1
|
Zerangian N, Erabi G, Poudineh M, Monajjem K, Diyanati M, Khanlari M, Khalaji A, Allafi D, Faridzadeh A, Amali A, Alizadeh N, Salimi Y, Ghane Ezabadi S, Abdi A, Hasanabadi Z, ShojaeiBaghini M, Deravi N. Venous thromboembolism in viral diseases: A comprehensive literature review. Health Sci Rep 2023; 6:e1085. [PMID: 36778773 PMCID: PMC9900357 DOI: 10.1002/hsr2.1085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Venous thromboembolism (VTE) is known to be a common respiratory and/or cardiovascular complication in hospitalized patients with viral infections. Numerous studies have proven human immunodeficiency virus infection to be a prothrombotic condition. An elevated VTE risk has been observed in critically ill H1N1 influenza patients. VTE risk is remarkably higher in patients infected with the Hepatitis C virus in contrast to uninfected subjects. The elevation of D-dimer levels supported the association between Chikungunya and the Zika virus and the rise of clinical VTE risk. Varicella-zoster virus is a risk factor for both cellulitis and the consequent invasive bacterial disease which may take part in thrombotic initiation. Eventually, hospitalized patients infected with the coronavirus disease of 2019 (COVID-19), the cause of the ongoing worldwide pandemic, could mainly suffer from an anomalous risk of coagulation activation with enhanced venous thrombosis events and poor quality clinical course. Although the risk of VTE in nonhospitalized COVID-19 patients is not known yet, there are a large number of guidelines and studies on thromboprophylaxis administration for COVID-19 cases. This study aims to take a detailed look at the effect of viral diseases on VTE, the epidemiology of VTE in viral diseases, and the diagnosis and treatment of VTE.
Collapse
Affiliation(s)
- Nasibeh Zerangian
- Health Education and Health Promotion, Department of Health Education and Health Promotion, School of HealthMashhad University of Medical SciencesMashhadIran
| | - Gisou Erabi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | | | - Kosar Monajjem
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Maryam Diyanati
- Student Research CommitteeRafsanjan University of Medical SciencesRafsanjanIran
| | - Maryam Khanlari
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | | | - Diba Allafi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Arian Amali
- Student Research Committee, Paramedical DepartmentIslamic Azad University, Mashhad BranchMashhadIran
| | - Nilufar Alizadeh
- Doctor of Medicine (MD), School of MedicineIran University of Medical SciencesTehranIran
| | - Yasaman Salimi
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Sajjad Ghane Ezabadi
- Student's Scientific Research Center, School of MedicineTehran University of Medical SciencesTehranIran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Hasanabadi
- Doctor of Medicine (MD), School of MedicineQazvin University of Medical ScienceQazvinIran
| | - Mahdie ShojaeiBaghini
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Niloofar Deravi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Rommel MGE, Milde C, Eberle R, Schulze H, Modlich U. Endothelial-platelet interactions in influenza-induced pneumonia: A potential therapeutic target. Anat Histol Embryol 2019; 49:606-619. [PMID: 31793053 DOI: 10.1111/ahe.12521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Every year, influenza viruses spread around the world, infecting the respiratory systems of countless humans and animals, causing illness and even death. Severe influenza infection is associated with pulmonary epithelial damage and endothelial dysfunction leading to acute lung injury (ALI). There is evidence that an aggressive cytokine storm and cell damage in lung capillaries as well as endothelial/platelet interactions contribute to vascular leakage, pro-thrombotic milieu and infiltration of immune effector cells. To date, treatments for ALI caused by influenza are limited to antiviral drugs, active ventilation or further symptomatic treatments. In this review, we summarize the mechanisms of influenza-mediated pathogenesis, permissive animal models and histopathological changes of lung tissue in both mice and men and compare it with histological and electron microscopic data from our own group. We highlight the molecular and cellular interactions between pulmonary endothelium and platelets in homeostasis and influenza-induced pathogenesis. Finally, we discuss novel therapeutic targets on platelets/endothelial interaction to reduce or resolve ALI.
Collapse
Affiliation(s)
- Marcel G E Rommel
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Christian Milde
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Regina Eberle
- Department of Morphology, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
3
|
Obi AT, Tignanelli CJ, Jacobs BN, Arya S, Park PK, Wakefield TW, Henke PK, Napolitano LM. Empirical systemic anticoagulation is associated with decreased venous thromboembolism in critically ill influenza A H1N1 acute respiratory distress syndrome patients. J Vasc Surg Venous Lymphat Disord 2018; 7:317-324. [PMID: 30477976 DOI: 10.1016/j.jvsv.2018.08.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/29/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND An association between increased venous thromboembolism (VTE) events and influenza A H1N1 (H1N1) was noted in the first 10 patients with severe acute respiratory distress syndrome (ARDS). An empirical systemic anticoagulation protocol (heparin intravenous infusion) was initiated when autopsy of patients with severe hypoxemia confirmed multiple primary pulmonary thrombi and emboli. The purpose of this study was to examine the relationship between H1N1 and VTE events and to assess the efficacy of empirical systemic heparin anticoagulation in preventing VTE and death in H1N1 severe ARDS patients. METHODS An observational cohort study of critically ill severe ARDS patients with possible H1N1 viral pneumonia was performed in a surgical intensive care unit in a single 990-bed academic tertiary care center. Early empirical systemic heparin anticoagulation for all severe ARDS patients with possible H1N1 viral pneumonia was initiated as a VTE preventive strategy. RESULTS Univariate comparisons and multivariate logistic regression were used to identify risk factors for VTE. Independent risk factors for VTE included H1N1, culture-positive bacterial pneumonia, and vasopressor requirement. Independent risk factors for pulmonary embolism included H1N1, culture-positive bacterial pneumonia, and male sex. H1N1 ARDS patients had 23.3-fold higher risk for pulmonary embolism and 17.9-fold increased risk for VTE. Kaplan-Meier analysis and log-rank test confirmed that empirical systemic heparin anticoagulation provided significant protection from thrombotic events in the H1N1-positive but not in the H1N1-negative critically ill ARDs patients. In multivariate analysis, adjusting for H1N1 status, patients without empirical systemic anticoagulation were 33 times more likely to have any VTE compared with those treated with empirical systemic heparin anticoagulation (P = .01). CONCLUSIONS Critically ill patients with H1N1 ARDS have increased risk of venous thrombotic complications, particularly pulmonary thromboembolism. Empirical systemic heparin anticoagulation in this cohort of patients significantly reduced VTE incidence without increased hemorrhagic complications.
Collapse
Affiliation(s)
- Andrea T Obi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | | | - Benjamin N Jacobs
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Shipra Arya
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Pauline K Park
- Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Thomas W Wakefield
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Peter K Henke
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Lena M Napolitano
- Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
4
|
Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost 2018; 2:549-557. [PMID: 30046760 PMCID: PMC6046589 DOI: 10.1002/rth2.12109] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The blood coagulation system and immune system of higher organisms are thought to have a common ancestral origin. During infections, the blood coagulation system is activated and components of the hemostatic system are directly involved in the immune response and immune system modulations. The current view is that the activation of coagulation is beneficial for infections with bacteria and viruses. It limits pathogen dissemination and supports pathogen killing and tissue repair. On the other hand, over-activation can lead to thrombosis with subsequent depletion of hemostatic factors and secondary bleeding. This review will summarize the current knowledge on blood coagulation and pathogen infection with focus on most recent studies of the role of the different parts of the blood coagulation system in selected bacterial and viral infections.
Collapse
Affiliation(s)
- Silvio Antoniak
- Program in Thrombosis and HemostasisDepartment of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
5
|
Yang Y, Tang H. Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia. Cell Mol Immunol 2016; 13:432-42. [PMID: 27041635 PMCID: PMC4947825 DOI: 10.1038/cmi.2016.1] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus (IAV) infects the respiratory tract in humans and causes significant morbidity and mortality worldwide each year. Aggressive inflammation, known as a cytokine storm, is thought to cause most of the damage in the lungs during IAV infection. Dysfunctional coagulation is a common complication in pathogenic influenza, manifested by lung endothelial activation, vascular leak, disseminated intravascular coagulation and pulmonary microembolism. Importantly, emerging evidence shows that an uncontrolled coagulation system, including both the cellular (endothelial cells and platelets) and protein (coagulation factors, anticoagulants and fibrinolysis proteases) components, contributes to the pathogenesis of influenza by augmenting viral replication and immune pathogenesis. In this review, we focus on the underlying mechanisms of the dysfunctional coagulatory response in the pathogenesis of IAV.
Collapse
Affiliation(s)
- Yan Yang
- Division of Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hong Tang
- Division of Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.,Institute Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| |
Collapse
|
6
|
Schouten M, van ‘t Veer C, Poulussen N, Meijers JC, Levi M, Esmon CT, van der Poll T. The cytoprotective effects of endogenous activated protein C reduce activation of coagulation during murine pneumococcal pneumonia and sepsis. Thromb Res 2015; 135:537-43. [DOI: 10.1016/j.thromres.2014.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/04/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022]
|
7
|
Coagulation profile in patients with H1N1 influenza A infection undergoing treatment for haematological malignancies. Blood Coagul Fibrinolysis 2014; 25:912-5. [DOI: 10.1097/mbc.0000000000000139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kager LM, Wiersinga WJ, Roelofs JJTH, de Boer OJ, Weiler H, van 't Veer C, van der Poll T. A thrombomodulin mutation that impairs active protein C generation is detrimental in severe pneumonia-derived gram-negative sepsis (melioidosis). PLoS Negl Trop Dis 2014; 8:e2819. [PMID: 24762740 PMCID: PMC3998929 DOI: 10.1371/journal.pntd.0002819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background During severe (pneumo)sepsis inflammatory and coagulation pathways become activated as part of the host immune response. Thrombomodulin (TM) is involved in a range of host defense mechanisms during infection and plays a pivotal role in activation of protein C (PC) into active protein C (APC). APC has both anticoagulant and anti-inflammatory properties. In this study we investigated the effects of impaired TM-mediated APC generation during melioidosis, a common form of community-acquired Gram-negative (pneumo)sepsis in South-East Asia caused by Burkholderia (B.) pseudomallei. Methodology/Principal Findings (WT) mice and mice with an impaired capacity to activate protein C due to a point mutation in their Thbd gene (TMpro/pro mice) were intranasally infected with B. pseudomallei and sacrificed after 24, 48 or 72 hours for analyses. Additionally, survival studies were performed. When compared to WT mice, TMpro/pro mice displayed a worse survival upon infection with B. pseudomallei, accompanied by increased coagulation activation, enhanced lung neutrophil influx and bronchoalveolar inflammation at late time points, together with increased hepatocellular injury. The TMpro/pro mutation had limited if any impact on bacterial growth and dissemination. Conclusion/Significance TM-mediated protein C activation contributes to protective immunity after infection with B. pseudomallei. These results add to a better understanding of the regulation of the inflammatory and procoagulant response during severe Gram-negative (pneumo)sepsis. Pneumonia and sepsis are conditions in which a procoagulant state is observed, with activation of coagulation and downregulation of anticoagulant pathways, both closely interrelated with inflammation. The protein C (PC) system is an important anticoagulant pathway implicated in the pathogenesis of sepsis. After binding to thrombomodulin (TM), PC is converted into active protein C (APC), mediated via high-affinity binding of thrombin to thrombomodulin (TM) and further augmented via association of the endothelial protein C receptor (EPCR) to the TM-thrombin complex. We studied the role of TM-associated PC-activation during the host response during pneumonia-derived sepsis caused by Burkholderia (B.) pseudomallei, the causative agent of melioidosis, a common form of community-acquired Gram-negative (pneumo)sepsis in South-East Asia and a serious potential bioterrorism threat agent. Mice with an impaired capacity to activate protein C displayed a worse survival upon infection with B. pseudomallei, accompanied by increased coagulation activation, enhanced lung neutrophil influx and bronchoalveolar inflammation at late time points, together with increased hepatocellular injury. These data further expand the knowledge about the role of the protein C system during melioidosis and may be of value in the development of therapeutic strategies against this dangerous pathogen.
Collapse
Affiliation(s)
- Liesbeth M. Kager
- Center for Experimental and Molecular Medicine, Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine, Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J. T. H. Roelofs
- Department of Pathology, Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J. de Boer
- Department of Pathology, Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
| | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Academic Medical Center-University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Abstract
The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.
Collapse
|
10
|
Zelaya H, Tsukida K, Chiba E, Marranzino G, Alvarez S, Kitazawa H, Agüero G, Villena J. Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation-coagulation interactions. Int Immunopharmacol 2014; 19:161-73. [PMID: 24394565 DOI: 10.1016/j.intimp.2013.12.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 11/15/2022]
Abstract
The exacerbated disease due to immune- and coagulative-mediated pulmonary injury during acute respiratory viruses infection results in severe morbidity and mortality. Identifying novel approaches to modulate virus-induced inflammation-coagulation interactions could be important alternatives for treating acute respiratory viruses infections. In this study we investigated the effect of the probiotic strain Lactobacillus rhamnosus CRL1505 on lung TLR3-mediated inflammation, and its ability to modulate inflammation-coagulation interaction during respiratory viral infection. Our findings reveal for the first time that a probiotic bacterium is able to influence lung immune-coagulative reaction triggered by TLR3 activation, by modulating the production of proinflammatory and anti-inflammatory cytokines as well as expression of tissue factor and thrombomodulin in the lung. We also demonstrated that the preventive treatment with the probiotic bacteria beneficially modulates the fine tune balance between clearing respiratory viruses (respiratory syncytial virus and influenza virus) and controlling immune-coagulative responses in the lung, allowing normal lung function to be maintained in the face of a viral attack. Our data also pinpoint a crucial role for IL-10 in the immune protection induced by L. rhamnosus CRL1505 during respiratory viral infections. These observations might be helpful to propose new preventive or therapeutic approaches to better control virus-inflammatory lung damage using probiotic functional foods.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Immunobiotics Research Group; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy, Tucuman University, Tucuman, Argentina
| | - Kohichiro Tsukida
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Eriko Chiba
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Gabriela Marranzino
- Immunobiotics Research Group; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Susana Alvarez
- Immunobiotics Research Group; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy, Tucuman University, Tucuman, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Graciela Agüero
- Immunobiotics Research Group; Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy, Tucuman University, Tucuman, Argentina.
| | - Julio Villena
- Immunobiotics Research Group; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
11
|
Kager LM, Wiersinga WJ, Roelofs JJ, Meijers JCM, Zeerleder SS, Esmon CT, van't Veer C, van der Poll T. Endogenous protein C has a protective role during Gram-negative pneumosepsis (melioidosis). J Thromb Haemost 2013; 11:282-92. [PMID: 23216621 DOI: 10.1111/jth.12094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/21/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND Activated protein C (APC) exerts anticoagulant effects via inactivation of factors Va and VIIIa and cytoprotective effects via protease activated receptor (PAR)1. Inhibition of endogenous APC in endotoxemia and sepsis results in exacerbation of coagulation and inflammation, with consequent enhanced lethality. OBJECTIVES We here sought to dissect the distinct roles of the anticoagulant and cytoprotective functions of endogenous APC in severe Gram-negative pneumonia-derived sepsis (melioidosis). METHODS We infected wild-type (WT) mice with Burkholderia pseudomallei, a common sepsis pathogen in southeast Asia, and treated them with antibodies inhibiting both the anticoagulant and cytoprotective functions of APC (MPC1609) or the anticoagulant functions of APC (MAPC1591) only. Additionally, we administered SEW2871 (stimulating the S1P1-pathway downstream from PAR1) to control and MPC1609-treated mice. RESULTS MPC1609, but not MAPC1591, significantly worsened survival, increased coagulation activation, facilitated bacterial growth and dissemination and enhanced the inflammatory response. The effects of MPC1609 could not be reversed by SEW2871, suggesting that S1P1 does not play a major role in this model. CONCLUSIONS These results suggest that the mere inhibition of the anticoagulant function of APC does not interfere with its protective role during Gram-negative pneumosepsis, suggesting a more prominent role for cytoprotective effects of APC .
Collapse
Affiliation(s)
- L M Kager
- Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|