibition of glycolysis (2-deoxy-D-glucose, 2DG) and mitochondrial respiration (rotenone) caused profound actin filament loss, blocked RhoA/ROCK signalling and rendered microtubules CA4P-resistant. Withdrawal of the metabolism inhibitors restored the cytoskeleton and CA4P activity. The AMP-activated kinase AMPK was investigated as a potential mediator of pMLC downregulation. Pharmacological AMPK activators that generate AMP, unlike allosteric activators, downregulated pMLC but only when combined with 2DG and/or rotenone. Altogether, our results suggest that Rho/ROCK and actinomyosin contractility are regulated by AMP/ATP levels independently of AMPK, and point to hypoxia/energy depletion as potential modifiers of CA4P response.
Collapse
|
6
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
7
|
Zhou C, Crockett ES, Batten L, McMurtry IF, Stevens T. Pulmonary vascular dysfunction secondary to pulmonary arterial hypertension: insights gained through retrograde perfusion. Am J Physiol Lung Cell Mol Physiol 2018; 314:L835-L845. [PMID: 29345199 DOI: 10.1152/ajplung.00201.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we tested the hypothesis that severe pulmonary arterial hypertension impairs retrograde perfusion. To test this hypothesis, pulmonary arterial hypertension was induced in Fischer rats using a single injection of Sugen 5416 followed by 3 wk of exposure to 10% hypoxia and then 2 wk of normoxia. This Sugen 5416 and hypoxia regimen caused severe pulmonary arterial hypertension, with a Fulton index of 0.73 ± 0.07, reductions in both the pulmonary arterial acceleration time and pulmonary arterial acceleration to pulmonary arterial ejection times ratio, and extensive medial hypertrophy and occlusive neointimal lesions. Whereas the normotensive circulation accommodated large increases in forward and retrograde flow, the hypertensive circulation did not. During forward flow, pulmonary artery and double occlusion pressures rose sharply at low perfusion rates, resulting in hydrostatic edema. Pulmonary arterial hypertensive lungs possessed an absolute intolerance to retrograde perfusion, and they rapidly developed edema. Retrograde perfusion was not rescued by maximal vasodilation. Retrograde perfusion was preserved in lungs from animals treated with Sugen 5416 and hypoxia for 1 and 3 wk, in lungs from animals with a milder form of hypoxic hypertension, and in normotensive lungs subjected to high outflow pressures. Thus impaired retrograde perfusion coincides with development of severe pulmonary arterial hypertension, with advanced structural defects in the microcirculation.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Edward S Crockett
- Department Pharmacology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Lynn Batten
- Department of Pediatrics, University of South Alabama , Mobile, Alabama
| | - Ivan F McMurtry
- Department Pharmacology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| |
Collapse
|
8
|
Chaudhary A, Bag S, Barui A, Banerjee P, Chatterjee J. Honey dilution impact on in vitro wound healing: Normoxic and hypoxic condition. Wound Repair Regen 2015; 23:412-22. [PMID: 25845442 DOI: 10.1111/wrr.12297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/26/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Amrita Chaudhary
- School of Medical Science and Technology, Indian Institute of Technology- Kharagpur; Kharagpur West Bengal India
| | - Swarnendu Bag
- School of Medical Science and Technology, Indian Institute of Technology- Kharagpur; Kharagpur West Bengal India
| | - Ananya Barui
- Centre for Healthcare Science and Technology; Indian Institute of Engineering Science and Technology-Shibpur; Howrah West Bengal India
| | - Provas Banerjee
- Banerjees’ Biomedical Research Foundation-Sainthia; Birbhum West Bengal India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology- Kharagpur; Kharagpur West Bengal India
| |
Collapse
|
9
|
Solodushko V, Khader HA, Fouty BW. Serum can overcome contact inhibition in confluent human pulmonary artery smooth muscle cells. PLoS One 2013; 8:e71490. [PMID: 23940764 PMCID: PMC3735496 DOI: 10.1371/journal.pone.0071490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/06/2013] [Indexed: 11/18/2022] Open
Abstract
Pulmonary artery endothelial cells (PAEC) in an intact vessel are continually exposed to serum, but unless injured, do not proliferate, constrained by confluence. In contrast, pulmonary artery smooth muscle cells (PASMC) attain, and maintain, confluence in the presence of minimal serum, protected from serum's stimulatory effects except when the endothelial barrier becomes more permeable. We hypothesized therefore, that confluent PASMC may be less constrained by contact inhibition in the presence of serum than PAEC and tested this idea by exposing confluent non-transformed human PAEC and PASMC to media containing increasing concentrations of fetal bovine serum (FBS) and determining cell growth over 7 days. PAEC that had attained confluence in low serum did not proliferate even when exposed to 5% serum, the highest concentration tested. In contrast, PASMC that attained confluence in low serum did proliferate once serum levels were increased, an effect that was dose dependent. Consistent with this observation, PASMC had more BrdU incorporation and a greater percentage of cells in S phase in 5% compared to 0.2% FBS, whereas no such difference was seen in PAEC. These results suggest that confluent human PAEC are resistant to the stimulatory effects of serum, whereas confluent PASMC can proliferate when serum levels are increased, an effect mediated in part by differences in phosphoinositide 3-kinase activation. This observation may be relevant to understanding the PASMC hyperplasia observed in humans and animals with pulmonary hypertension in which changes in endothelial permeability due to hypoxia or injury expose the underlying smooth muscle to serum.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Cells, Cultured
- Contact Inhibition/drug effects
- Culture Media/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Oncogene Protein v-akt/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Retinoblastoma Protein/metabolism
- Serum/physiology
Collapse
Affiliation(s)
- Victor Solodushko
- Center for Lung Biology, University of South Alabama School of Medicine, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, Alabama, United States of America
| | - Heba A. Khader
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, Alabama, United States of America
| | - Brian W. Fouty
- Center for Lung Biology, University of South Alabama School of Medicine, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, Alabama, United States of America
- Department of Medicine/Division of Pulmonary and Critical Care Medicine, University of South Alabama School of Medicine, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kratzer A, Chu HW, Salys J, Moumen Z, Leberl M, Bowler R, Cool C, Zamora M, Taraseviciene-Stewart L. Endothelial cell adhesion molecule CD146: implications for its role in the pathogenesis of COPD. J Pathol 2013; 230:388-98. [DOI: 10.1002/path.4197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/25/2013] [Accepted: 03/30/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Adelheid Kratzer
- University of Colorado Denver; Department of Medicine; Denver CO 80045 USA
| | | | - Jonas Salys
- University of Colorado Denver; Department of Medicine; Denver CO 80045 USA
| | - Zakaria Moumen
- University of Colorado Denver; Department of Medicine; Denver CO 80045 USA
| | - Maike Leberl
- University of Colorado Denver; Department of Medicine; Denver CO 80045 USA
| | | | - Carlyne Cool
- University of Colorado Denver; Department of Medicine; Denver CO 80045 USA
| | - Martin Zamora
- University of Colorado Denver; Department of Medicine; Denver CO 80045 USA
| | | |
Collapse
|
11
|
Gao P, Yang X, Mungur L, Kampo S, Wen Q. Adipose tissue-derived stem cells attenuate acute lung injury through eNOS and eNOS-derived NO. Int J Mol Med 2013; 31:1313-8. [PMID: 23563270 DOI: 10.3892/ijmm.2013.1328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 02/14/2013] [Indexed: 02/04/2023] Open
Abstract
Acute lung injury (ALI) is among the most common causes of mortality in intensive care units. Recent in vivo and in vitro studies have suggested that mesenchymal stem cells (MSCs) attenuate pulmonary edema and inflammatory factors, but the mechanisms of the effects of MSCs on pulmonary vascular function remain unknown. It is believed that nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) play an essential role in the regulation of vascular function and homeostasis. In the present study, we investigated the effect of adipose tissue-derived stem cells (ADSCs) on pulmonary microvascular endothelial cells (PMVECs) and the lung in a lipopolysaccharide (LPS)-induced ALI model in vitro and in vivo. Our results showed that ADSCs were able to attenuate the severity of ALI and pulmonary edema. Increased expression of the eNOS protein was also observed in pulmonary PMVECs and in the lung following treatment with ADSCs. Furthermore, ADSCs increased the concentration of eNOS-derived NO to remodel ALI. The results suggest that ADSCs may be a promising candidate for ALI treatment through interaction with eNOS and eNOS-derived NO.
Collapse
Affiliation(s)
- Peng Gao
- Department of Anesthesiology, Dalian Medical University, Dalian, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Yu L, Hales CA. Hypoxia does neither stimulate pulmonary artery endothelial cell proliferation in mice and rats with pulmonary hypertension and vascular remodeling nor in human pulmonary artery endothelial cells. J Vasc Res 2011; 48:465-75. [PMID: 21691120 DOI: 10.1159/000327005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hypoxia results in pulmonary hypertension and vascular remodeling due to induction of pulmonary artery cell proliferation. Besides pulmonary artery smooth muscle cells, pulmonary artery endothelial cells (PAECs) are also involved in the development of pulmonary hypertension, but the effect of hypoxia on PAEC proliferation has not been completely understood. METHODS We investigated PAEC proliferation in mice and rats with hypoxia-induced pulmonary hypertension and vascular remodeling as well as in human PAECs under hypoxia. RESULTS AND CONCLUSION We did not find significant PAEC proliferation in chronically hypoxic rats or mice. There was a slight decrease in proliferation in mice and rats with pulmonary hypertension and vascular remodeling. We also did not find significant human PAEC proliferation and cell cycle progression under different levels of oxygen (1, 2, 3, 5 and 10%) for one day, although the same conditions of hypoxia induced significant proliferation and cell cycle progression in pulmonary artery smooth muscle cells and pulmonary artery fibroblasts. Exposure to hypoxia for 7 days also did not increase PAEC proliferation. These results demonstrated that hypoxia alone is not a stimulus to PAEC proliferation in vivo and in vitro. The present study provides a novel role for PAECs in hypoxia-induced pulmonary hypertension and vascular remodeling.
Collapse
Affiliation(s)
- Lunyin Yu
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
13
|
Garcia AN, Vogel SM, Komarova YA, Malik AB. Permeability of endothelial barrier: cell culture and in vivo models. Methods Mol Biol 2011; 763:333-54. [PMID: 21874463 DOI: 10.1007/978-1-61779-191-8_23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The methods for assessment of endothelial barrier permeability are vital tools of experimental biology. They allow us to measure permeability of endothelial monolayer in cell culture and in lung vessels or to determine formation of tissue edema resulting from increased permeability of vasculature. This chapter provides an overview of the most common protocols.
Collapse
|
14
|
Liu T, Guevara OE, Warburton RR, Hill NS, Gaestel M, Kayyali US. Regulation of vimentin intermediate filaments in endothelial cells by hypoxia. Am J Physiol Cell Physiol 2010; 299:C363-73. [PMID: 20427712 DOI: 10.1152/ajpcell.00057.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia triggers responses in endothelial cells that play roles in many conditions including high-altitude pulmonary edema and tumor angiogenesis. Signaling pathways activated by hypoxia modify cytoskeletal and contractile proteins and alter the biomechanical properties of endothelial cells. Intermediate filaments are major components of the cytoskeleton whose contribution to endothelial physiology is not well understood. We have previously shown that hypoxia-activated signaling in endothelial cells alters their contractility and adhesiveness. We have also linked p38-MAP kinase signaling pathway leading to HSP27 phosphorylation and increased actin stress fiber formation to endothelial barrier augmentation. We now show that vimentin, a major intermediate filament protein in endothelial cells, is regulated by hypoxia. Our results indicate that exposure of endothelial cells to hypoxia causes vimentin filament networks to initially redistribute perinuclearly. However, by 1 hour hypoxia these networks reform and appear more continuous across cells than under normoxia. Hypoxia also causes transient changes in vimentin phosphorylation, and activation of PAK1, a kinase that regulates vimentin filament assembly. In addition, exposure to 1 hour hypoxia increases the ratio of insoluble/soluble vimentin. Overexpression of phosphomimicking mutant HSP27 (pmHSP27) causes changes in vimentin distribution that are similar to those observed in hypoxic cells. Knocking-down HSP27 destroys the vimentin filamentous network, and disrupting vimentin filaments with acrylamide increases endothelial permeability. Both hypoxia- and pmHSP27 overexpression-induced changes are reversed by inhibition of phosphatase activity. In conclusion hypoxia causes redistribution of vimentin to a more insoluble and extensive filamentous network that could play a role in endothelial barrier stabilization. Vimentin redistribution appears to be mediated through altering the phosphorylation of the protein and its interaction with HSP27.
Collapse
Affiliation(s)
- Tiegang Liu
- Pulmonary & Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts Medical Center, and Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
15
|
Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 2009; 11:791-810. [PMID: 18783313 PMCID: PMC2790033 DOI: 10.1089/ars.2008.2220] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) including superoxide (O(2)(.-)) and hydrogen peroxide (H(2)O(2)) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, "oxidant signaling," has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47(phox), p67(phox) and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91(phox) (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets.
Collapse
Affiliation(s)
- Randall S Frey
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|