1
|
Then AA, Goenawan H, Lesmana R, Christoper A, Sylviana N, Gunadi JW. Exploring the potential regulation of DUOX in thyroid hormone‑autophagy signaling via IGF‑1 in the skeletal muscle (Review). Biomed Rep 2025; 22:39. [PMID: 39781041 PMCID: PMC11704872 DOI: 10.3892/br.2024.1917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 01/11/2025] Open
Abstract
Dual oxidases (DUOX) are enzymes that have the main function in producing reactive oxygen species (ROS) in various tissues. DUOX also play an important role in the synthesis of H2O2, which is essential for the production of thyroid hormone. Thyroid hormones can influence the process of muscle development through direct stimulation of ROS, 5' AMP-activated protein kinase (AMPK) and mTOR and indirect effect autophagy and the insulin-like growth factor 1 (IGF-1) pathway. IGF-1 signaling controls autophagy in two ways: Inhibiting autophagy through activation of the PI3K/AKT/mTOR/MAPK pathway and promoting mitophagy through the nuclear factor erythroid 2-related factor 2-binding receptor Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3. Thyroid hormone deficiency caused by the absence of DUOX should be considered because it might have a significant effect on the growth of skeletal muscle. The effect of DUOX regulation on thyroid hormone autophagy via IGF-1 in skeletal muscle has not been well investigated. The present review discussed the regulatory interactions between DUOX, thyroid hormone, IGF-1 and autophagy, which can influence skeletal muscle development.
Collapse
Affiliation(s)
- Andreas Adiwinata Then
- Master's Program in Basic Biomedical Sciences, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Andreas Christoper
- Doctoral Program in Medical Science, PMDSU Program Batch VI, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia
| |
Collapse
|
2
|
Lei S, Zhang Y. Identification of the key genes and pathways involved in B cells in primary Sjögren' s syndrome. Bioengineered 2021; 12:2055-2073. [PMID: 34034637 PMCID: PMC8806908 DOI: 10.1080/21655979.2021.1930753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Primary Sjögren’ s syndrome (pSS) is a relatively common autoimmune disease, which mainly involves the exocrine glands, causing dry eye, dryness of mouth, fatigue and pain in the joints, thus severely affecting the normal lives of patients. B cell populations are considered to play an important role in their pathogenesis and pSS patients are generally characterized by exhibiting biological signs of B cell activation. Moreover, another important characterized change in the peripheral blood of pSS patients is found to be the decreased number of circulating memory B cells. However, the mechanisms underlying the B cell activation and the decreased level of circulating memory B cells in pSS patients are still unclear. Therefore, we identified key genes and pathways involved in B cells in pSS through a combination of several bioinformatic approaches including Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and weighted gene co-expression network analysis (WGCNA) using gene expression data of pSS patients and controls from an open database Gene Expression Omnibus (GEO). The results may provide some novel insights into the pathogenesis of pSS. Moreover, we constructed and validated a diagnostic model for pSS by using the expression patterns of these key genes, which may assist clinicians in diagnosing pSS.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Ashtiwi NM, Sarr D, Rada B. DUOX1 in mammalian disease pathophysiology. J Mol Med (Berl) 2021; 99:743-754. [PMID: 33704512 PMCID: PMC8315118 DOI: 10.1007/s00109-021-02058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/17/2023]
Abstract
Dual oxidase 1 (DUOX1) is a member of the protein family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. DUOX1 has several normal physiological, immunological, and biochemical functions in different parts of the body. Dysregulated oxidative metabolism interferes with various disease pathologies and numerous therapeutic options are based on targeting cellular redox pathways. DUOX1 forms an important enzymatic source of biological oxidants, and DUOX1 expression is frequently dysregulated in various diseases. While this review shortly addresses the biochemical and cellular properties and proposed physiological roles of DUOX1, its main purpose is to summarize the current knowledge with respect to the potential role of DUOX1 enzyme in disease pathology, especially in mammalian organisms. Although DUOX1 is normally prominently expressed in epithelial lineages, it is frequently silenced in epithelial-derived cancers by epigenetic mechanisms. While an abundance of information is available on DUOX1 transcription in different diseases, an increasing number of mechanistic studies indicate a causative relationship between DUOX1 function and disease pathophysiology. Additionally, specific functions of the DUOX1 maturation factor, DUOXA1, will also be addressed. Lastly, urgent and outstanding questions on the field of DUOX1 will be discussed that could provide valuable new diagnostic tools and novel therapeutic options.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Abstract
Extracellular hydrogen peroxide is required for thyroperoxidase-mediated thyroid hormone synthesis in the follicular lumen of the thyroid gland. Among the NADPH oxidases, dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially identified as thyroid oxidases, based on their level of expression in the thyroid. Despite their high sequence similarity, the two isoforms present distinct regulations, tissue expression, and catalytic functions. Inactivating mutations in many of the genes involved in thyroid hormone synthesis cause thyroid dyshormonogenesis associated with iodide organification defect. This chapter provides an overview of the genetic alterations in DUOX2 and its maturation factor, DUOXA2, causing inherited severe hypothyroidism that clearly demonstrate the physiological implication of this oxidase in thyroid hormonogenesis. Mutations in the DUOX2 gene have been described in permanent but also in transient forms of congenital hypothyroidism. Moreover, accumulating evidence demonstrates that the high phenotypic variability associated with altered DUOX2 function is not directly related to the number of inactivated DUOX2 alleles, suggesting the existence of other pathophysiological factors. The presence of two DUOX isoforms and their corresponding maturation factors in the same organ could certainly constitute an efficient redundant mechanism to maintain sufficient H2O2 supply for iodide organification. Many of the reported DUOX2 missense variants have not been functionally characterized, their clinical impact in the observed phenotype remaining unresolved, especially in mild transient congenital hypothyroidism. DUOX2 function should be carefully evaluated using an in vitro assay wherein (1) DUOXA2 is co-expressed, (2) H2O2 production is activated, (3) and DUOX2 membrane expression is precisely analyzed.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium.
| | - Françoise Miot
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
| |
Collapse
|
5
|
van der Vliet A, Danyal K, Heppner DE. Dual oxidase: a novel therapeutic target in allergic disease. Br J Pharmacol 2018; 175:1401-1418. [PMID: 29405261 DOI: 10.1111/bph.14158] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
NADPH oxidases (NOXs) represent a family of enzymes that mediate regulated cellular production of reactive oxygen species (ROS) and play various functional roles in physiology. Among the NOX family, the dual oxidases DUOX1 and DUOX2 are prominently expressed in epithelial cell types at mucosal surfaces and have therefore been considered to have important roles in innate host defence pathways. Recent studies have revealed important insights into the host defence mechanisms of DUOX enzymes, which control innate immune response pathways in response to either microbial or allergic triggers. In this review, we discuss the current level of understanding with respect to the biological role(s) of DUOX enzymes and the unique role of DUOX1 in mediating innate immune responses to epithelial injury and allergens and in the development of allergic disease. These novel findings highlight DUOX1 as an attractive therapeutic target, and opportunities for the development of selective inhibitor strategies will be discussed.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - David E Heppner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
7
|
Abstract
Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes.
Collapse
Affiliation(s)
- Rabii Ameziane-El-Hassani
- Institut Gustave Roussy, UMR 8200 CNRS, 114 Rue Edouard Vaillant, Villejuif F-94805, France
- Unité de Biologie et de Recherche Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires, BP 1382, Rabat M-10001, Morocco
| | - Martin Schlumberger
- Institut Gustave Roussy, UMR 8200 CNRS, 114 Rue Edouard Vaillant, Villejuif F-94805, France
- University Paris-Saclay, Orsay F-91400, France
| | - Corinne Dupuy
- Institut Gustave Roussy, UMR 8200 CNRS, 114 Rue Edouard Vaillant, Villejuif F-94805, France
- University Paris-Saclay, Orsay F-91400, France
| |
Collapse
|
8
|
Guo M, Wei J, Zhou Y, Qin Q. Molecular clone and characterization of c-Jun N-terminal kinases 2 from orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2016; 49:355-363. [PMID: 26691306 DOI: 10.1016/j.fsi.2015.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
c-Jun N-terminal kinase 2 (JNK2) is a multifunctional mitogen-activated protein kinases involving in cell differentiation and proliferation, apoptosis, immune response and inflammatory conditions. In this study, we reported a new JNK2 (Ec-JNK2) derived from orange-spotted grouper, Epinephelus coioides. The full-length cDNA of Ec-JNK2 was 1920 bp in size, containing a 174 bp 5'-untranslated region (UTR), 483 bp 3'-UTR, and a 1263 bp open reading frame (ORF), which encoded a putative protein of 420 amino acids. The deduced protein sequence of Ec-JNK2 contained a conserved Thr-Pro-Tyr (TPY) motif in the domain of serine/threonine protein kinase (S-TKc). Ec-JNK2 has been found to involve in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) in vitro. Immunofluorescence staining showed that Ec-JNK2 was localized in the cytoplasm of grouper spleen (GS) cells, and moved to the nucleus after infecting with SGIV. Ec-JNK2 distributed in all immune-related tissues examined. After challenging with lipopolysaccharide (LPS), SGIV and polyriboinosinic polyribocytidylic acid (poly I:C), the mRNA expression of Ec-JNK2 was significantly (P < 0.01) up-regulated in juvenile orange-spotted grouper. Over-expressing Ec-JNK2 in fathead minnow (FHM) cells increased the SGIV infection and replication, while over-expressing the dominant-negative Ec-JNK2Δ181-183 mutant decreased it. These results indicated that Ec-JNK2 could be an important molecule in the successful infection and evasion of SGIV.
Collapse
Affiliation(s)
- Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Yongcan Zhou
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.
| |
Collapse
|
9
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|
10
|
Strengert M, Jennings R, Davanture S, Hayes P, Gabriel G, Knaus UG. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal 2014; 20:2695-709. [PMID: 24128054 DOI: 10.1089/ars.2013.5353] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Influenza A virus (IAV), a major airborne pathogen, is closely associated with significant morbidity and mortality. The primary target for influenza virus replication is the respiratory epithelium, which reacts to infection by mounting a multifaceted antiviral response. A part of this mucosal host defense is the generation of reactive oxygen species (ROS) by NADPH oxidases. Duox1 and Duox2 are the main ROS-producing enzymes in the airway epithelium, but their contribution to mammalian host defense is still ill defined. RESULTS To gain a better understanding of Duox function in respiratory tract infections, human differentiated lung epithelial cells and an animal model were used to monitor the effect of epithelial ROS on IAV propagation. IAV infection led to coordinated up-regulation of Duox2 and Duox-mediated ROS generation. Interference with H2O2 production and ROS signaling by oxidase inhibition or H2O2 decomposition augmented IAV replication. A nuclear pool of Duox enzymes participated in the regulation of the spliceosome, which is critical for alternative splicing of viral transcripts and controls the assembly of viable virions. In vivo silencing of Duox increased the viral load on intranasal infection with 2009 pandemic H1N1 influenza virus. INNOVATION This is the first study conclusively linking Duox NADPH oxidases with the antiviral mammalian immune response. Further, ROS generated by Duox enzymes localized adjacent to nuclear speckles altered the splicing of viral genes. CONCLUSION Duox-derived ROS are host protective and essential for counteracting IAV replication.
Collapse
|
11
|
Hayes P, Knaus UG. Balancing reactive oxygen species in the epigenome: NADPH oxidases as target and perpetrator. Antioxid Redox Signal 2013; 18:1937-45. [PMID: 23126619 DOI: 10.1089/ars.2012.4895] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SIGNIFICANCE NADPH oxidases are important sources for regulated generation of reactive oxygen species (ROS). The main ROS produced are superoxide and hydrogen peroxide, both of which are redox signaling molecules in the context of various cellular functions. Redox imbalance due to excessive or insufficient ROS is a hallmark of pathophysiological aspects, including cancer development and progression. RECENT ADVANCES Epigenetic silencing of NADPH oxidases by hypermethylation of their promoter region or of the genes required for their assembly and activity occurs in diseases, such as lung cancer, and may represent an early stage of neoplastic transformation. CRITICAL ISSUES Loss of ROS-mediated signaling by epigenetic silencing may promote tumorigenesis. Conversely, increased oxidative stress caused by oncogene-induced overexpression of NADPH oxidases may also drive epigenetic instability. Thus, the cellular redox balance is likely vital in carcinogenesis. FUTURE DIRECTIONS NADPH oxidases may serve as prognostic tumor biomarker, especially when their individual expression is confined to accessible tissues, such as mucosal epithelia or blood. Further validation of NADPH oxidase/dual oxidase enzymes as candidate markers will require well controlled, large-scale clinical data sets. This review is focused on NADPH oxidases as targets of epigenetic changes in cancer and on the emerging role of ROS as inducers of epigenetic changes.
Collapse
Affiliation(s)
- Patti Hayes
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|