1
|
Li L, Song QQ, Li SR, Jia ZG, Sun XC, Zhao YT, Deng JB, Wu JJ, Ni T, Liu JS. Human umbilical cord mesenchymal stem cells-derived exosomes attenuate burn-induced acute lung injury via inhibiting ferroptosis. Acta Histochem 2024; 126:152189. [PMID: 39197328 DOI: 10.1016/j.acthis.2024.152189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Our previous study has shown that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exo) alleviated burn-induced acute lung injury (ALI). In this study, we explored a novel mechanism by which hUCMSCs-exo contributed to the inhibition of burn-induced ALI. The ALI rat model with severe burn was established for the in vivo experiments, and rats PMVECs were stimulated with the serum from burn-induced ALI rats for the in vitro experiments. The pathological changes of lung tissues were evaluated by HE staining; the cell viability was measured using CCK-8; the iron level and Fe2+ concentration were assessed using Iron Assay Kit and Fe2+ fluorescence detection probe; the mRNA expression of SLC7A11 and GPX4 were measured by qRT-PCR; the protein levels of SLC7A11, GPX4, Nrf2 and HO-1 were detected by western blot. Both the in vivo and in vitro experiments revealed that ferroptosis was significantly induced in burn-induced ALI, which as verified by increased iron level and Fe2+ concentration, and decreased SLC7A11 and GPX4 mRNA and protein levels. Furthermore, both hUCMSCs-exo and Fer-1 (the inhibitor of ferroptosis) alleviated lung inflammation and up-regulated protein levels of Nrf2 and HO-1 in the lung tissues of burn-induced ALI rats. These results suggested that hUCMSCs-exo exhibited a protective role against burn-induced ALI by inhibiting ferroptosis, partly owing to the activation of Nrf2/HO-1 pathway, thus providing a novel therapeutic strategy for burn-induced ALI.
Collapse
Affiliation(s)
- Lin Li
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233000, China
| | - Qin-Qin Song
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233000, China
| | - Shuang-Ru Li
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233000, China
| | - Zhi-Gang Jia
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214028, China
| | - Xing-Chen Sun
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233000, China
| | - Yu-Ting Zhao
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233000, China
| | - Jia-Bin Deng
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233000, China
| | - Jun-Jun Wu
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233000, China
| | - Tao Ni
- Department of Burn and Plastic Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201900, China
| | - Ji-Song Liu
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, Bengbu 233000, China.
| |
Collapse
|
2
|
Wang X, Qin S, Ren Y, Feng B, Liu J, Yu K, Yu H, Liao Z, Mei H, Tan M. Gpnmb silencing protects against hyperoxia-induced acute lung injury by inhibition of mitochondrial-mediated apoptosis. Hum Exp Toxicol 2024; 43:9603271231222873. [PMID: 38166464 DOI: 10.1177/09603271231222873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Background: Hyperoxia-induced acute lung injury (HALI) is a complication to ventilation in patients with respiratory failure, which can lead to acute inflammatory lung injury and chronic lung disease. The aim of this study was to integrate bioinformatics analysis to identify key genes associated with HALI and validate their role in H2O2-induced cell injury model.Methods: Integrated bioinformatics analysis was performed to screen vital genes involved in hyperoxia-induced lung injury (HLI). CCK-8 and flow cytometry assays were performed to assess cell viability and apoptosis. Western blotting was performed to assess protein expression.Results: In this study, glycoprotein non-metastatic melanoma protein B (Gpnmb) was identified as a key gene in HLI by integrated bioinformatics analysis of 4 Gene Expression Omnibus (GEO) datasets (GSE97804, GSE51039, GSE76301 and GSE87350). Knockdown of Gpnmb increased cell viability and decreased apoptosis in H2O2-treated MLE-12 cells, suggesting that Gpnmb was a proapoptotic gene during HALI. Western blotting results showed that knockdown of Gpnmb reduced the expression of Bcl-2 associated X (BAX) and cleaved-caspase 3, and increased the expression of Bcl-2 in H2O2 treated MLE-12 cells. Furthermore, Gpnmb knockdown could significantly reduce reactive oxygen species (ROS) generation and improve the mitochondrial membrane potential.Conclusion: The present study showed that knockdown of Gpnmb may protect against HLI by repressing mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Pediatrics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Banghai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Junya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kun Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenliang Liao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mei Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Lee S, Choi S, Park SH, Im GJ, Chang J. Transcriptomic Analysis of the Effect of Metformin against Cisplatin-Induced Ototoxicity: A Potential Mechanism of Metformin-Mediated Inhibition of Thioredoxin-Interacting Protein (Txnip) Gene Expression. Curr Issues Mol Biol 2022; 45:286-310. [PMID: 36661507 PMCID: PMC9857533 DOI: 10.3390/cimb45010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Ototoxicity is the drug-induced damage of the inner ear, causing bilateral irreversible sensorineural hearing loss. Cisplatin is a widely used chemotherapeutic agent which causes ototoxicity as its side effect. Pretreatment with metformin prior to the application of cisplatin significantly decreased the late apoptosis and attenuated the cisplatin-induced increase in ROS. To understand the molecular mechanisms that are involved in the preventive effect of metformin, we evaluated the change of gene expression induced by cisplatin at several different time points (0 h, 6 h, 15 h, 24 h and 48 h) and the alteration of gene expression according to pretreatment with metformin in HEI-OC1 cells through microarray analysis. Cisplatin exposure induced a total of 89 DEGs (differentially expressed genes) after 6 h, with a total of 433 DEGs after 15 h, a total of 941 DEGs after 24 h, and a total of 2764 DEGs after 48 h. When cells were pretreated with metformin for 24 h, we identified a total of 105 DEGs after 6 h of cisplatin exposure, a total of 257 DEGs after 15 h, a total of 1450 DEGs after 24 h, and a total of 1463 DEGs after 48 h. The analysis was performed based on the gene expression, network analyses, and qRT-PCR, and we identified several genes (CSF2, FOS, JUN, TNFα, NFκB, Txnip, ASK1, TXN2, ATF3, TP53, IL6, and IGF1) as metformin-related preventive biomarkers in cisplatin ototoxicity.
Collapse
Affiliation(s)
- Sehee Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| | - Seok Hyun Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| | - Gi Jung Im
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jiwon Chang
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
- Correspondence: or ; Tel.: +82-2-6960-1270
| |
Collapse
|
4
|
Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling and Mitochondrial Dysfunction. Biomolecules 2022; 12:biom12111555. [PMID: 36358905 PMCID: PMC9687674 DOI: 10.3390/biom12111555] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the mitochondria's functions, including bioenergetics, calcium homeostasis, and mitochondrial dynamics. Our research group has shown that 4-HNE activates mitochondria apoptosis-inducing factor (AIFM2) translocation and facilitates apoptosis in mice and human heart tissue during anti-cancer treatment. Recently, we demonstrated that a deficiency of SOD2 in the conditional-specific cardiac knockout mouse increases ROS, and subsequent production of 4-HNE inside mitochondria leads to the adduction of several mitochondrial respiratory chain complex proteins. Moreover, we highlighted the physiological functions of HNE and discussed their relevance in human pathophysiology and current discoveries concerning 4-HNE effects on mitochondria.
Collapse
|
5
|
Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Comput Struct Biotechnol J 2022; 20:3734-3754. [PMID: 35891784 PMCID: PMC9294202 DOI: 10.1016/j.csbj.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein seldom performs biological activities in isolation. Understanding the protein–protein interactions’ physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery’s relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.
Collapse
Key Words
- ASK1
- ASK1, Apoptosis signal-regulating kinase 1
- CFLAR, CASP8 and FADD-like apoptosis regulator
- CREG, Cellular repressor of E1A-stimulated genes
- DKK3, Dickkopf-related protein 3
- Interaction fingerprint
- NAFLD, Non-alcoholic fatty liver disease
- NASH
- NASH, Nonalcoholic steatohepatitis
- PPI, Protein-protein interaction
- PTM, Post-trancriptional modification
- PTMs
- Protein-protein interaction
- TNFAIP3, TNF Alpha Induced Protein 3
- TRAF2/6, Tumor necrosis factor receptor (TNFR)-associated factor2/6
- TRIM48, Tripartite Motif Containing 48
- TRX, Thioredoxin
- USP9X, Ubiquitin Specific Peptidase 9 X-Linked
Collapse
|
6
|
Sidramagowda Patil S, Soundararajan R, Fukumoto J, Breitzig M, Hernández-Cuervo H, Alleyn M, Lin M, Narala VR, Lockey R, Kolliputi N, Galam L. Mitochondrial Protein Akap1 Deletion Exacerbates Endoplasmic Reticulum Stress in Mice Exposed to Hyperoxia. Front Pharmacol 2022; 13:762840. [PMID: 35370705 PMCID: PMC8964370 DOI: 10.3389/fphar.2022.762840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), are treated with high concentrations of supplementary oxygen. However, prolonged exposure to high oxygen concentrations stimulates the production of reactive oxygen species (ROS), which damages the mitochondria and accumulates misfolded proteins in the endoplasmic reticulum (ER). The mitochondrial protein A-kinase anchoring protein 1 (Akap1) is critical for mitochondrial homeostasis. It is known that Akap1 deficiency results in heart damage, neuronal development impairment, and mitochondrial malfunction in preclinical studies. Our laboratory recently revealed that deleting Akap1 increases the severity of hyperoxia-induced ALI in mice. To assess the role of Akap1 deletion in ER stress in lung injury, wild-type and Akap1−/− mice were exposed to hyperoxia for 48 h. This study indicates that Akap1−/− mice exposed to hyperoxia undergo ER stress, which is associated with an increased expression of BiP, JNK phosphorylation, eIF2α phosphorylation, ER stress-induced cell death, and autophagy. This work demonstrates that deleting Akap1 results in increased ER stress in the lungs of mice and that hyperoxia exacerbates ER stress-related consequences.
Collapse
Affiliation(s)
- Sahebgowda Sidramagowda Patil
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Ramani Soundararajan
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Jutaro Fukumoto
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Mason Breitzig
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States.,Washington University in St. Louis, Brown School, St. Louis, MO, United States
| | - Helena Hernández-Cuervo
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States.,University of South Florida, Department of Molecular Medicine, College of Medicine, Tampa, FL, United States
| | - Matthew Alleyn
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Muling Lin
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | | | - Richard Lockey
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Narasaiah Kolliputi
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States.,University of South Florida, Department of Molecular Medicine, College of Medicine, Tampa, FL, United States
| | - Lakshmi Galam
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| |
Collapse
|
7
|
Hernández-Cuervo H, Soundararajan R, Sidramagowda Patil S, Breitzig M, Alleyn M, Galam L, Lockey R, Uversky VN, Kolliputi N. BMI1 Silencing Induces Mitochondrial Dysfunction in Lung Epithelial Cells Exposed to Hyperoxia. Front Physiol 2022; 13:814510. [PMID: 35431986 PMCID: PMC9005903 DOI: 10.3389/fphys.2022.814510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Acute Lung Injury (ALI), characterized by bilateral pulmonary infiltrates that restrict gas exchange, leads to respiratory failure. It is caused by an innate immune response with white blood cell infiltration of the lungs, release of cytokines, an increase in reactive oxygen species (ROS), oxidative stress, and changes in mitochondrial function. Mitochondrial alterations, changes in respiration, ATP production and the unbalancing fusion and fission processes are key events in ALI pathogenesis and increase mitophagy. Research indicates that BMI1 (B cell-specific Moloney murine leukemia virus integration site 1), a protein of the Polycomb repressive complex 1, is a cell cycle and survival regulator that plays a role in mitochondrial function. BMI1-silenced cultured lung epithelial cells were exposed to hyperoxia to determine the role of BMI1 in mitochondrial metabolism. Its expression significantly decreases in human lung epithelial cells (H441) following hyperoxic insult, as determined by western blot, Qrt-PCR, and functional analysis. This decrease correlates with an increase in mitophagy proteins, PINK1, Parkin, and DJ1; an increase in the expression of tumor suppressor PTEN; changes in the expression of mitochondrial biomarkers; and decreases in the oxygen consumption rate (OCR) and tricarboxylic acid enzyme activity. Our bioinformatics analysis suggested that the BMI1 multifunctionality is determined by its high level of intrinsic disorder that defines the ability of this protein to bind to numerous cellular partners. These results demonstrate a close relationship between BMI1 expression and mitochondrial health in hyperoxia-induced acute lung injury (HALI) and indicate that BMI1 is a potential therapeutic target to treat ALI and Acute Respiratory Distress Syndrome.
Collapse
Affiliation(s)
- Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Epidemiology, Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Matthew Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Richard Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Narasaiah Kolliputi,
| |
Collapse
|
8
|
Down-regulation of miR-let-7e attenuates LPS-induced acute lung injury in mice via inhibiting pulmonary inflammation by targeting SCOS1/NF-κB pathway. Biosci Rep 2021; 41:227104. [PMID: 33392621 PMCID: PMC7785041 DOI: 10.1042/bsr20201089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive pulmonary inflammatory response is critical in the development of acute lung injury (ALI). Previously, microRNAs (miRNAs) have been recognized as an important regulator of inflammation in various diseases. However, the effects and mechanisms of miRNAs on inflammatory response in ALI remain unclear. Herein, we tried to screen miRNAs in the processes of ALI and elucidate the potential mechanism. Using a microarray assay, microRNA let-7e (let-7e) was chose as our target for its reported suppressive roles in several inflammatory diseases. Down-regulation of let-7e by antagomiR-let-7e injection attenuated LPS-induced acute lung injury. We also found that antagomiR-let-7e could obviously improve the survival rate in ALI mice. Moreover, antagomiR-let-7e treatment reduced the production of proinflammatory cytokines (i.e., TNF-α, IL-1β and IL-6) in bronchoalveolar lavage fluid (BALF) of LPS-induced ALI mice. Luciferase reporter assays confirmed that suppressor of cytokine signaling 1 (SOCS1), a powerful attenuator of nuclear factor kappa B (NF-κB) signaling pathway, was directly targeted and suppressed by let-7e in RAW264.7 cells. In addition, it was further observed that SOCS1 was down-regulated, and inversely correlated with let-7e expression levels in lung tissues of ALI mice. Finally, down-regulation of let-7e suppressed the activation of NF-κB pathway, as evidenced by the reduction of p-IκBα, and nuclear p-p65 expressions in ALI mice. Collectively, our findings indicate that let-7e antagomir protects mice against LPS-induced lung injury via repressing the pulmonary inflammation though regulation of SOCS1/NF-κB pathway, and let-7e may act as a potential therapeutic target for ALI.
Collapse
|
9
|
Stabilization of the histone acetyltransferase Tip60 by deubiquitinating enzyme USP7 stimulates the release of pro-inflammatory mediators in acute lung injury. J Mol Med (Berl) 2020; 98:907-921. [PMID: 32440780 DOI: 10.1007/s00109-020-01910-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) is often associated with inflammation. Increasing evidence has identified the role for ubiquitin-specific protease 7 (USP7) in activating the expression of inflammatory factors in macrophages. The present study evaluated whether USP7 also mediates histone acetyltransferase Tat-interactive protein 60 (Tip60) in the development of ALI inflammation. An ALI mouse model was induced by intratracheal lipopolysaccharide (LPS) administration. Next, lung myeloperoxidase (MPO) activity and the ratio of dry weight/wet weight of lung were examined to evaluate tissue damage. In addition, RAW 264.7 cells were treated with LPS to induce an in vitro LPS-induced inflammatory cell model. ELISA was performed to measure expression of IL-1β, TNF-α, IL-6, and IL-8 in cells and tissues. TUNEL was used to detect LPS-induced cell apoptosis. Furthermore, the interaction between USP7 and Tip60 was identified by IP, Western blot analysis, and cycloheximide (CHX) treatment. The enrichment of Tip60 and H3K27ac in the promoter region of IL-6 and IL-8 was assessed by ChIP. USP7 was highly expressed in LPS-endotoxin-induced ALI mouse models and silencing of USP7 delayed the progression of ALI in mice. Silencing of USP7 protected RAW 264.7 cells against LPS-induced inflammation and apoptosis by downregulating IL-1β, TNF-α, IL-6, and IL-8. USP7 enhanced Tip60 protein stability, and Tip60 increased the enrichment of H3K27ac on IL-6 and IL-8 promoter region and activated NF-κB p65 to increase IL-6 and IL-8 expression. These findings reveal a new post-transcriptional role for USP7 in inflammation by stabilizing Tip60 and increasing the release of the pro-inflammatory cytokines, and implicate USP7 inhibitors as potential therapeutic agents for ALI. KEY MESSAGES: USP7 expresses highly in an acute lung injury (ALI) mouse models. Silencing of USP7 inhibits inflammation and cell apoptosis in ALI mouse. USP7 stabilizes Tip60 to boost the release of IL-6 and IL-8. Tip60 increases IL-6 and IL-8 expression by acetylating NF-κB p65. Silencing of USP7 alleviates ALI by repressing NF-κB p65 and Tip60.
Collapse
|
10
|
Fukumoto J, Leung J, Cox R, Czachor A, Parthasarathy PT, Lagishetty V, Mandry M, Hosseinian N, Patel P, Perry B, Breitzig MT, Alleyn M, Failla A, Cho Y, Cooke AJ, Galam L, Soundararajan R, Sharma N, Lockey RF, Kolliputi N. Oxidative stress induces club cell proliferation and pulmonary fibrosis in Atp8b1 mutant mice. Aging (Albany NY) 2020; 11:209-229. [PMID: 30636723 PMCID: PMC6339797 DOI: 10.18632/aging.101742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Atp8b1 (ATPase, aminophospholipid transporter, class I, type 8B, member 1) is a cardiolipin transporter in the apical membrane of lung epithelial cells. While the role of Atp8b1 in pneumonia-induced acute lung injury (ALI) has been well studied, its potential role in oxidative stress-induced ALI is poorly understood. We herein show that Atp8b1G308V/G308V mice under hyperoxic conditions display exacerbated cell apoptosis at alveolar epithelium and aberrant proliferation of club cells at bronchiolar epithelium. This hyperoxia-induced ambivalent response in Atp8b1G308V/G308V lungs was followed by patchy distribution of non-uniform interstitial fibrosis at late recovery phase under normoxia. Since this club cell abnormality is commonly observed between Atp8b1G308V/G308V lungs under hyperoxic conditions and IPF lungs, we characterized this mouse fibrosis model focusing on club cells. Intriguingly, subcellular morphological analysis of IPF lungs, using transmission electron microscopy (TEM), revealed that metaplastic bronchiolar epithelial cells in fibrotic lesions and deformed type II alveolar epithelial cells (AECs) in alveoli with mild fibrosis, have common morphological features including cytoplasmic vacuolation and dysmorphic lamellar bodies. In conclusion, the combination of Atp8b1 mutation and hyperoxic insult serves as a novel platform to study unfocused role of club cells in IPF.
Collapse
Affiliation(s)
- Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Joseph Leung
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ruan Cox
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Alexander Czachor
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Prasanna Tamarapu Parthasarathy
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Venu Lagishetty
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Maria Mandry
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Nima Hosseinian
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Priyanshi Patel
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Brittany Perry
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mason T Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Matthew Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Athena Failla
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Young Cho
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrew J Cooke
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Nirmal Sharma
- Advanced Lung Diseases & Lung Transplantation, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
11
|
MicroRNA-155 Participates in Smoke-Inhalation-Induced Acute Lung Injury through Inhibition of SOCS-1. Molecules 2020; 25:molecules25051022. [PMID: 32106541 PMCID: PMC7179228 DOI: 10.3390/molecules25051022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
Smoke inhalation causes acute lung injury (ALI), a severe clinical disease with high mortality. Accumulating evidence indicates that microRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS-1), as mediators of inflammatory response, are involved in the pathogenesis of ALI. In this paper, we explored the proinflammatory mechanism of miR-155 in smoke-inhalation-induced ALI. Our data revealed that smoke inhalation induces miR-155 expression, and miR-155 knockout (KO) significantly ameliorates smoke-inhalation-induced lung injury in mice. Neutrophil infiltration and myeloperoxidase (MPO), macrophage inflammatory protein 2 (MIP-2) and keratinocyte chemoattractant (KC) expressions were decreased in miR-155–/– mice after smoke inhalation as well. Real-time RT-PCR and immunoblotting results showed that SOCS-1 level was remarkably increased in miR-155–/– mice after smoke exposure. Furthermore, the experiments performed in isolated miR-155 KO pulmonary neutrophils demonstrated that the lack of SOCS-1 enhanced inflammatory cytokines (MIP-2 and KC) secretion in response to smoke stimulation. In conclusion, smoke induces increased expression of miR-155, and miR-155 is involved in inflammatory response to smoke-inhalation-induced lung injury by inhibiting the expression of SOCS-1.
Collapse
|
12
|
Wang T, Jiang L, Wei X, Dong Z, Liu B, Zhao J, Wang L, Xie P, Wang Y, Zhou S. Inhibition of miR-221 alleviates LPS-induced acute lung injury via inactivation of SOCS1/NF-κB signaling pathway. Cell Cycle 2019; 18:1893-1907. [PMID: 31208297 DOI: 10.1080/15384101.2019.1632136] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of inflammation response has been well documented in the development of acute lung injury (ALI). However, little is known about the functions of miRNAs in the regulation of inflammation in ALI. The aim of this study was to explore the effects of miRNAs in the regulation of inflammation in ALI and to elucidate the biomolecular mechanisms responsible for these effects. The expression profiles of miRNAs in lung tissues from lipopolysaccharide (LPS)-induced ALI mice model were analyzed using a microarray. It was observed that microRNA-221-3p (miR-221) was significantly increased in lung tissues in ALI mice. The inhibition of miR-221 attenuated lung injury including decreased lung W/D weight ratio and lung permeability and survival rates of ALI mice, as well as apoptosis, whereas its agomir-mediated upregulation exacerbated the lung injury. Concomitantly, miR-221 inhibition significantly reduced LPS-induced pulmonary inflammation, while LPS-induced pulmonary inflammation was aggravated by miR-221 upregulation. Of note, suppressor of cytokine signaling-1 (SOCS1), an effective suppressor of the NF-κB signaling pathway, was found to be a direct target of miR-221 in RAW264.7 cells. Overexpression of SOCS1 by pcDNA-SOCS1 plasmids markedly reversed the miR-221 inhibition-mediated inhibitory effects on inflammation and apoptosis in LPS-treated RAW264.7 cells. Finally, it was found that miR-221 inhibition suppressed LPS induced the activation of the NF-κB signaling pathway, as demonstrated by downregulation of phosphorylated-IκBα, p-p65 and upregulation of IκBα, whilst miR-221 overexpression had an opposite result in ALI mice. Our findings demonstrate that inhibition of miR-221 can alleviate LPS-induced inflammation via inactivation of SOCS1/NF-κB signaling pathway in ALI mice.
Collapse
Affiliation(s)
- Tao Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lihua Jiang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Xiaoyong Wei
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Zhenghua Dong
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Bo Liu
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Junbo Zhao
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lijuan Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Peilin Xie
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Yuxia Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Shangyou Zhou
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| |
Collapse
|
13
|
Mishra R, Foster DG, Finigan JH, Kern JA. Interleukin-6 is required for Neuregulin-1 induced HER2 signaling in lung epithelium. Biochem Biophys Res Commun 2019; 513:794-799. [PMID: 31000198 DOI: 10.1016/j.bbrc.2019.04.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023]
Abstract
A clear understanding of the mechanisms that regulate the alveolar epithelium's barrier is critical to develop new therapeutic strategies to mitigate lung injury. The HER2/HER3 receptor tyrosine kinase complex plays a central role in maintaining the alveolar-capillary barrier. This receptor complex is activated by its ligand, neuregulin-1 (NRG-1). Interleukin-6 (IL-6) is also known to induce HER2 signaling through HER2 transphosphorylation by the IL-6 receptor (IL-6R) complex (1). Due to this interaction, we hypothesized that NRG-1 and IL-6 cooperatively interacted to activate the HER2/HER3 complex. Studies were performed in cultured pulmonary epithelial cells measuring the HER2/IL-6/IL-6R/GP130 interaction and receptor activation by western blotting and confocal microscopy, IL-6 production by ELISA, and IL-6 inhibition using specific antibodies, small molecule inhibitors and shRNA. We found that IL-6 was required for NRG-1 induced activation of HER2 in pulmonary epithelial cells. IL-6 inhibition led to a decrease in NRG-1 induced HER2 activation. The IL-6R and GP130, a subunit of the IL-6R complex, were physically associated with HER2 and were required for NRG-1 induced HER2 activation. Inhibition of GP130, the β-subunit of the IL-6 receptor decreased NRG-1 induced HER2 activation lower than control by 38% Finally, HER2 activation increased IL-6 secretion more than two-fold over resting cells (526 ± 131 vs 231 ± 39.7 pg/ml), and inhibition of HER2 gene expression decreased basal IL-6 secretion over 80% (89 + 4.6 vs 1.3 + 0.8 pg/ml). These findings identify a requirement for IL-6 and the IL-6R complex to allow NRG-1 mediated HER2 activation, and a HER2 driven IL-6 production feedback loop.
Collapse
Affiliation(s)
- Rangnath Mishra
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Daniel G Foster
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - James H Finigan
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Jeffrey A Kern
- Department of Medicine, National Jewish Health, Denver, CO, United States.
| |
Collapse
|
14
|
Bortz E, Wu TT, Patel P, Whitelegge JP, Sun R. Proteomics of Bronchoalveolar Lavage Fluid Reveals a Lung Oxidative Stress Response in Murine Herpesvirus-68 Infection. Viruses 2018; 10:v10120670. [PMID: 30486363 PMCID: PMC6316452 DOI: 10.3390/v10120670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022] Open
Abstract
Murine herpesvirus-68 (MHV-68) productively infects mouse lungs, exhibiting a complex pathology characteristic of both acute viral infections and chronic respiratory diseases. We sought to discover proteins differentially expressed in bronchoalveolar lavage (BAL) from mice infected with MHV-68. Mice were infected intranasally with MHV-68. After nine days, as the lytic phase of infection resolved, differential BAL proteins were identified by two-dimensional (2D) electrophoresis and mass spectrometry. Of 23 unique proteins, acute phase proteins, vitamin A transport, and oxidative stress response factors Pdx6 and EC-SOD (Sod3) were enriched. Correspondingly, iNOS2 was induced in lung tissue by seven days post-infection. Oxidative stress was partly a direct result of MHV-68 infection, as reactive oxygen species (ROS) were induced in cultured murine NIH3T3 fibroblasts and human lung A549 cells infected with MHV-68. Finally, mice infected with a recombinant MHV-68 co-expressing inflammatory cytokine murine interleukin 6 (IL6) showed exacerbated oxidative stress and soluble type I collagen characteristic of tissue recovery. Thus, oxidative stress appears to be a salient feature of MHV-68 pathogenesis, in part caused by lytic replication of the virus and IL6. Proteins and small molecules in lung oxidative stress networks therefore may provide new therapeutic targets to ameliorate respiratory virus infections.
Collapse
Affiliation(s)
- Eric Bortz
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| | - Ting-Ting Wu
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Parthive Patel
- Center for Molecular Biology and German Cancer Research Center (DKFZ), University of Heidelberg (ZMBH), 69120 Heidelberg, Germany.
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory & the Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Ren Sun
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
SOCS-1 rescues IL-1β-mediated suppression of epithelial sodium channel in mouse lung epithelial cells via ASK-1. Oncotarget 2018; 7:29081-91. [PMID: 27058411 PMCID: PMC5045379 DOI: 10.18632/oncotarget.8543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 01/09/2023] Open
Abstract
Background Acute lung injury (ALI) is characterized by alveolar damage, increased levels of pro-inflammatory cytokines and impaired alveolar fluid clearance. Recently, we showed that the deletion of Apoptosis signal-regulating kinase 1 (ASK1) protects against hyperoxia-induced acute lung injury (HALI) by suppressing IL-1β and TNF-α. Previously, our data revealed that the suppressor of cytokine signaling-1 (SOCS-1) overexpression restores alveolar fluid clearance in HALI by inhibiting ASK-1 and suppressing IL-1β levels. Furthermore, IL-1β is known to inhibit the expression of epithelial sodium channel α-subunit (ENaC) via a p38 MAPK signaling pathway. Objective To determine whether SOCS-1 overexpression in MLE-12 cells would protect against IL-1β-mediated depletion of αENaC by suppressing ASK-1 expression. Methods We co-transfected MLE-12 cells with SOCS-1 overexpressing plasmid with or without IL-1β in the presence or absence of sodium channel inhibitor, amiloride. We measured potential difference, transepithelial current, resistance, and sodium uptake levels across MLE-12 cells. We studied the effect of ASK-1 depletion, as well as ASK-1 and SOCS-1 overexpression on αENaC expression. Results SOCS-1 overexpression sufficiently restored transepithelial current and resistance in MLE-12 cells treated with either IL-1β or amiloride. The αENaC mRNA levels and sodium transport were increased in SOCS-1 overexpressing MLE-12 cells exposed to IL-1β. Depletion of ASK-1 in MLE-12 cells increased αENaC mRNA levels. Interestingly, SOCS-1 overexpression restored αENaC expression in MLE-12 cells in the presence of ASK-1 overexpression. Conclusion Collectively, these findings suggest that SOCS-1 may exert its protective effect by rescuing αENaC expression via suppression of ASK-1.
Collapse
|
16
|
SOCS-1 ameliorates smoke inhalation-induced acute lung injury through inhibition of ASK-1 activity and DISC formation. Clin Immunol 2017; 191:94-99. [PMID: 29108854 DOI: 10.1016/j.clim.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 01/20/2023]
Abstract
Smoke inhalation leads to acute lung injury (ALI), a devastating clinical problem associated with high mortality. Suppressor of cytokine signaling-1 (SOCS-1) is a negative regulator of apoptosis and pro-inflammatory cytokine signaling, two major contributors to the pathogenesis of ALI. We have found that SOCS-1 protects lung epithelial cells from smoke-induced apoptosis through two mechanisms. One is that SOCS-1 enhances degradation of ASK-1 and diminishes cleavage of pro-caspase-3 to repress smoke-triggered apoptosis in lung epithelial cells. The other is that SOCS-1 represses smoke-triggered DISC formation through altering TRADD-caspase-8 interaction rather than TNFR-1-TRADD interaction or TNFR-1-TRAF-2 interaction. In conclusion, SOCS-1 relieves smoke inhalation-induced lung injury by repressing ASK-1 and DISC-mediated epithelium apoptosis.
Collapse
|
17
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
18
|
Voiriot G, Razazi K, Amsellem V, Tran Van Nhieu J, Abid S, Adnot S, Mekontso Dessap A, Maitre B. Interleukin-6 displays lung anti-inflammatory properties and exerts protective hemodynamic effects in a double-hit murine acute lung injury. Respir Res 2017; 18:64. [PMID: 28424078 PMCID: PMC5397701 DOI: 10.1186/s12931-017-0553-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/13/2017] [Indexed: 01/11/2023] Open
Abstract
Background Interleukin 6 (IL-6) is a predictive factor of poor prognosis in patients with acute respiratory distress syndrome (ARDS). However, its acute pulmonary hemodynamic effects and role in lung injury have not been investigated in a clinically relevant murine model of ARDS. Methods We used adult C57Bl6 wild-type (WT) and IL-6 knock-out (IL-6KO) mice. The animals received intravenous recombinant human IL-6 (rHuIL-6) or vehicle followed by intratracheal lipopolysaccharide (LPS) or saline before undergoing low tidal volume mechanical ventilation (MV) for 5 h. Before sacrifice, right ventricular systolic pressure and cardiac output were measured and total pulmonary resistance was calculated. After sacrifice, lung inflammation, edema and injury were assessed with bronchoalveolar lavage (BAL) and histology. In other experiments, right ventricular systolic pressure was recorded during hypoxic challenges in uninjured WT mice pretreated with rHuIL-6 or rHuIL-6 + non-selective nitric oxide synthase inhibitor L-NAME or vehicle. Results IL-6KO(LPS+MV) mice showed a faster deterioration of lung elastic properties and more severe bronchoalveolar cellular inflammation as compared to WT(LPS+MV). Treatment with rHuIL-6 partially prevented this lung deterioration. Total pulmonary resistance was higher in IL-6KO(LPS+MV) mice and this increase was abolished in rHuIL-6-treated IL-6KO mice. Finally, rHuIL-6 reduced hypoxic pulmonary vasoconstriction in uninjured WT mice, an effect that was abolished by co-treatment with L-NAME. Conclusions In a double-hit murine model of ARDS, IL-6 deficient mice experienced more severe bronchoalveolar cellular inflammation as compared to wild-type littermates. Furthermore, IL-6 deficiency caused marked acute pulmonary hypertension, which may be, at least partially, due to vasoactive mechanisms. A dysregulation of nitric oxide synthase may account for this observation, a hypothesis that will need to be investigated in future studies.
Collapse
Affiliation(s)
- Guillaume Voiriot
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France. .,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.
| | - Keyvan Razazi
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service de Réanimation Médicale, AP-HP, Créteil, France
| | - Valérie Amsellem
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France
| | - Jeanne Tran Van Nhieu
- Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service d'Anatomie et Cytologie Pathologiques, AP-HP, Créteil, France
| | - Shariq Abid
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France
| | - Serge Adnot
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service des Explorations Fonctionnelles, AP-HP, Créteil, France
| | - Armand Mekontso Dessap
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service de Réanimation Médicale, AP-HP, Créteil, France
| | - Bernard Maitre
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service de Réanimation Médicale, AP-HP, Créteil, France
| |
Collapse
|
19
|
Galam L, Failla A, Soundararajan R, Lockey RF, Kolliputi N. 4-hydroxynonenal regulates mitochondrial function in human small airway epithelial cells. Oncotarget 2016; 6:41508-21. [PMID: 26484418 PMCID: PMC4747170 DOI: 10.18632/oncotarget.6131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Prolonged exposure to oxidative stress causes Acute Lung Injury (ALI) and significantly impairs pulmonary function. Previously we have demonstrated that mitochondrial dysfunction is a key pathological factor in hyperoxic ALI. While it is known that hyperoxia induces the production of stable, but toxic 4-hydroxynonenal (4-HNE) molecule, it is unknown how the reactive aldehyde disrupts mitochondrial function. Our previous in vivo study indicated that exposure to hyperoxia significantly increases 4-HNE-Protein adducts, as well as levels of MDA in total lung homogenates. Based on the in vivo studies, we explored the effects of 4-HNE in human small airway epithelial cells (SAECs). Human SAECs treated with 25 μM of 4-HNE showed a significant decrease in cellular viability and increased caspase-3 activity. Moreover, 4-HNE treated SAECs showed impaired mitochondrial function and energy production indicated by reduced ATP levels, mitochondrial membrane potential, and aconitase activity. This was followed by a significant decrease in mitochondrial oxygen consumption and depletion of the reserve capacity. The direct effect of 4-HNE on the mitochondrial respiratory chain was confirmed using Rotenone. Furthermore, SAECs treated with 25 μM 4-HNE showed a time-dependent depletion of total Thioredoxin (Trx) proteins and Trx activity. Taken together, our results indicate that 4-HNE induces cellular and mitochondrial dysfunction in human SAECs, leading to an impaired endogenous antioxidant response.
Collapse
Affiliation(s)
- Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Athena Failla
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
20
|
Fukumoto J, Cox R, Fukumoto I, Cho Y, Parthasarathy PT, Galam L, Lockey RF, Kolliputi N. Deletion of ASK1 Protects against Hyperoxia-Induced Acute Lung Injury. PLoS One 2016; 11:e0147652. [PMID: 26807721 PMCID: PMC4726536 DOI: 10.1371/journal.pone.0147652] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1), a member of the MAPK kinase kinase kinase (MAP3K) family, is activated by various stimuli, which include oxidative stress, endoplasmic reticulum (ER) stress, calcium influx, DNA damage-inducing agents and receptor-mediated signaling through tumor necrosis factor receptor (TNFR). Inspiration of a high concentration of oxygen is a palliative therapy which counteracts hypoxemia caused by acute lung injury (ALI)-induced pulmonary edema. However, animal experiments so far have shown that hyperoxia itself could exacerbate ALI through reactive oxygen species (ROS). Our previous data indicates that ASK1 plays a pivotal role in hyperoxia-induced acute lung injury (HALI). However, it is unclear whether or not deletion of ASK1 in vivo protects against HALI. In this study, we investigated whether ASK1 deletion would lead to attenuation of HALI. Our results show that ASK1 deletion in vivo significantly suppresses hyperoxia-induced elevation of inflammatory cytokines (i.e. IL-1β and TNF-α), cell apoptosis in the lung, and recruitment of immune cells. In summary, the results from the study suggest that deletion of ASK1 in mice significantly inhibits hyperoxic lung injury.
Collapse
Affiliation(s)
- Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Ruan Cox
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Itsuko Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Young Cho
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Prasanna Tamarapu Parthasarathy
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
21
|
Galam L, Rajan A, Failla A, Soundararajan R, Lockey RF, Kolliputi N. Deletion of P2X7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression. Am J Physiol Lung Cell Mol Physiol 2016; 310:L572-81. [PMID: 26747786 DOI: 10.1152/ajplung.00417.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence shows that hyperoxia is a serious complication of oxygen therapy in acutely ill patients that causes excessive production of free radicals leading to hyperoxia-induced acute lung injury (HALI). Our previous studies have shown that P2X7 receptor activation is required for inflammasome activation during HALI. However, the role of P2X7 in HALI is unclear. The main aim of this study was to determine the effect of P2X7 receptor gene deletion on HALI. Wild-type (WT) and P2X7 knockout (P2X7 KO) mice were exposed to 100% O2 for 72 h. P2X7 KO mice treated with hyperoxia had enhanced survival in 100% O2 compared with the WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1β, TNF-α, monocyte chemoattractant protein-1, and IL-6 levels were attenuated in P2X7 KO mice. P2X7 deletion decreased lung edema and alveolar protein content, which are associated with enhanced alveolar fluid clearance. In addition, activation of the inflammasome was suppressed in P2X7-deficient alveolar macrophages and was associated with suppression of IL-1β release. Furthermore, P2X7-deficient alveolar macrophage in type II alveolar epithelial cells (AECs) coculture model abolished protein permeability across mouse type II AEC monolayers. Deletion of P2X7 does not lead to a decrease in epithelial sodium channel expression in cocultures of alveolar macrophages and type II AECs. Taken together, these findings show that deletion of P2X7 is a protective factor and therapeutic target for the amelioration of hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Lakshmi Galam
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ashna Rajan
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Athena Failla
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
22
|
Wang HW, Liu M, Zhong TD, Fang XM. Saikosaponin-d attenuates ventilator-induced lung injury in rats. Int J Clin Exp Med 2015; 8:15137-15145. [PMID: 26628997 PMCID: PMC4658886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/27/2015] [Indexed: 06/05/2023]
Abstract
Saikosaponin-d is one of the main bioactive components in the traditional Chinese medicine Bupleurum falcatum L and possesses anti-inflammatory and immune-modulatory properties. The current study aimed to investigate the protective effects of saikosaponin-d on ventilator-induced lung injury (VILI) in rats. We found that saikosaponin-d treatment significantly attenuated the pathological changes of lungs induced by mechanical ventilation. Administration of saikosaponin-d reduced the pulmonary neutrophil infiltration as well as the MPO concentrations. Saikosaponin-d also decreased the expression of pro-inflammatory cytokines including MIP-2, IL-6 and TNF-α. Meanwhile, the expression of anti-inflammatory mediators, such as TGF-β1 and IL-10, was obviously elevated after saikosaponin-d administration. Saikosaponin-d remarkably reduced the oxidative stress and apoptosis rate in lung tissues. On the molecular level, saikosaponin-d treatment obviously downregulated the expression of caspases-3 and the pro-apoptotic protein bax, and promoted the expression level of anti-apoptotic protein bcl-2. Collectively, our study demonstrated that saikosaponin-d may attenuate ventilator induced lung injury through inhibition of inflammatory responses, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine3 Eastern Qingchun Road, Hangzhou, Zhejiang, 310016, P. R. China
| | - Ming Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine3 Eastern Qingchun Road, Hangzhou, Zhejiang, 310016, P. R. China
| | - Tai-Di Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine3 Eastern Qingchun Road, Hangzhou, Zhejiang, 310016, P. R. China
| | - Xiang-Ming Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine79 Qingchun Road, Hangzhou, Zhejiang, 310012, P. R. China
| |
Collapse
|
23
|
Galam L, Parthasarathy PT, Cho Y, Cho SH, Lee YC, Lockey RF, Kolliputi N. Adenovirus-mediated transfer of the SOCS-1 gene to mouse lung confers protection against hyperoxic acute lung injury. Free Radic Biol Med 2015; 84:196-205. [PMID: 25850028 PMCID: PMC4457693 DOI: 10.1016/j.freeradbiomed.2015.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
Suppressor of cytokine signaling-1 (SOCS-1) is a member of the suppressor of cytokine signaling family of proteins and an inhibitor of interleukin-6 (IL-6) signaling. SOCS-1 has been shown to protect cells from cellular damage and apoptosis induced by tumor necrosis factor (TNF), lipopolysaccharide (LPS), and interferon gamma (IL-γ). However, it is not known whether increased SOCS-1 is protective during pulmonary oxidative stress. Therefore, we hypothesized that increased SOCS-1 in the lungs of mice would be protective in the setting of hyperoxic lung injury. We administered SOCS-1 adenovirus (Ad-SOCS-1) intratracheally into the lungs and exposed the mice to 100% O2. Mice infected with GFP adenovirus (Ad-GFP) were used as controls. Mice treated with Ad-SOCS-1 had enhanced survival in 100% oxygen compared to Ad-GFP-administered mice. After 3 days of hyperoxia, Ad-GFP mice were ill and tachypnic and died after 4 days. In contrast, all Ad-SOCS-1-treated mice survived for at least 6 days in hyperoxia and 80% survived beyond 7 days. Ad-SOCS-1 transfection protected mouse lungs from injury as indicated by lower lung wet/dry weight, alveolar-capillary protein leakage, reduced infiltration of inflammatory cells, and lower content of thiobarbituric acid-reactive substances in lung homogenate. Our results also indicated that Ad-SOCS-1 significantly inhibits hyperoxia-induced ASK-1 (apoptosis signal-regulating kinase 1) expression. Taken together, these findings show that increased expression of adenovirus-mediated SOCS-1 in the lungs of mice significantly protects against hyperoxic lung injury.
Collapse
Affiliation(s)
- Lakshmi Galam
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Prasanna Tamarapu Parthasarathy
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Young Cho
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Seong Ho Cho
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Yong Chul Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - Richard F Lockey
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
24
|
Zhang JJ, Fan YC, Zhang ZH, Han J, Wang LY, Li T, Zhang F, Yin YP, Hu LH, Yang Y, Sun FK, Wang K. Methylation of suppressor of cytokine signalling 1 gene promoter is associated with acute-on-chronic hepatitis B liver failure. J Viral Hepat 2015; 22:307-17. [PMID: 25045829 DOI: 10.1111/jvh.12286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/14/2014] [Indexed: 12/13/2022]
Abstract
Suppressor of cytokine signalling 1 (SOCS1) was demonstrated to play an important negative role in fulminant hepatitis and might be involved in acute-on-chronic hepatitis B liver failure (ACHBLF). This study was therefore to identify the potential role of SOCS1 and its promoter methylation pattern in ACHBLF patients. Sixty ACHBLF patients, 60 chronic hepatitis B (CHB) patients and 30 healthy controls were investigated in this study. We found that expression of SOCS1 mRNA in CHB and ACHBLF patients was significantly higher than that in healthy controls. The serum level of IL-6, IFN-γ and TNF-α was significantly higher in ACHBLF than CHB. Increased serum level of IL-6, IFN-γ and TNF-α was correlated with total bilirubin, ALT, PTA and MELD scores in ACHBLF. The degree of methylation of the SOCS1 in ACHBLF patients (35.0%, 21/60) was significantly higher than that in CHB patients (16.7%, 10/60). Furthermore, methylated group showed lower level of SOCS1, and higher MELD scores and mortality rate when compared with unmethylated group of ACHBLF. These results suggested that SOCS1 might contribute to immune-related liver damage in ACHBLF, and its aberrant methylation may be a key event for the prognosis of ACHBLF.
Collapse
Affiliation(s)
- J-J Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Feng Y, Zhang Z, Li Q, Li W, Xu J, Cao H. Hyperbaric oxygen preconditioning protects lung against hyperoxic acute lung injury in rats via heme oxygenase-1 induction. Biochem Biophys Res Commun 2015; 456:549-54. [DOI: 10.1016/j.bbrc.2014.09.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 02/04/2023]
|
26
|
Das KC. Thioredoxin-deficient mice, a novel phenotype sensitive to ambient air and hypersensitive to hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 308:L429-42. [PMID: 25539854 DOI: 10.1152/ajplung.00285.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pulmonary oxygen toxicity is a major clinical problem for patients undergoing supplemental oxygen therapy. Thioredoxin (Trx) is an endogenous antioxidant protein that regenerates oxidatively inactivated proteins. We examined how Trx contributes to oxygen tolerance by creating transgenic mice with decreased levels of functional thioredoxin (dnTrx-Tg) using a dominant-negative approach. These mice showed decreased Trx activity in the lung although the expression of mutant protein is three times higher than the wild-type mice. Additionally, we found that these mice showed increased oxidation of endogenous Trx in room air. When exposed to hyperoxia (>90% O2) for 4 days, they failed to recover and showed significant mortality. Even in normal oxygen levels, these mice displayed a significant decrease in aconitase and NADH dehydrogenase activities, decreased mitochondrial energy metabolism, increased p53 and Gadd45α expression, and increased synthesis of proinflammatory cytokines. These effects were further increased by hyperoxia. We also generated mice overexpressing Trx (Trx-Tg) and found they maintained lung redox balance during exposure to high oxygen and thus were resistant to hyperoxia-induced lung injury. These mice had increased levels of reduced Trx in the lung in normoxia as well as hyperoxia. Furthermore, the levels of aconitase and NADH dehydrogenase activities were maintained in these mice concomitant with maintenance of mitochondrial energy metabolism. The genotoxic stress markers such as p53 or Gadd45α remained in significantly lower levels in hyperoxia compared with dnTrx-Tg or wild-type mice. These studies establish that mice deficient in functional Trx exhibit a phenotype of sensitivity to ambient air and hypersensitivity to hyperoxia.
Collapse
Affiliation(s)
- Kumuda C Das
- Department of Anesthesiology and Center for Excellence in Cardiovascular Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
27
|
Deletion of thioredoxin interacting protein (TXNIP) augments hyperoxia-induced vaso-obliteration in a mouse model of oxygen induced-retinopathy. PLoS One 2014; 9:e110388. [PMID: 25329456 PMCID: PMC4199686 DOI: 10.1371/journal.pone.0110388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023] Open
Abstract
We have recently shown that thioredoxin interacting protein (TXNIP) is required for VEGF-mediated VEGFR2 receptor activation and angiogenic signal. Retinas from TXNIP knockout mice (TKO) exhibited higher cellular antioxidant defense compared to wild type (WT). This study aimed to examine the impact of TXNIP deletion on hyperoxia-induced vaso-obliteration in ischemic retinopathy. TKO and WT pups were subjected to oxygen-induced retinopathy model. Retinal central capillary dropout was measured at p12. Retinal redox and nitrative state were assessed by reduced-glutathione (GSH), thioredoxin reductase activity and nitrotyrosine formation. Western blot and QT-PCR were used to assess VEGF, VEGFR-2, Akt, iNOS and eNOS, thioredoxin expression, ASK-1 activation and downstream cleaved caspase-3 and PARP in retinal lysates. Retinas from TKO mice exposed to hyperoxia showed significant increases (1.5-fold) in vaso-obliteration as indicated by central capillary drop out area compared to WT. Retinas from TKO showed minimal nitrotyrosine levels (10% of WT) with no change in eNOS or iNOS mRNA expression. There was no change in levels of VEGF or activation of VEGFR2 and its downstream Akt in retinas from TKO and WT. In comparison to WT, retinas from TKO showed significantly higher level of GSH and thioredoxin reductase activity in normoxia but comparable levels under hyperoxia. Exposure of TKO to hyperoxia significantly decreased the anti-apoptotic thioredoxin protein (∼50%) level compared with WT. This effect was associated with a significant increase in activation of the apoptotic ASK-1, PARP and caspase-3 pathway. Our results showed that despite comparable VEGF level and signal in TKO, exposure to hyperoxia significantly decreased Trx expression compared to WT. This effect resulted in liberation and activation of the apoptotic ASK-1 signal. These findings suggest that TXNIP is required for endothelial cell survival and homeostasis especially under stress conditions including hyperoxia.
Collapse
|
28
|
Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol 2014; 5:352. [PMID: 25324778 PMCID: PMC4179323 DOI: 10.3389/fphys.2014.00352] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022] Open
Abstract
Inflammasomes form a crucial part of the innate immune system. These are multi-protein oligomer platforms that are composed of intracellular sensors which are coupled with caspase and interleukin activating systems. Nod-like receptor protein (NLRP) 3, and 6 and NLRC4 and AIM2 are the prominent members of the inflammasome family. Inflammasome activation leads to pyroptosis, a process of programmed cell death distinct from apoptosis through activation of Caspase and further downstream targets such as IL-1β and IL-18 leading to activation of inflammatory cascade. Reactive oxygen species (ROS) serves as important inflammasome activating signals. ROS activates inflammasome through mitogen-activated protein kinases (MAPK) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Dysregulation of inflammasome plays a significant role in various pathological processes. Viral infections such as Dengue and Respiratory syncytial virus activate inflammasomes. Crystal compounds in silicosis and gout also activate ROS. In diabetes, inhibition of autophagy with resultant accumulation of dysfunctional mitochondria leads to enhanced ROS production activating inflammasomes. Activation of inflammasomes can be dampened by antioxidants such as SIRT-1. Inflammasome and related cascade could serve as future therapeutic targets for various pathological conditions.
Collapse
Affiliation(s)
- Anantha Harijith
- Department of Pediatrics, University of Illinois Chicago, IL, USA
| | - David L Ebenezer
- Department of Biochemistry, University of Illinois Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Pediatrics, University of Illinois Chicago, IL, USA ; Department of Pharmacology, University of Illinois Chicago, IL, USA ; Department of Medicine, University of Illinois Chicago, IL, USA
| |
Collapse
|
29
|
Zheng Y, Zhang M, Zhao Y, Chen J, Li B, Cai W. JNK inhibitor SP600125 protects against lipopolysaccharide-induced acute lung injury via upregulation of claudin-4. Exp Ther Med 2014; 8:153-158. [PMID: 24944614 PMCID: PMC4061205 DOI: 10.3892/etm.2014.1684] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/18/2014] [Indexed: 11/05/2022] Open
Abstract
Although in vitro studies have previously demonstrated that mitogen-activated protein kinases are important for the activation of transcription factors and the regulation of proinflammatory mediators, the function of c-Jun NH2-terminal kinase (JNK) in acute lung injury (ALI) remains to be fully elucidated. The present study aimed to investigate the effect of the JNK selective inhibitor SP600125 on lipopolysaccharide (LPS)-induced ALI. Pulmonary edema, the expression of inflammatory cytokines and pathological alterations were found to be significantly attenuated in LPS-induced ALI following treatment with SP600125 in vivo. In vitro, it was demonstrated that SP600125 administration significantly improved A549 cell viability in a dose-dependent manner using the Cell Counting kit-8 and the 5-ethynyl-2'-deoxyuridine incorporation assay. Furthermore, flow cytometric analysis demonstrated that the apoptotic rate was significantly reduced in a concentration-dependent manner following SP600125 injection. At the molecular level, SP600125 treatment dose-dependently inhibited JNK activation and upregulated claudin-4 expression in vivo and in vitro. In combination, the results from the present study indicated that the JNK inhibitor SP600125 protected against LPS-induced ALI in vivo and in vitro, possibly by upregulating the expression of claudin-4.
Collapse
Affiliation(s)
- Yueliang Zheng
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Meiqi Zhang
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yiming Zhao
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Chen
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Bing Li
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Wenwei Cai
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
30
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
31
|
Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med 2013; 7:631-46. [PMID: 23978003 DOI: 10.1586/17476348.2013.834252] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | | |
Collapse
|
32
|
Li C, Shi L, Yan Y, Gordon BR, Gordon WM, Wang DY. Gene expression signatures: a new approach to understanding the pathophysiology of chronic rhinosinusitis. Curr Allergy Asthma Rep 2013; 13:209-17. [PMID: 23225138 DOI: 10.1007/s11882-012-0328-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic rhinosinusitis (CRS) is a complex inflammatory disease with variable disease manifestation. Though external risk factors are associated with development and/or persistence of CRS, the host mucosal response is also important, as nasal epithelium acts as a physical and immune barrier. Under inflammatory stress, the nasal epithelium can undergo injury, followed by a rapid remodeling response ranging from epithelial hyperplasia, to goblet-cell metaplasia, to denudation, loss of cilia, fibrosis, and basement membrane thickening. Identification of gene expression signatures and molecular pathways in CRS pathogenesis have now begun to contribute significantly to a better understanding of the genetic and molecular alterations underlying CRS development and progression. Genetic studies are especially illuminating when multiple gene variants synergize within a permissive environmental context, and are expected to guide development of more effective therapeutic targets for CRS treatment.
Collapse
Affiliation(s)
- Chunwei Li
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore
| | | | | | | | | | | |
Collapse
|
33
|
Panguluri SK, Tur J, Fukumoto J, Deng W, Sneed KB, Kolliputi N, Bennett ES, Tipparaju SM. Hyperoxia-induced hypertrophy and ion channel remodeling in left ventricle. Am J Physiol Heart Circ Physiol 2013; 304:H1651-61. [PMID: 23585127 DOI: 10.1152/ajpheart.00474.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventricular arrhythmias account for high mortality in cardiopulmonary patients in intensive care units. Cardiovascular alterations and molecular-level changes in response to the commonly used oxygen treatment remains unknown. In the present study we investigated cardiac hypertrophy and cardiac complications in mice subjected to hyperoxia. Results demonstrate that there is a significant increase in average heart weight to tibia length (22%) in mice subjected to hyperoxia treatment vs. normoxia. Functional assessment was performed in mice subjected to hyperoxic treatment, and results demonstrate impaired cardiac function with decreased cardiac output and heart rate. Staining of transverse cardiac sections clearly demonstrates an increase in the cross-sectional area from hyperoxic hearts compared with control hearts. Quantitative real-time RT-PCR and Western blot analysis indicated differential mRNA and protein expression levels between hyperoxia-treated and control left ventricles for ion channels including Kv4.2 (-2 ± 0.08), Kv2.1 (2.54 ± 0.48), and Scn5a (1.4 ± 0.07); chaperone KChIP2 (-1.7 ± 0.06); transcriptional factors such as GATA4 (-1.5 ± 0.05), Irx5 (5.6 ± 1.74), NFκB1 (4.17 ± 0.43); hypertrophy markers including MHC-6 (2.17 ± 0.36) and MHC-7 (4.62 ± 0.76); gap junction protein Gja1 (4.4 ± 0.8); and microRNA processing enzyme Drosha (4.6 ± 0.58). Taken together, the data presented here clearly indicate that hyperoxia induces left ventricular remodeling and hypertrophy and alters the expression of Kv4.2 and MHC6/7 in the heart.
Collapse
Affiliation(s)
- Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Fukumoto J, Kolliputi N. Human lung on a chip: innovative approach for understanding disease processes and effective drug testing. Front Pharmacol 2013; 3:205. [PMID: 23335897 PMCID: PMC3547231 DOI: 10.3389/fphar.2012.00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/28/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | | |
Collapse
|
35
|
Aljubran SA, Cox R, Tamarapu Parthasarathy P, Kollongod Ramanathan G, Rajanbabu V, Bao H, Mohapatra SM, Lockey R, Kolliputi N. Enhancer of zeste homolog 2 induces pulmonary artery smooth muscle cell proliferation. PLoS One 2012; 7:e37712. [PMID: 22662197 PMCID: PMC3360676 DOI: 10.1371/journal.pone.0037712] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 04/26/2012] [Indexed: 12/24/2022] Open
Abstract
Introduction Pulmonary Arterial Hypertension (PAH) is a progressively devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. The proliferation of cancer cells is mediated by increased expression of Enhancer of Zeste Homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes. However, the role of EZH2 in PAH has not been studied. In this study, it is hypothesized that EZH2 could play a role in the proliferation of PASMCs. Methods In the present study, the expression patterns of EZH2 were investigated in normal and hypertensive mouse PASMCs. The effects of EZH2 overexpression on the proliferation of human PASMCs were tested. PASMCs were transfected with EZH2 or GFP using nucleofector system. After transfection, the cells were incubated for 48 hours at 37°C. Proliferation and cell cycle analysis were performed using flow cytometry. Apoptosis of PASMCs was determined using annexin V staining and cell migration was tested by wound healing assay. Results EZH2 protein expression in mouse PASMCs were correlated with an increase in right ventricular systolic pressure and Right Ventricular Hypertrophy (RVH). The overexpression of EZH2 in human PASMCs enhances proliferation, migration, and decrease in the rate of apoptosis when compared to GFP-transfected cells. In the G2/M phase of the EZH2 transfected cells, there was a 3.5 fold increase in proliferation, while there was a significant decrease in the rate of apoptosis of PASMCs, when compared to control. Conclusion These findings suggest that EZH2 plays a role in the migration and proliferation of PASMCs, which is a major hallmark in PAH. It also suggests that EZH2 could play a role in the development of PAH and can serve as a potential target for new therapies for PAH.
Collapse
Affiliation(s)
- Salman A. Aljubran
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Ruan Cox
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Prasanna Tamarapu Parthasarathy
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Gurukumar Kollongod Ramanathan
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Venugopal Rajanbabu
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Huynh Bao
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Shyam M. Mohapatra
- Nanomedicine Research Center and Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Richard Lockey
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Age-related defects in TLR2 signaling diminish the cytokine response by alveolar macrophages during murine pneumococcal pneumonia. Exp Gerontol 2012; 47:507-18. [PMID: 22548913 DOI: 10.1016/j.exger.2012.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 01/09/2023]
Abstract
Alveolar macrophages (AMs) are the first immune cells to respond to an invading pathogen and coordinate the inflammatory response within the lungs. Studies suggest that macrophages exhibit age-related deficiencies in Toll-like receptor (TLR) function; however, the impact of this dysfunction during pneumonia, the leading cause of infectious death in the elderly, and the underlying mechanisms responsible remain unclear. We examined disease severity in young, mature, and aged BALB/cBy mice following intratracheal infection with the Gram-positive bacteria Streptococcus pneumoniae (Spn). Both mature and aged mice failed to clear bacteria and as a result had increased mortality, tissue damage and vascular leakage. Early production of TNFα, IL-1β, and IL-6 during pneumonia declined with age and was associated with an inability of isolated AMs to respond to pneumococcal cell wall (CW) and ethanol-killed Spn ex vivo. Total levels of TLR1 were unaffected by age and TLR2 surface expression was slightly yet significantly increased on aged AMs suggesting that intracellular TLR signaling defects were responsible for the age-related decline in cytokine responsiveness. Following infection of isolated AMs with live Spn, a significant age-related decline in TLR2-induced phosphorylation of p65 NFκB, JNK and p38 MAPK, and an increase in ERK phosphorylation was observed by immunoblotting. These data are the first to demonstrate that TLR2-dependent recognition of Spn by aged AMs is impaired and is associated with a delayed pro-inflammatory cytokine response in vivo along with enhanced susceptibility to pneumococcal pneumonia.
Collapse
|
37
|
Gurkan OU, He C, Zielinski R, Rabb H, King LS, Dodd-o JM, D'Alessio FR, Aggarwal N, Pearse D, Becker PM. Interleukin-6 mediates pulmonary vascular permeability in a two-hit model of ventilator-associated lung injury. Exp Lung Res 2011; 37:575-84. [PMID: 22044313 DOI: 10.3109/01902148.2011.620680] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To test the hypothesis that interleukin-6 (IL-6) contributes to the development of ventilator-associated lung injury (VALI), IL-6-deficient (IL6(-/-)) and wild-type control (WT) mice received intratracheal hydrochloric acid followed by randomization to mechanical ventilation (MV + IT HCl) or spontaneous ventilation (IT HCl). After 4 hours, injury was assessed by estimation of lung lavage protein concentration and total and differential cell counts, wet/dry lung weight ratio, pulmonary cell death, histologic inflammation score (LIS), and parenchymal myeloperoxidase (MPO) concentration. Vascular endothelial growth factor (VEGF) concentration was measured in lung lavage and homogenate, as IL-6 and stretch both regulate expression of this potent mediator of permeability. MV-induced increases in alveolar barrier dysfunction and lavage VEGF were attenuated in IL6(-/-) mice as compared with WT controls, whereas tissue VEGF concentration increased. The effects of IL-6 deletion on alveolar permeability and VEGF concentration were inflammation independent, as parenchymal MPO concentration, LIS, and lavage total and differential cell counts did not differ between WT and IL6(-/-) mice following MV + IT HCl. These data support a role for IL-6 in promoting VALI in this two-hit model. Strategies to interfere with IL-6 expression or signaling may represent important therapeutic targets to limit the injurious effects of MV in inflamed lungs.
Collapse
Affiliation(s)
- Ozlem U Gurkan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abe H, Imamura M, Hiraga N, Tsuge M, Mitsui F, Kawaoka T, Takahashi S, Ochi H, Maekawa T, Hayes CN, Tateno C, Yoshizato K, Murakami S, Yamashita N, Matsuhira T, Asai K, Chayama K. ME3738 enhances the effect of interferon and inhibits hepatitis C virus replication both in vitro and in vivo. J Hepatol 2011; 55:11-8. [PMID: 21145867 DOI: 10.1016/j.jhep.2010.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 09/26/2010] [Accepted: 10/19/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS ME3738 (22β-methoxyolean-12-ene-3β, 24-diol), a derivative of soyasapogenol B, attenuates liver disease in several animal models of acute and chronic liver injury. ME3738 is thought to inhibit replication of hepatitis C virus (HCV) by enhancing interferon (IFN)-β production, as determined using the HCV full-length binary expression system. We examined the effect of ME3738 combined with IFN-α on HCV replication using the genotype 1b subgenomic replicon system and an in vivo mouse HCV model. METHODS HCV replicon cells (ORN/3-5B/KE cells and Con1 cells) were incubated with ME3738 and/or IFN-α, and then intracellular IFN-stimulated genes (ISGs) and HCV RNA replication were analyzed by reverse-transcription-real time polymerase chain reaction and luciferase reporter assay. HCV-infected human hepatocyte chimeric mice were also treated with ME3738 and/or IFN-α for 4 weeks. Mouse serum HCV RNA titer, HCV core antigen, and ISGs expression in the liver were measured. RESULTS ME3738 induced gene expression of oligoadenylate synthetase 1 and inhibited HCV replication in both HCV replicon cells. The drug enhanced the effect of IFN to significantly increase ISG expression levels, inhibit HCV replication in replicon cells, and reduce mouse serum HCV RNA and core antigen levels in mouse livers. The combination treatment was not hepatotoxic as evident histologically and did not reduce human serum albumin in mice. CONCLUSIONS ME3738 inhibited HCV replication, enhancing the effect of IFN-α to increase ISG expression both in vitro and in vivo, suggesting that the combination of ME3738 and IFN might be useful therapeutically for patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Hiromi Abe
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima-shi 734-8551, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li Z, Liang Y, Tang H, Luo B, Chen Z, Wu J, Yang Q, Ma Z. Effect of anaphylactic shock on suppressors of cytokine signaling. Immunol Invest 2011; 39:740-53. [PMID: 20840058 DOI: 10.3109/08820139.2010.494192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The pathophysiologic mechanisms of anaphylactic shock still remain unclear. In this study, we investigated the changes of expression and translation of SOCS1/SOCS3 in the heart, lungs, kidney, liver and spleen from patients who died of anaphylactic shock. Samples from the same viscera of 8 patients who died of anaphylactic shock and 8 healthy controls who died from accidents were collected in the present study. The level of IgE was measured in heart, and SOCS1/ SOCS3 mRNA and protein expression were determined by RT-PCR and immunohistochemistry, respectively. As a result, the higher IgE level was detected in the blood samples from the patients' heart than the control. SOCS1 and SOCS3 protein were significantly increased in the kidney and liver than the control. After anaphylactic shock, the expression of SOCS1 and SOCS3 mRNA were also increased. The expression level of SOCS3 mRNA was higher than that of SOCS1 in all viscera, and both were the highest in liver and kidney. There was a positive correlation between SOCS1 mRNA and SOCS3 mRNA in liver and kidney after anaphylactic shock. Our results indicate that SOCS1 and SOCS3 may play a regulatory role in anaphylactic shock viscera injury processes during anaphylactic shock.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of General Internal Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun Q, Cai J, Liu S, Liu Y, Xu W, Tao H, Sun X. Hydrogen-rich saline provides protection against hyperoxic lung injury. J Surg Res 2010; 165:e43-9. [PMID: 21067781 DOI: 10.1016/j.jss.2010.09.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 09/08/2010] [Accepted: 09/20/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hydrogen has been proven to be a novel antioxidant through its selectively reducing of the hydroxyl radical. In this study, we investigated the effects of hydrogen-rich saline on the prevention of acute lung injury induced by hyperoxia (HALI) in rats. MATERIALS AND METHODS Physiologic saline, hydrogen-rich saline, or nitrogen-rich saline was administered through intraperitoneal (i.p.) injection during exposure to hyperoxia (10 mL/Kg), respectively. RESULTS Severity of HALI was assessed by the volume of pleural effusion, wet-to-dry weight ratio (W/D), and histologic analysis. Apoptosis in lung cells was determined with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive staining. The content of pro-inflammatory cytokine interleukin IL-1b and TNF-a in the lung tissues were detected by enzyme-linked immunosorbent assay (ELISA). Hydrogen-rich saline treatment provides protection against HALI by inhibiting lipid, DNA oxidation, and tissue edema. Moreover, hydrogen-rich saline treatment could inhibit apoptosis and inflammation while no significant reduction was observed in nitrogen-rich saline treated animals. CONCLUSION The results of this study demonstrate that hydrogen-rich saline ameliorated hyperoxia-induced acute lung injury by reducing oxidative stress and inflammatory cascades in lung tissue.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, PR China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kolliputi N, Shaik RS, Waxman AB. The inflammasome mediates hyperoxia-induced alveolar cell permeability. THE JOURNAL OF IMMUNOLOGY 2010; 184:5819-26. [PMID: 20375306 DOI: 10.4049/jimmunol.0902766] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A hallmark of hyperoxic acute lung injury is the influx of inflammatory cells to lung tissue and the production of proinflammatory cytokines, such as IL-1beta; however, the mechanisms connecting hyperoxia and the inflammatory response to lung damage is not clear. The inflammasome protein complex activates caspase-1 to promote the processing and secretion of proinflammatory cytokines. We hypothesized that hyperoxia-induced K(+) efflux activates the inflammasome via the purinergic P2X7 receptor to cause inflammation and hyperoxic acute lung injury. To test this hypothesis, we characterized the expression and activation of inflammasome components in primary murine alveolar macrophages exposed to hyperoxia (95% oxygen and 5% CO(2)) in vitro, and in alveolar macrophages isolated from mice exposed to hyperoxia (100% oxygen). Our results showed that hyperoxia increased K(+) efflux, inflammasome formation, release of proinflammatory cytokines, and induction of caspase-1 and IL-1beta cleavage both in vitro and in vivo. The P2X7 agonist ATP enhanced hyperoxia-induced inflammasome activation, whereas the P2X7 antagonist, oxidized ATP, inhibited hyperoxia induced inflammasome activation. In addition, when ATP was scavenged with apyrase, hyperoxia-induced inflammasome activation was significantly decreased. Furthermore, short hairpin RNA silencing of inflammasome components abrogated hyperoxia-induced secretion of proinflammatory cytokines in vitro. These results suggest that hyperoxia induces K(+) efflux through the P2X7 receptor, leading to inflammasome activation and secretion of proinflammatory cytokines. These events would affect the permeability of the alveolar epithelium and ultimately lead to epithelial barrier dysfunction and cell death.
Collapse
Affiliation(s)
- Narasaiah Kolliputi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
42
|
Kolliputi N, Waxman AB. IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation. Am J Physiol Lung Cell Mol Physiol 2009; 297:L6-16. [PMID: 19376889 DOI: 10.1152/ajplung.90381.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IL-6 overexpression protects mice from hyperoxic acute lung injury in vivo, and treatment with IL-6 protects cells from oxidant-mediated death in vitro. The mechanisms of protection, however, are not clear. We characterized the expression, localization, and regulation of Bax, a proapoptotic member of the Bcl-2 family, in wild-type (WT) and IL-6 lung-specific transgenic (Tg(+)) mice exposed to 100% O(2) and in human umbilical vein endothelial cells (HUVEC) treated with H(2)O(2) and IL-6. In control HUVEC treated with H(2)O(2) or in WT mice exposed to 100% O(2), a marked induction of Bax translocation and dimerization was associated with increased JNK and p38 kinase activity. In contrast, specific JNK or p38 kinase inhibitors or treatment with IL-6 inhibited Bax mitochondrial translocation and apoptosis of HUVEC. IL-6 Tg(+) mice exposed to 100% O(2) exhibited enhanced phosphatidylinositol 3-kinase (PI3K)/Akt kinase and increased serine phosphorylation of Bax at Ser(184) compared with WT mice. The PI3K-specific inhibitor LY-2940002 blocked this IL-6-induced Bax phosphorylation and promoted cell death. Furthermore, IL-6 potently blocked hyperoxia- or oxidant-induced Bax insertion into mitochondrial membranes. Thus IL-6 functions in a cytoprotective manner, in part, by suppressing Bax translocation and dimerization through PI3K/Akt-mediated Bax phosphorylation.
Collapse
Affiliation(s)
- Narasaiah Kolliputi
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|