1
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
2
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
3
|
Turan M, Turan G, Can HY. The role of cyclophilin A and VEGF in the pathogenesis and recurrence of pterygium. Eur J Ophthalmol 2022; 33:11206721221128664. [PMID: 36147022 DOI: 10.1177/11206721221128664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Pterygium is defined as overgrowth of abnormal conjunctival tissue on the cornea. Many proinflammatory cytokines and various growth factors have been implicated in the pathogenesis of pterygium. Cyclophilin A (CyPA) is a protein that is used by cyclosporin A (CsA) as the intracellular receptor and is secreted in response to inflammatory stimuli. Vascular endothelial growth factor (VEGF) is the most important angiogenic factor. This study aimed to assessment CyPA and VEGF immunoreactivity in pterygium specimens. MATERIAL AND METHODS In this cross-sectional study, 32 primary pterygium samples, 25 recurrent pterygium samples and 25 normal bulbar conjunctiva samples were included. The histopathological features, CyPA and VEGF immunoreactivity of surgically excised pterygium specimens were compared with control conjunctiva specimens obtained from normal bulbar conjunctiva. RESULTS CyPA immunoreactivity in vascular endothelial cells, epithelial cells, and stromal cells was remarkably higher in pterygium specimens than control conjunctiva specimens (p = 0.004, p = 0.012, p = 0.001, respectively). Morever, VEGF immunoreactivity in endothelial cells was remarkably higher in pterygium specimens than control conjunctiva specimens (p < 0.001). When recurrent and primary pterygium specimens were compared, CyPA and VEGF immunoreactivity was remarkably higher in recurrent pterygium (p = 0.001, p = 0.001, respectively). Pearson correlation showed that CyPA immunoreactivity correlated with stromal vascularity, stromal inflammation, and mast cell count in pterygium specimens. CONCLUSION This study aimed to assess CyPA and VEGF may have a important function in the pathogenesis and recurrence of pterygium.
Collapse
Affiliation(s)
- Meydan Turan
- Ophthalmology Clinic, Balıkesir Ataturk City Hospital, Balikesir, Turkey
| | - Gulay Turan
- Faculty of Medicine, Department of Pathology, Balikesir University, Balikesir, Turkey
| | - Humeyra Yildirim Can
- Faculty of Medicine, Department of Ophthalmology, Balikesir University, Balikesir, Turkey
| |
Collapse
|
4
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|
5
|
Chen CT, Shan CX, Ran J, Yin LM, Li HY, Wang Y, Xu YD, Guo JL, Shi YL, Chen YJ, Yang YQ. Cyclophilin A Plays Potential Roles in a Rat Model of Asthma and Suppression of Immune Response. J Asthma Allergy 2021; 14:471-480. [PMID: 33994799 PMCID: PMC8114824 DOI: 10.2147/jaa.s308938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Cyclophilin A (CypA) inhibits CD4+ T cell signal transduction via interleukin-2-inducible T-cell kinase (Itk), a tyrosine kinase required for T helper (Th) 2 cells function. Furthermore, mice with CypA silencing developed allergic diseases associated with increased Th2 cytokines production. CD4+ T cells with a Th2-cytokine pattern have been demonstrated to have a pivotal role in the pathogenesis of asthma. However, the effects of CypA in regulating immunity in asthma and in relieving asthmatic symptoms in vivo are entirely unknown. Methods Recombinant CypA protein (rCypA) was generated and purified. Ovalbumin (OVA)-challenged asthmatic rats model and acetylcholine chloride (ACh)-induced contraction of tracheal spirals were established. The pulmonary resistance (RL) value of asthmatic rats in vivo and the isometric tension of tracheal spirals ex vivo were recorded by MFLab 3.01 software. The levels of Th1 and Th2 cytokines and the quantities of immunoglobulin (IgA, IgG, IgM and IgE) in the supernatants of rat spleen lymphocytes were detected and analysed by bio-plex Suspension Array System and ELISA, respectively. CD4+ T cells were separated by MicroBeads, and the levels of interleukin (IL)-4 and interferon-γ (IFN-γ) were detected by ELISA. Results rCypA (10 ng/kg) significantly reduced RL within 2–7 min in OVA-challenged asthmatic rats in vivo, and there were no significant differences compared with terbutaline (TB) and hydrocortisone (HC). Furthermore, rCypA (10 ng/mL) significantly reduced the isometric tension in the ACh-induced contraction of the tracheal spiral ex vivo, and the effect of rCypA was better than that of TB. Additionally, rCypA suppressed the secretion of both Th1 and Th2 cytokines, and the suppressive effects of rCypA were stronger than those of HC, especially on Th2 cytokines. Conclusion These findings indicate that CypA may serve as a potential novel therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Cai-Tao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chun-Xiao Shan
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Jun Ran
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Lei-Miao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hai-Yan Li
- Shanghai First Rehabilitation Hospital, Shanghai, People's Republic of China
| | - Yu Wang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jing-Lei Guo
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yang-Lin Shi
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan-Jiao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Ure DR, Trepanier DJ, Mayo PR, Foster RT. Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2019; 29:163-178. [PMID: 31868526 DOI: 10.1080/13543784.2020.1703948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daren R. Ure
- Hepion Pharmaceuticals Inc, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
7
|
Xue C, Sowden MP, Berk BC. Extracellular and Intracellular Cyclophilin A, Native and Post-Translationally Modified, Show Diverse and Specific Pathological Roles in Diseases. Arterioscler Thromb Vasc Biol 2018; 38:986-993. [PMID: 29599134 DOI: 10.1161/atvbaha.117.310661] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/20/2018] [Indexed: 01/13/2023]
Abstract
CypA (cyclophilin A) is a ubiquitous and highly conserved protein with peptidyl prolyl isomerase activity. Because of its highly abundant level in the cytoplasm, most studies have focused on the roles of CypA as an intracellular protein. However, emerging evidence suggests an important role for extracellular CypA in the pathogenesis of several diseases through receptor (CD147 or other)-mediated autocrine and paracrine signaling pathways. In this review, we will discuss the shared and unique pathological roles of extracellular and intracellular CypA in human cardiovascular diseases. In addition, the evolving role of post-translational modifications of CypA in the pathogenesis of disease is discussed. Finally, recent studies with drugs specific for extracellular CypA show its importance in disease pathogenesis in several animal models and make extracellular CypA a new therapeutic target.
Collapse
Affiliation(s)
- Chao Xue
- From the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY
| | - Mark P Sowden
- From the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY
| | - Bradford C Berk
- From the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY.
| |
Collapse
|
8
|
Zhang M, Tang J, Yin J, Wang X, Feng X, Yang X, Shan H, Zhang Q, Zhang J, Li Y. The clinical implication of serum cyclophilin A in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2018; 13:357-363. [PMID: 29403273 PMCID: PMC5783015 DOI: 10.2147/copd.s152898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Cyclophilin A (CyPA) is a secreted molecule that is regulated by inflammatory stimuli. Although inflammation has an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD), little is known regarding the relationship between serum CyPA and COPD. Methods Ninety-three COPD patients with acute exacerbation were enrolled in the study and were reassessed during the convalescence phase. Eighty-eight controls were matched for age, gender, body mass index, smoking index and comorbidity. The basic clinical information and pulmonary function of all participants were collected. Serum levels of CyPA and other inflammation indexes were further measured. Results Serum CyPA was significantly increased in convalescent COPD patients compared to healthy controls, and further elevated in COPD patients with acute exacerbation. Serum CyPA positively correlated with serum interleukin-6, matrix metalloproteinase-9 and high-sensitivity C-reactive protein in both the exacerbation and convalescence phases of COPD. Furthermore, it negatively correlated with percent value of forced expiratory volume in 1 second (FEV1%) predicted and FEV1/forced vital capacity in convalescent COPD patients. Conclusion These results suggest that serum CyPA can be used as a potential inflammatory biomarker for COPD and assessment of serum CyPA may reflect the severity of inflammation in COPD.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Jingjing Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Jiafeng Yin
- Department of Laboratory Examination, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Xiaoying Wang
- Health Examination Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiangli Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Hu Shan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Qiuhong Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Yali Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| |
Collapse
|
9
|
Xue C, Sowden M, Berk BC. Extracellular Cyclophilin A, Especially Acetylated, Causes Pulmonary Hypertension by Stimulating Endothelial Apoptosis, Redox Stress, and Inflammation. Arterioscler Thromb Vasc Biol 2017; 37:1138-1146. [PMID: 28450293 DOI: 10.1161/atvbaha.117.309212] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Oxidative stress and inflammation play key roles in the development of pulmonary arterial hypertension (PAH). Cyclophilin A (CypA) is secreted in response to oxidative stress and promotes inflammation and cardiovascular disease. Endothelial cell (EC) dysfunction is an early event in the pathogenesis of PAH. We evaluated the role of extracellular CypA in PAH and compared the effects of acetylated CypA (AcK-CypA, increased by oxidative stress) and CypA on EC dysfunction. APPROACH AND RESULTS In transgenic mice that express high levels of CypA in EC specifically, a PAH phenotype was observed at 3 months including increased right ventricular systolic pressure, α-smooth muscle actin expression in small arterioles, and CD45-positive cells in the lungs. Mechanistic analysis using cultured mouse pulmonary microvascular EC and human pulmonary microvascular EC showed that extracellular CypA and AcK-CypA stimulated EC inflammatory signals: increased VCAM1 (vascular cell adhesion molecule 1) and ICAM1 (intercellular adhesion molecule 1), phosphorylation of p65, and degradation of IkB. Extracellular CypA and AcK-CypA increased EC apoptosis measured by TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining, Apo-ONE assay, and caspase 3 cleavage. Oxidative stress stimulated CypA and AcK-CypA secretion, which further promoted EC oxidative stress. AcK-CypA, compared with CypA, stimulated greater increases in apoptosis, inflammation, and oxidative stress. MM284, a specific inhibitor of extracellular CypA, attenuated EC apoptosis induced by CypA and AcK-CypA. CONCLUSIONS EC-derived CypA (especially AcK-CypA) causes PAH by a presumptive mechanism involving increased EC apoptosis, inflammation, and oxidative stress. Our results suggest that inhibiting secreted extracellular CypA is a novel therapeutic approach for PAH.
Collapse
Affiliation(s)
- Chao Xue
- From the Department of Pathology (C.X., B.C.B.) and Aab Cardiovascular Research Institute and Department of Medicine (C.X., M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
| | - Mark Sowden
- From the Department of Pathology (C.X., B.C.B.) and Aab Cardiovascular Research Institute and Department of Medicine (C.X., M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
| | - Bradford C Berk
- From the Department of Pathology (C.X., B.C.B.) and Aab Cardiovascular Research Institute and Department of Medicine (C.X., M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY.
| |
Collapse
|
10
|
Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma. PLoS One 2015; 10:e0138791. [PMID: 26398101 PMCID: PMC4580316 DOI: 10.1371/journal.pone.0138791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION AND AIM The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the "sensitized signature" of B lymphocytes comparing TDI-sensitized mice with control mice. RESULTS Sixteen proteins were identified that were significantly up- or down-regulated in B lymphocytes of sensitized mice. Particularly differences in the expression of cyclophilin A, cofilin 1 and zinc finger containing CCHC domain protein 11 could be correlated to the function of B lymphocytes as initiators of T lymphocyte independent asthma-like responses. CONCLUSION This study revealed important alterations in the proteome of sensitized B cells in a mouse model of chemical-induced asthma, which will have an important impact on the B cell function.
Collapse
|
11
|
Iordanskaia T, Malesevic M, Fischer G, Pushkarsky T, Bukrinsky M, Nadler EP. Targeting Extracellular Cyclophilins Ameliorates Disease Progression in Experimental Biliary Atresia. Mol Med 2015. [PMID: 26225831 DOI: 10.2119/molmed.2015.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biliary atresia (BA) is a devastating liver disease of unknown etiology affecting children generally within the first 3 months of life. The disease is manifested by inflammation and subsequent obstruction of the extrahepatic bile ducts, fibrosis and liver failure. The mechanisms responsible for disease pathogenesis are not fully understood, but a number of factors controlled by the SMAD signaling pathway have been implicated. In this study, we investigated the role of a known proinflammatory factor, extracellular cyclophilin A (CypA), in the pathogenesis of biliary atresia using the rhesus rotavirus (RRV) murine model. We used a unique cyclosporine A derivative, MM284, which does not enter cells and therefore inactivates exclusively extracellular cyclophilins, as a potential treatment. We demonstrated that levels of CypA in plasma of RRV-infected mice were increased significantly, and that treatment of mice with MM284 prior to or one day after disease initiation by RRV infection significantly improved the status of mice with experimental BA: weight gain was restored, bilirubinuria was abrogated, liver infiltration by inflammatory cells was reduced and activation of the SMAD pathway and SMAD-controlled fibrosis mediators and tissue inhibitor of metalloproteinases (TIMP)-4 and matrix metalloproteinase (MMP)-7 was alleviated. Furthermore, treatment of human hepatic stellate cells with recombinant cyclophilin recapitulated SMAD2/3 activation, which was also suppressed by MM284 treatment. Our data provide the first evidence that extracellular cyclophilins activate the SMAD pathway and promote inflammation in experimental BA, and suggest that MM284 may be a promising therapeutic agent for treating BA and possibly other intrahepatic chronic disorders.
Collapse
Affiliation(s)
- Tatiana Iordanskaia
- Division of Pediatric Surgery, Children's National Medical Center, Washington, District of Columbia, United States of America
| | - Miroslav Malesevic
- Institute of Biochemistry, Martin Luther-University Halle-Wittenberg, Halle, Germany
| | - Gunter Fischer
- Max-Planck-Institute for Biophysical Chemistry Gottingen, Halle, Germany
| | - Tatiana Pushkarsky
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine Washington, District of Columbia, United States of America
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine Washington, District of Columbia, United States of America
| | - Evan P Nadler
- Division of Pediatric Surgery, Children's National Medical Center, Washington, District of Columbia, United States of America
| |
Collapse
|
12
|
Hoffmann H, Schiene-Fischer C. Functional aspects of extracellular cyclophilins. Biol Chem 2015; 395:721-35. [PMID: 24713575 DOI: 10.1515/hsz-2014-0125] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/27/2014] [Indexed: 11/15/2022]
Abstract
The cyclophilin family of peptidyl prolyl cis/trans isomerases includes several isoforms found to be secreted in response to different stimuli, thus existing both in the interior and the exterior of cells. The extracellular fractions of the cyclophilins CypA and CypB are involved in the control of cell-cell communication. By binding to the cell membrane receptor CD147 and cell surface heparans they elicit a variety of intracellular signaling cascades involved in inflammatory processes. Increased levels of cyclophilins in inflammatory tissues and body fluids are considered as an inflammatory response to injury. Thus, the extracellular portion of cyclophilins probably plays an important role in human diseases associated with acute or chronic inflammation like rheumatoid arthritis, sepsis, asthma and cardiovascular diseases. Specific inhibition of the cyclophilins in the extracellular space may open an effective therapeutic approach for treating inflammatory diseases.
Collapse
|
13
|
Fernando M, Peake PW, Endre ZH. Biomarkers of calcineurin inhibitor nephrotoxicity in transplantation. Biomark Med 2014; 8:1247-62. [DOI: 10.2217/bmm.14.86] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over 35 years of use has demonstrated the revolutionary therapeutic benefits of calcineurin inhibitors (CNI) in not only preventing transplant rejection, but also the renal and nonrenal toxicity of CNI. Acute reversible and insidious irreversible forms of CNI nephrotoxicity have been identified, with ischemia from an imbalance between vasoconstrictors and vasodilators playing an important role. The ongoing search to define toxicity pathways has been enriched by ‘Omics’ studies. Changes in proteins including those involved in activation of pro-inflammatory responses, oxidative stress, ER stress and the unfolded protein response have been identified, and these may serve as biomarkers of toxicity. However, the current standard of CNI toxicity, histology, lacks specificity, which creates challenges for biomarker validation. This review focuses on progress in nephrotoxic pathway identification of CNI and biomarker validation.
Collapse
Affiliation(s)
- Mangalee Fernando
- Department of Nephrology, Prince of Wales Hospital, Barker St., Randwick, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Philip W Peake
- Department of Nephrology, Prince of Wales Hospital, Barker St., Randwick, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Zoltan H Endre
- Department of Nephrology, Prince of Wales Hospital, Barker St., Randwick, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Bukrinsky M. Extracellular cyclophilins in health and disease. Biochim Biophys Acta Gen Subj 2014; 1850:2087-95. [PMID: 25445705 PMCID: PMC4436085 DOI: 10.1016/j.bbagen.2014.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Extracellular cyclophilins (eCyPs) are pro-inflammatory factors implicated in pathogenesis of a number of inflammatory diseases. Most pathogenic activities of eCyPs are related to their chemotactic action towards leukocytes, which is mediated by eCyP receptor on target cells, CD147, and involves peptidyl-prolyl cis-trans isomerase activity of cyclophilins. This activity is inhibited by cyclosporine A (CsA) and non-immunosuppressive derivatives of this drug. Accumulating evidence for the role of eCyPs in disease pathogenesis stimulated research on the mechanisms of eCyP-initiated events, resulting in identification of multiple signaling pathways, characterization of a variety of effector molecules released from eCyP-treated cells, and synthesis of CsA derivatives specifically blocking eCyPs. However, a number of important questions related to the mode of action of eCyPs remain unanswered. SCOPE OF REVIEW In this article, we integrate available information on release and function of extracellular cyclophilins into a unified model, focusing on outstanding issues that need to be clarified. MAJOR CONCLUSIONS Extracellular cyclophilins are critical players in pathogenesis of a number of inflammatory diseases. Their mechanism of action involves interaction with the receptor, CD147, and initiation of a poorly characterized signal transduction process culminating in chemotaxis and production of pro-inflammatory factors. GENERAL SIGNIFICANCE Extracellular cyclophilins present an attractive target for therapeutic interventions that can be used to alleviate symptoms and consequences of acute and chronic inflammation. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
15
|
Sweeney ZK, Fu J, Wiedmann B. From chemical tools to clinical medicines: nonimmunosuppressive cyclophilin inhibitors derived from the cyclosporin and sanglifehrin scaffolds. J Med Chem 2014; 57:7145-59. [PMID: 24831536 DOI: 10.1021/jm500223x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cyclophilins are widely expressed enzymes that catalyze the interconversion of the cis and trans peptide bonds of prolines. The immunosuppressive natural products cyclosporine A and sanglifehrin A inhibit the enzymatic activity of the cyclophilins. Chemical modification of both the cyclosporine and sanglifehrin scaffolds has produced many analogues that inhibit cyclophilins in vitro but have reduced immunosuppressive properties. Three nonimmunosuppressive cyclophilin inhibitors (alisporivir, SCY-635, and NIM811) have demonstrated clinical efficacy for the treatment of hepatitis C infection. Additional candidates are in various stages of preclinical development for the treatment of hepatitis C or myocardial reperfusion injury. Recent publications suggest that cyclophilin inhibitors may have utility for the treatment of diverse viral infections, inflammatory indications, and cancer. In this review, we document the structure-activity relationships of the nonimmunosuppressive cyclosporins and sanglifehrins in clinical and preclinical development. Aspects of the pharmacokinetic behavior and chemical biology of these drug candidates are also described.
Collapse
Affiliation(s)
- Zachary K Sweeney
- Novartis Institutes for BioMedical Research , 4560 Horton Street, Emeryville, California 94608, United States
| | | | | |
Collapse
|
16
|
Cyclophilin A: a key player for human disease. Cell Death Dis 2013; 4:e888. [PMID: 24176846 PMCID: PMC3920964 DOI: 10.1038/cddis.2013.410] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 01/23/2023]
Abstract
Cyclophilin A (CyPA) is a ubiquitously distributed protein belonging to the immunophilin family. CyPA has peptidyl prolyl cis-trans isomerase (PPIase) activity, which regulates protein folding and trafficking. Although CyPA was initially believed to function primarily as an intracellular protein, recent studies have revealed that it can be secreted by cells in response to inflammatory stimuli. Current research in animal models and humans has provided compelling evidences supporting the critical function of CyPA in several human diseases. This review discusses recently available data about CyPA in cardiovascular diseases, viral infections, neurodegeneration, cancer, rheumatoid arthritis, sepsis, asthma, periodontitis and aging. It is believed that further elucidations of the role of CyPA will provide a better understanding of the molecular mechanisms underlying these diseases and will help develop novel pharmacological therapies.
Collapse
|
17
|
Malesevic M, Gutknecht D, Prell E, Klein C, Schumann M, Nowak RA, Simon JC, Schiene-Fischer C, Saalbach A. Anti-inflammatory effects of extracellular cyclosporins are exclusively mediated by CD147. J Med Chem 2013; 56:7302-11. [PMID: 23964991 DOI: 10.1021/jm4007577] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Leukocyte trafficking and recruitment is a critical process in host immune surveillance and in inflammatory diseases. Extracellular cyclophilins (eCyps) have been identified as a novel class of chemotactic mediators. The impact of eCyp/CD147 interactions for the recruitment of leukocytes during inflammation was analyzed using a structurally simplified cell-impermeable eCyp inhibitor. This compound was highly effective at inhibiting leukocyte migration toward CypA in vitro as well as in the recruitment of leukocytes during inflammation in a mouse model of experimentally induced peritonitis and delayed-type hypersensitivity reaction. By using CD147-/- mice in combination with the cell-impermeable eCyp inhibitor, we were able to show that the action of eCyps in inflammation is exclusively mediated by interaction with CD147. Our findings suggest that blocking eCyps may be an effective therapeutic target for reducing inflammatory diseases associated with leukocyte recruitment.
Collapse
Affiliation(s)
- Miroslav Malesevic
- Max-Planck Research Unit for Enzymology of Protein Folding , Weinbergweg 22, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Peel M, Scribner A. Cyclophilin inhibitors as antiviral agents. Bioorg Med Chem Lett 2013; 23:4485-92. [PMID: 23849880 PMCID: PMC7125669 DOI: 10.1016/j.bmcl.2013.05.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
Cyclophilins (Cyps) are ubiquitous proteins that effect the cis-trans isomerization of Pro amide bonds, and are thus crucial to protein folding. CypA is the most prevalent of the ~19 human Cyps, and plays a crucial role in viral infectivity, most notably for HIV-1 and HCV. Cyclophilins have been shown to play key roles in effective replication of a number of viruses from different families. A drug template for CypA inhibition is cyclosporine A (CsA), a cyclic undecapeptide that simultaneously binds to both CypA and the Ca(2+)-dependent phosphatase calcineurin (CN), and can attenuate immune responses. Synthetic modifications of the CsA scaffold allows for selective binding to CypA and CN separately, thus providing access to novel, non-immunosuppressive antiviral agents.
Collapse
Affiliation(s)
- Michael Peel
- SCYNEXIS Inc., Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
19
|
Peel M, Scribner A. Optimization of Cyclophilin Inhibitors for Use in Antiviral Therapy. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cyclophilins are members of the Propyl Peptidase Isomerase (PPIase) family of proteins and have recently been found to be required for efficient replication and/or infectivity of several viruses. Cyclosporine A (CsA), the prototypical inhibitor of cyclophilins has shown good activity against several key viruses, including HIV‐1 and HCV, however the immunosuppressive activity of CsA precludes its use as an effective anti‐viral agent. Structural information derived from the ternary complex formed by CsA, cyclophilin A and calcineurin has allowed the design of non‐immunosuppressive derivatives of CsA that retain, and in some cases improve, antiviral activity toward hepatitis C. Chemical modification of CsA has led to compounds with improved pharmacokinetic properties and with reduced drug‐drug interaction potential. Non‐CsA derived inhibitors of cyclophilin A have recently been identified and hold promise as synthetically more tractable leads for cyclophilin‐based discovery projects.
Collapse
Affiliation(s)
- Michael Peel
- SCYNEXIS Inc., Research Triangle Park, NC 27709 USA
| | | |
Collapse
|
20
|
Wang T, Liang ZA, Sandford AJ, Xiong XY, Yang YY, Ji YL, He JQ. Selection of suitable housekeeping genes for real-time quantitative PCR in CD4(+) lymphocytes from asthmatics with or without depression. PLoS One 2012; 7:e48367. [PMID: 23110234 PMCID: PMC3480507 DOI: 10.1371/journal.pone.0048367] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/24/2012] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE No optimal housekeeping genes (HKGs) have been identified for CD4(+) T cells from non-depressive asthmatic and depressive asthmatic adults for normalizing quantitative real-time PCR (qPCR) assays. The aim of present study was to select appropriate HKGs for gene expression analysis in purified CD4(+) T cells from these asthmatics. METHODS Three groups of subjects (Non-depressive asthmatic, NDA, n = 10, Depressive asthmatic, DA, n = 11, and Healthy control, HC, n = 10 respectively) were studied. qPCR for 9 potential HKGs, namely RNA, 28S ribosomal 1 (RN28S1), ribosomal protein, large, P0 (RPLP0), actin, beta (ACTB), cyclophilin A (PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase 1 (PGK1), beta-2-microglobulin (B2M), glucuronidase, beta (GUSB) and ribosomal protein L13a (RPL13A), was performed. Then the data were analyzed with three different applications namely BestKeeper, geNorm, and NormFinder. RESULTS The analysis of gene expression data identified B2M and RPLP0 as the most stable reference genes and showed that the level of PPIA was significantly different among subjects of three groups when the two best HKGs identified were applied. Post-hoc analysis by Student-Newman-Keuls correction shows that depressive asthmatics and non-depressive asthmatics exhibited lower expression level of PPIA than healthy controls (p<0.05). CONCLUSIONS B2M and RPLP0 were identified as the most optimal HKGs in gene expression studies involving human blood CD4(+) T cells derived from normal, depressive asthmatics and non-depressive asthmatics. The suitability of using the PPIA gene as the HKG for such studies was questioned due to its low expression in asthmatics.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Zong-An Liang
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Andrew J. Sandford
- The UBC James Hogg Research Centre, Institute for Heart + Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xing-Yu Xiong
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yin-Yin Yang
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yu-Lin Ji
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (J-QH); (Y-LJ)
| | - Jian-Qing He
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (J-QH); (Y-LJ)
| |
Collapse
|
21
|
Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC). J Proteomics 2012; 75:3674-87. [DOI: 10.1016/j.jprot.2012.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 04/09/2012] [Accepted: 04/18/2012] [Indexed: 01/14/2023]
|
22
|
Stemmy EJ, Benton AS, Lerner J, Alcala S, Constant SL, Freishtat RJ. Extracellular cyclophilin levels associate with parameters of asthma in phenotypic clusters. J Asthma 2011; 48:986-993. [PMID: 21999750 DOI: 10.3109/02770903.2011.623334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Leukocyte persistence during chronic (quiescent) phases of asthma is a major hallmark of the disease. The mechanisms regulating these persistent leukocyte populations are not clearly understood. An alternative family of chemoattracting proteins, cyclophilins (Cyps), has recently been shown to contribute to leukocyte recruitment in animal models of allergic asthma. The goals of this study were to determine whether Cyps are present in asthma patients during the chronic phase of the disease and to investigate whether levels of Cyps associate with clinical parameters of disease severity. METHODS Nasal wash samples from an urban cohort of 137 patients of age 6-20 years with physician-diagnosed asthma were examined for the presence of cyclophilin A (CypA), cyclophilin B (CypB), as well as several other classical chemokines. Linear, logistic, or ordinal regressions were performed to identify associations between Cyps, chemokines, and clinical parameters of asthma. The asthma cohort was further divided into previously established phenotypic clusters (cluster 1: n = 55; cluster 2: n = 31; and cluster 3: n = 51) and examined for associations. RESULTS Levels of CypB in the asthma group were highly elevated compared to nonasthmatic controls, while a slight increase in Monocyte Chemotactic Protein-1 (MCP-1) was also observed. CypA and MCP-1 were associated with levels of eosinophil cationic protein (ECP; a marker of eosinophil activation). Cluster-specific associations were found for CypA and CypB and clinical asthma parameters [e.g. forced expiratory volume in 1 second (FEV(1)) and ECP]. CONCLUSIONS Cyps are present in nasal wash samples of asthma patients and may be a novel biomarker for clinical parameters of asthma severity.
Collapse
Affiliation(s)
- Erik J Stemmy
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington D.C., USA
| | - Angela S Benton
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., USA
| | - Jennifer Lerner
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., USA
| | - Sarah Alcala
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington D.C., USA
| | - Stephanie L Constant
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington D.C., USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., USA.,Departments of Pediatrics, Emergency Medicine, and Integrative Systems Biology, The George Washington University Medical Center, Washington D.C., USA
| |
Collapse
|