1
|
Wolf C, López del Amo V, Arndt S, Bueno D, Tenzer S, Hanschmann EM, Berndt C, Methner A. Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery. Cells 2020; 9:cells9040815. [PMID: 32230997 PMCID: PMC7226787 DOI: 10.3390/cells9040815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, where it interacts with its receptors FIS1, MFF, and MID49/51. Another fission factor of clinical relevance is GDAP1. Here, we identify and discuss cysteine residues of these proteins that are conserved in phylogenetically distant organisms and which represent potential sites of posttranslational redox modifications. We reveal that worms and flies possess only a single mitofusin, which in vertebrates diverged into MFN1 and MFN2. All mitofusins contain four conserved cysteines in addition to cysteine 684 in MFN2, a site involved in mitochondrial hyperfusion. DRP1 and FIS1 are also evolutionarily conserved but only DRP1 contains four conserved cysteine residues besides cysteine 644, a specific site of nitrosylation. MFF and MID49/51 are only present in the vertebrate lineage. GDAP1 is missing in the nematode genome and contains no conserved cysteine residues. Our analysis suggests that the function of the evolutionarily oldest proteins of the mitochondrial fusion and fission machinery, the mitofusins and DRP1 but not FIS1, might be altered by redox modifications.
Collapse
Affiliation(s)
- Christina Wolf
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Víctor López del Amo
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sabine Arndt
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Diones Bueno
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
- Correspondence:
| |
Collapse
|
2
|
S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants (Basel) 2019; 8:antiox8090404. [PMID: 31533268 PMCID: PMC6769533 DOI: 10.3390/antiox8090404] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.
Collapse
|
3
|
Yan R, He L, Li Z, Han X, Liang J, Si W, Chen Z, Li L, Xie G, Li W, Wang P, Lei L, Zhang H, Pei F, Cao D, Sun L, Shang Y. SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer. Genes Dev 2015; 29:672-85. [PMID: 25792601 PMCID: PMC4378198 DOI: 10.1101/gad.254292.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tumor suppressor ING4 (inhibitor of growth protein 4) is involved in various cellular processes by virtue of its epigenetic regulatory capability and through its positive regulation of p53 and negative regulation of NFκB. Yan et al. find that the F-box protein JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1-Cul1-F-box (SCF) complex. JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NFκB pathway and promotes angiogenesis and metastasis of breast cancer. Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1–Cul1–F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCFJFK as a bona fide E3 ligase for ING4 and unraveled the JFK–ING4–NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention.
Collapse
Affiliation(s)
- Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University School of Oncology, Beijing 100142, China
| | - Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wenzhe Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Guojia Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Peiyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Liandi Lei
- Laboratory of Molecular Imaging, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Department of Anatomy, Histology, and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Fei Pei
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - Dengfeng Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University School of Oncology, Beijing 100142, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China;
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China; 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
4
|
Mechanisms and targets of the modulatory action of S-nitrosoglutathione (GSNO) on inflammatory cytokines expression. Arch Biochem Biophys 2014; 562:80-91. [PMID: 25135357 DOI: 10.1016/j.abb.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023]
Abstract
A number of experimental studies has documented that S-nitrosoglutathione (GSNO), the main endogenous low-molecular-weight S-nitrosothiol, can exert modulatory effects on inflammatory processes, thus supporting its potential employment in medicine for the treatment of important disease conditions. At molecular level, GSNO effects have been shown to modulate the activity of a series of transcription factors (notably NF-κB, AP-1, CREB and others) as well as other components of signal transduction chains (e.g. IKK-β, caspase 1, calpain and others), resulting in the modulation of several cytokines and chemokines expression (TNFα, IL-1β, IFN-γ, IL-4, IL-8, RANTES, MCP-1 and others). Results reported to date are however not univocal, and a single main mechanism of action for the observed anti-inflammatory effects of GSNO has not been identified. Conflicting observations can be explained by differences among the various cell types studies as to the relative abundance of enzymes in charge of GSNO metabolism (GSNO reductase, γ-glutamyltransferase, protein disulfide isomerase and others), as well as by variables associated with the individual experimental models employed. Altogether, anti-inflammatory properties of GSNO seem however to prevail, and exploration of the therapeutic potential of GSNO and analogues appears therefore warranted.
Collapse
|
5
|
Righetti RF, Pigati PADS, Possa SS, Habrum FC, Xisto DG, Antunes MA, Leick EA, Prado CM, Martins MDA, Rocco PRM, Tibério IDFLC. Effects of Rho-kinase inhibition in lung tissue with chronic inflammation. Respir Physiol Neurobiol 2013; 192:134-46. [PMID: 24373838 DOI: 10.1016/j.resp.2013.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
Abstract
We evaluated whether Rho-kinase inhibition (Y-27632) modulated distal lung responsiveness, inflammation, extracellular matrix remodeling and oxidative stress activation in guinea pigs (GPs) with chronic allergic inflammation. GPs were submitted to inhalation of ovalbumin (OVA-2×/week/4 weeks). From the 5th inhalation on, the Rho-kinase inhibitor group animals were submitted to Y-27632 inhalation 10min before each inhalation of OVA. Seventy-two hours after the seventh inhalation, the oscillatory mechanics of the distal lung strips were assessed under the baseline condition and after the ovalbumin challenge. Subsequently, the lung slices were submitted to morphometry. Rho-kinase inhibition in the ovalbumin-exposed animals attenuated distal lung elastance and resistance, eosinophils, IL-2, IL-4, IL-5, IL-13, TIMP-1, MMP-9, TGF-β, IFN-γ, NF-κB and iNOS-positive cells and the volume fraction of 8-iso-PGF2α, elastic, collagen and actin in alveolar walls compared with the OVA group (P<0.05). Rho-kinase inhibition contributed to the control of distal lung responsiveness, eosinophilic and Th1/Th2 responses and extracellular matrix remodeling in an animal model of chronic allergic inflammation.
Collapse
Affiliation(s)
- Renato Fraga Righetti
- Department of Medicine, School of Medicine, University of São Paulo, 01246-903 São Paulo, Brazil.
| | | | - Samantha Souza Possa
- Department of Medicine, School of Medicine, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Fábio Cetinic Habrum
- Department of Medicine, School of Medicine, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Débora Gonçalves Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Ilha do Fundão, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Mariana Alves Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Ilha do Fundão, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Edna Aparecida Leick
- Department of Medicine, School of Medicine, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Carla Máximo Prado
- Department of Biological Science, Universidade Federal de São Paulo, 09972-270 Diadema, São Paulo, Brazil.
| | - Mílton de Arruda Martins
- Department of Medicine, School of Medicine, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Patrícia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Ilha do Fundão, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | | |
Collapse
|
6
|
Birmingham JM, Patil S, Li XM, Busse PJ. The effect of oral tolerance on the allergic airway response in younger and aged mice. J Asthma 2013; 50:122-32. [PMID: 23298269 DOI: 10.3109/02770903.2012.753455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The effect of increased age on the induction of oral tolerance by low-dose antigen feeding and its effect on the response to antigen airway challenge in aged mice have not been well characterized. OBJECTIVE To determine whether oral tolerance can be induced in aged mice and its impact on the development of allergic airway inflammation. METHODS Younger (6 weeks old) and aged (18 months old) mice were fed ovalbumin (OVA) prior to sensitization to induce antigen tolerance. Serum antigen-specific immunoglobulins (Igs), bronchoalveolar lavage fluid (BALF), lung histology, enumeration of CD4 + Foxp3+ Treg cells, and airway hyperresponsiveness (AHR) were determined after the final antigen challenge. RESULTS Feeding antigen to aged mice prior to sensitization induced oral tolerance as determined by a decrease in antigen-specific IgE and IgG(1); however, the effect was greater in younger mice. Induction of oral tolerance was associated with a greater increase in airway Treg cells in the younger mice. Despite these differences, oral tolerance significantly suppressed features of asthma in aged mice, including BALF total cell and eosinophil numbers, cytokine production, and AHR. CONCLUSIONS Aged mice developed oral tolerance to antigen, which suppressed several features of allergic airway inflammation.
Collapse
Affiliation(s)
- Janette M Birmingham
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
7
|
Modulation of Asthma Pathogenesis by Nitric Oxide Pathways and Therapeutic Opportunities. ACTA ACUST UNITED AC 2012; 9:e89-e94. [PMID: 23976894 DOI: 10.1016/j.ddmec.2012.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asthma, a chronic airway inflammatory disease is typically associated with high levels of exhaled nitric oxide (NO). Over the past decades, extensive research has revealed that NO participates in a number of metabolic pathways that contribute to animal models of asthma and human asthma. In asthmatic airway, high levels of NO lead to greater formation of reactive nitrogen species (RNS), which modify proteins adversely affecting functional activities. In contrast, high levels of NO are associated with lower than normal levels of S-nitrosothiols, which serve a bronchodilator function in the airway. Detailed mechanistic studies have enabled the development of compounds that target NO metabolic pathways, and provide opportunities for novel asthma therapy. This review discusses the role of NO in asthma with the primary focus on therapeutic opportunities developed in recent years.
Collapse
|
8
|
Fitzpatrick AM, Jones DP, Brown LAS. Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 17:375-408. [PMID: 22304503 PMCID: PMC3353819 DOI: 10.1089/ars.2011.4198] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/22/2012] [Accepted: 01/22/2012] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic inflammatory disorder of the airways associated with airway hyper-responsiveness and airflow limitation in response to specific triggers. Whereas inflammation is important for tissue regeneration and wound healing, the profound and sustained inflammatory response associated with asthma may result in airway remodeling that involves smooth muscle hypertrophy, epithelial goblet-cell hyperplasia, and permanent deposition of airway extracellular matrix proteins. Although the specific mechanisms responsible for asthma are still being unraveled, free radicals such as reactive oxygen species and reactive nitrogen species are important mediators of airway tissue damage that are increased in subjects with asthma. There is also a growing body of literature implicating disturbances in oxidation/reduction (redox) reactions and impaired antioxidant defenses as a risk factor for asthma development and asthma severity. Ultimately, these redox-related perturbations result in a vicious cycle of airway inflammation and injury that is not always amenable to current asthma therapy, particularly in cases of severe asthma. This review will discuss disruptions of redox signaling and control in asthma with a focus on the thiol, glutathione, and reduced (thiol) form (GSH). First, GSH synthesis, GSH distribution, and GSH function and homeostasis are discussed. We then review the literature related to GSH redox balance in health and asthma, with an emphasis on human studies. Finally, therapeutic opportunities to restore the GSH redox balance in subjects with asthma are discussed.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
9
|
Foster MW, Yang Z, Potts EN, Michael Foster W, Que LG. S-nitrosoglutathione supplementation to ovalbumin-sensitized and -challenged mice ameliorates methacholine-induced bronchoconstriction. Am J Physiol Lung Cell Mol Physiol 2011; 301:L739-44. [PMID: 21784966 PMCID: PMC3213990 DOI: 10.1152/ajplung.00134.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S-nitrosoglutathione (GSNO) is an endogenous bronchodilator present in micromolar concentrations in airway lining fluid. Airway GSNO levels decrease in severe respiratory failure and asthma, which is attributable to increased metabolism by GSNO reductase (GSNOR). Indeed, we have found that GSNOR expression and activity correlate inversely with lung S-nitrosothiol (SNO) content and airway hyperresponsiveness (AHR) to methacholine (MCh) challenge in humans with asthmatic phenotypes (Que LG, Yang Z, Stamler JS, Lugogo NL, Kraft M. Am J Respir Crit Care Med 180: 226-231, 2009). Accordingly, we hypothesized that local aerosol delivery of GSNO could ameliorate AHR and inflammation in the ovalbumin-sensitized and -challenged (OVA) mouse model of allergic asthma. Anesthetized, paralyzed, and tracheotomized 6-wk-old male control and OVA C57BL/6 mice were administered a single 15-s treatment of 0-100 mM GSNO. Five minutes later, airway resistance to MCh was measured and SNOs were quantified in bronchoalveolar lavage (BAL). Duration of protection was evaluated following nose-only exposure to 10 mM GSNO for 10 min followed by measurements of airway resistance, inflammatory cells, and cytokines and chemokines at up to 4 h later. Acute delivery of GSNO aerosol protected OVA mice from MCh-induced AHR, with no benefit seen above 20 mM GSNO. The antibronchoconstrictive effects of GSNO aerosol delivered via nose cone were sustained for at least 4 h. However, administration of GSNO did not alter total BAL cell counts or cell differentials and had modest effects on cytokine and chemokine levels. In conclusion, in the OVA mouse model of allergic asthma, aerosolized GSNO has rapid and sustained antibronchoconstrictive effects but does not substantially alter airway inflammation.
Collapse
Affiliation(s)
- Matthew W Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
10
|
Kelleher ZT, Potts EN, Brahmajothi MV, Foster MW, Auten RL, Foster WM, Marshall HE. NOS2 regulation of LPS-induced airway inflammation via S-nitrosylation of NF-{kappa}B p65. Am J Physiol Lung Cell Mol Physiol 2011; 301:L327-33. [PMID: 21724860 DOI: 10.1152/ajplung.00463.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inducible nitric oxide synthase (NOS2) expression is increased in the airway epithelium in acute inflammatory disorders although the physiological impact remains unclear. We have previously shown that NOS2 inhibits NF-κB (p50-p65) activation in respiratory epithelial cells by inducing S-nitrosylation of the p65 monomer (SNO-p65). In addition, we have demonstrated that mouse lung SNO-p65 levels are acutely depleted in a lipopolysaccharide (LPS) model of lung injury and that augmenting SNO-p65 levels before LPS treatment results in decreased airway epithelial NF-κB activation, airway inflammation, and lung injury. We now show that aerosolized LPS induces NOS2 expression in the respiratory epithelium concomitant with an increase in lung SNO-p65 levels and a decrease in airway NF-κB activity. Genetic deletion of NOS2 results in an absence of SNO-p65 formation, persistent NF-κB activity in the respiratory epithelium, and prolonged airway inflammation. These results indicate that a primary function of LPS-induced NOS2 expression in the respiratory epithelium is to modulate the inflammatory response through deactivation of NF-κB via S-nitrosylation of p65, thereby counteracting the initial stimulus-coupled denitrosylation.
Collapse
Affiliation(s)
- Zachary T Kelleher
- Division of Pulmonary Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Marozkina NV, Gaston B. S-Nitrosylation signaling regulates cellular protein interactions. Biochim Biophys Acta Gen Subj 2011; 1820:722-9. [PMID: 21745537 DOI: 10.1016/j.bbagen.2011.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND S-Nitrosothiols are made by nitric oxide synthases and other metalloproteins. Unlike nitric oxide, S-nitrosothiols are involved in localized, covalent signaling reactions in specific cellular compartments. These reactions are enzymatically regulated. SCOPE S-Nitrosylation affects interactions involved in virtually every aspect of normal cell biology. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation. MAJOR CONCLUSIONS AND SIGNIFICANCE S-Nitrosylation is a regulated signaling reaction.
Collapse
Affiliation(s)
- Nadzeya V Marozkina
- University of Virginia School of Medicine, Division of Pediatric Respiratory Medicine, PO Box 800386, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
12
|
Ghosh S, Erzurum SC. Nitric oxide metabolism in asthma pathophysiology. Biochim Biophys Acta Gen Subj 2011; 1810:1008-16. [PMID: 21718755 DOI: 10.1016/j.bbagen.2011.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/24/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma, a chronic inflammatory disease is typically characterized by bronchoconstriction and airway hyper-reactivity. SCOPE OF REVIEW A wealth of studies applying chemistry, molecular and cell biology to animal model systems and human asthma over the last decade has revealed that asthma is associated with increased synthesis of the gaseous molecule nitric oxide (NO). MAJOR CONCLUSION The high NO levels in the oxidative environment of the asthmatic airway lead to greater formation of reactive nitrogen species (RNS) and subsequent oxidation and nitration of proteins, which adversely affect protein functions that are biologically relevant to chronic inflammation. In contrast to the high levels of NO and nitrated products, there are lower levels of beneficial S-nitrosothiols (RSNO), which mediate bronchodilation, due to greater enzymatic catabolism of RSNO in the asthmatic airways. GENERAL SIGNIFICANCE This review discusses the rapidly accruing data linking metabolic products of NO as critical determinants in the chronic inflammation and airway reactivity of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.
Collapse
Affiliation(s)
- Sudakshina Ghosh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
13
|
Anderson JT, Zeng M, Li Q, Stapley R, Moore DR, Chenna B, Fineberg N, Zmijewski J, Eltoum IE, Siegal GP, Gaggar A, Barnes S, Velu SE, Thannickal VJ, Abraham E, Patel RP, Lancaster JR, Chaplin DD, Dransfield MT, Deshane JS. Elevated levels of NO are localized to distal airways in asthma. Free Radic Biol Med 2011; 50:1679-88. [PMID: 21419218 PMCID: PMC3124865 DOI: 10.1016/j.freeradbiomed.2011.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 12/27/2022]
Abstract
The contribution of nitric oxide (NO) to the pathophysiology of asthma remains incompletely defined despite its established pro- and anti-inflammatory effects. Induction of the inducible nitric oxide synthase (iNOS), arginase, and superoxide pathways is correlated with increased airway hyperresponsiveness in asthmatic subjects. To determine the contributions of these pathways in proximal and distal airways, we compared bronchial wash (BW) to traditional bronchoalveolar lavage (BAL) for measurements of reactive nitrogen/oxygen species, arginase activation, and cytokine/chemokine levels in asthmatic and normal subjects. Levels of NO were preferentially elevated in the BAL, demonstrating higher level NOS activation in the distal airway compartment of asthmatic subjects. In contrast, DHE(+) cells, which have the potential to generate reactive oxygen species, were increased in both proximal and distal airway compartments of asthmatics compared to controls. Different patterns of cytokines and chemokines were observed, with a predominance of epithelial cell-associated mediators in the BW compared to macrophage/monocyte-derived mediators in the BAL of asthmatic subjects. Our study demonstrates differential production of reactive species and soluble mediators within the distal airways compared to the proximal airways in asthma. These results indicate that cellular mechanisms are activated in the distal airways of asthmatics and must be considered in the development of therapeutic strategies for this chronic inflammatory disorder.
Collapse
Affiliation(s)
| | | | - Qian Li
- Department of Anesthesiology
- UAB Center for Free Radical Biology, Birmingham, AL
| | - Ryan Stapley
- Department of Pathology, Birmingham, AL
- UAB Center for Free Radical Biology, Birmingham, AL
| | | | | | | | - Jaroslaw Zmijewski
- Department of Medicine
- UAB Center for Free Radical Biology, Birmingham, AL
| | | | - Gene P. Siegal
- Department of Pathology, Birmingham, AL
- Department of Cell Biology, Birmingham, AL
- Department of Surgery, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| | - Amit Gaggar
- Department of Medicine
- VA Medical Center, Birmingham, AL
| | | | - Sadanandan E. Velu
- Department of Chemistry, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| | - Victor J. Thannickal
- Department of Medicine
- Department of Pathology, Birmingham, AL
- UAB Center for Free Radical Biology, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| | - Edward Abraham
- Department of Medicine
- UAB Center for Free Radical Biology, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| | - Rakesh P. Patel
- Department of Pathology, Birmingham, AL
- UAB Center for Free Radical Biology, Birmingham, AL
| | - Jack R. Lancaster
- Department of Anesthesiology
- Department of Physiology & Biophysics, Birmingham, AL
- Department of Environmental Health Sciences, Birmingham, AL
- UAB Center for Free Radical Biology, Birmingham, AL
| | - David D. Chaplin
- Department of Medicine
- Department of Microbiology
- UAB Center for Free Radical Biology, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
- Comprehensive Arthritis, Musculoskeletal and Autoimmunity Center, Birmingham, AL
| | | | - Jessy S. Deshane
- Department of Medicine
- Department of Microbiology
- UAB Center for Free Radical Biology, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| |
Collapse
|
14
|
Olson N, van der Vliet A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide 2011; 25:125-37. [PMID: 21199675 DOI: 10.1016/j.niox.2010.12.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/22/2010] [Accepted: 12/29/2010] [Indexed: 02/06/2023]
Abstract
Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O(2)) consumption and re-distribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders.
Collapse
Affiliation(s)
- Nels Olson
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|