1
|
Zhang S, Hu D, Zhuo Y, Cui L, Li D, Zhang L, Yang L, Wang X. Protective effect of liriodendrin on IgG immune complex-induced acute lung injury via inhibiting SRC/STAT3/MAPK signaling pathway: a network pharmacology research. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3269-3283. [PMID: 37243760 DOI: 10.1007/s00210-023-02534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
The primary objectives of this research were to investigate the protective effects of liriodendrin against IgG immune complex (IgG-IC)-induced acute lung injury (ALI) and to elucidate the underlying mechanisms. This study employed a mouse and cell model of IgG-IC-induced acute lung injury. Lung tissue was stained with hematoxylin-eosin to observe pathological alterations and arterial blood gas analysis was tested. Inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α), were measured using ELISA. The mRNA expression of inflammatory cytokines was assessed via RT-qPCR. Molecular docking and enrichment analysis were combined to identify the most potential signaling pathways modulated by liriodendrin, which were then verified using western blot analysis in IgG-IC-induced ALI models. We identified 253 shared targets between liriodendrin and IgG-IC-induced acute lung injury from the database. Through network pharmacology, enrichment analysis, and molecular docking, SRC was determined to be the most closely associated target of liriodendrin in IgG-IC-induced ALI. Pretreatment with liriodendrin notably reduced the increased cytokine secretion of IL-1β, IL-6, and TNF-α. Histopathological analysis of lung tissue demonstrated a protective effect of liriodendrin on IgG-IC-induced acute lung injury in mice. Arterial blood gas analysis showed liriodendrin ameliorated acidosis and hypoxemia efficiently. Further studies revealed that liriodendrin pretreatment substantially attenuated the elevated phosphorylation levels of SRC's downstream components (JNK, P38, and STAT3), suggesting that liriodendrin may protect against IgG-IC-induced ALI via the SRC/STAT3/MAPK pathway. Our findings indicate that liriodendrin protects against IgG-IC-induced acute lung injury by inhibiting the SRC/STAT3/MAPK signaling pathway, suggesting that liriodendrin may serve as a potential treatment for acute lung injury caused by IgG-IC.
Collapse
Affiliation(s)
- Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Dongsheng Hu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
3
|
Cecyn KZ, Marques MO, Rodrigues MA, Brito FN, Baiocchi OCCG. Clinical course of COVID-19 in a patient with refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) under ibrutinib therapy: a case report. Blood Res 2021; 56:197-201. [PMID: 34400587 PMCID: PMC8478613 DOI: 10.5045/br.2021.2020181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/25/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Karin Zattar Cecyn
- Departamento de Oncologia Clínica e Experimental, Universidade Federal de São Paulo-UNIFESP, Brazil
| | - Mariana Oliveira Marques
- Departamento de Oncologia Clínica e Experimental, Universidade Federal de São Paulo-UNIFESP, Brazil
| | | | | | | |
Collapse
|
4
|
Grassilli E, Cerrito MG, Bonomo S, Giovannoni R, Conconi D, Lavitrano M. p65BTK Is a Novel Biomarker and Therapeutic Target in Solid Tumors. Front Cell Dev Biol 2021; 9:690365. [PMID: 34164404 PMCID: PMC8215537 DOI: 10.3389/fcell.2021.690365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor intracellular kinase playing a key role in the proliferation and survival of normal and malignant B-lymphocytes. Its targeting by Ibrutinib, the first specific inhibitor, represented a turning point for the therapy of certain types of B-cell leukemias/lymphomas and several more BTK inhibitors are today in the clinic or advanced clinical trials. BTK expression was successively found to occur also outside of the hematopoietic compartment. In fact, we identified p65BTK, a novel 65 kDa isoform lacking an N-term stretch of 86 amino acids (compared to the 77 kDa protein expressed in B cells) as highly expressed in colon cancer patients. We demonstrated that p65BTK is a powerful oncogene acting downstream of the RAS/MAPK pathway and necessary for RAS-mediated transformation. Notably, the kinase domain is conserved and therefore inhibited by the available BTK-targeting drugs (Ibrutinib, Spebrutinib, etc.) which we used to demonstrate that p65BTK is an actionable target in drug-resistant colorectal carcinomas. We found p65BTK expressed also in >50% non-small cell lung cancers (NSCLC) and demonstrated that it is an actionable target in KRAS-mutated/EGFR-wild type drug-resistant NSCLC models (for which no targeted therapy is available). We also reported a significant correlation between p65BTK expression and low-grade tumors and overall survival of patients with grade III gliomas and showed that its targeting induced a significant decrease in the viability of in glioma stem cells. Finally, in ovarian cancer patients, p65BTK expression levels correlate with early relapse and shorter progression-free survival, both indicators of resistance to therapy. Remarkably, Ibrutinib is more effective than standard of care (SOC) therapeutics in in vitro and ex vivo settings. On the whole, our preclinical data indicate that, depending on the tumor type, BTK inhibitors used alone can induce cytotoxicity (gliomas), be more effective than SOC chemotherapy (ovarian cancer) or can kill drug-resistant tumor cells when used in combination with SOC chemotherapy (colon cancer and NSCLC) or targeted therapy (NSCLC and ovarian cancer), thus suggesting that p65BTK may be an actionable target in different solid tumors. In addition, our data also give the proof-of-concept for starting clinical trials using BTK inhibitors, alone or in combination, to improve the therapeutic options for solid tumors treatment.
Collapse
Affiliation(s)
- Emanuela Grassilli
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Grazia Cerrito
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sara Bonomo
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Giovannoni
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Donatella Conconi
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marialuisa Lavitrano
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
5
|
Esfandiari E, Chen M, Smithson G, Blair D, Faessel H, Wagner J, Mclean L, Fedyk ER. A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single-Dose and Multiple-Rising-Dose Study of the BTK Inhibitor TAK-020 in Healthy Subjects. Clin Transl Sci 2021; 14:820-828. [PMID: 33650758 PMCID: PMC8212709 DOI: 10.1111/cts.12871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a target for treatment of hematologic malignancies and autoimmune diseases. TAK‐020 is a highly selective covalent BTK inhibitor that inhibits both B cell receptor and fragment crystallizable receptor signaling. We assessed the safety/tolerability and pharmacokinetics/pharmacodynamics (PDs) of TAK‐020 in healthy subjects. Each cohort of the single‐rising dose (n = 72; 9 cohorts) and the multiple‐rising dose (n = 48; 6 cohorts) portions of the study comprised six TAK‐020‐treated and two placebo‐treated, subjects aged 18–55 years (inclusive). The PD effects were assessed by measuring BTK occupancy and the inhibition of fragment crystallizable epsilon receptor 1 (FcεRI)‐mediated activation of basophils. Overall, treatment‐emergent adverse events (TEAEs) were similar to placebo; there were no serious TEAEs or no TEAEs leading to discontinuation. TAK‐020 was rapidly absorbed (median time to maximum plasma concentration (Tmax) 45–60 minutes) with a half‐life of ~ 3–9 hours at doses ≥ 2.5 mg. TAK‐020 exposure was generally dose proportional for single doses ≤ 70 mg and after multiple doses of ≤ 60 mg once daily. Target occupancy was dose dependent, with doses ≥ 2.5 mg yielding maximum and sustained occupancy > 70% for > 96 hours. Single doses ≥ 4.4 mg reduced FcεRI‐mediated activation of basophils by > 80% and comparable inhibition was observed with daily dosing ≥3.75 mg for 9 days. Inhibition persisted for 24–72 hours postdose and the duration generally increased with dose. TAK‐020 was generally well‐tolerated in healthy subjects after single and multiple doses and demonstrated target engagement and pathway modulation. The PD effects outlasted drug exposures, as expected for covalent inhibition of BTK.
Collapse
Affiliation(s)
| | - Mary Chen
- Takeda Pharmaceuticals International Inc., Cambridge, Massachusetts, USA
| | - Glennda Smithson
- Takeda Pharmaceuticals International Inc., Cambridge, Massachusetts, USA
| | - Derek Blair
- Takeda Pharmaceuticals International Inc., Cambridge, Massachusetts, USA
| | - Helene Faessel
- Takeda Pharmaceuticals International Inc., Cambridge, Massachusetts, USA
| | - John Wagner
- Takeda Pharmaceuticals International Inc., Cambridge, Massachusetts, USA
| | - Lachy Mclean
- Takeda Pharmaceuticals International Inc., Cambridge, Massachusetts, USA
| | - Eric R Fedyk
- Takeda Pharmaceuticals International Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, Alqahtani F, Alanazi WA, Mahmood HM, Alsanea S, Attia SM. Bruton's tyrosine kinase inhibition attenuates oxidative stress in systemic immune cells and renal compartment during sepsis-induced acute kidney injury in mice. Int Immunopharmacol 2021; 90:107123. [PMID: 33168411 DOI: 10.1016/j.intimp.2020.107123] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Sepsis is a life-threatening condition which affects multiple organs including the kidney. Sepsis-induced acute kidney injury (AKI) is a major health burden throughout the globe. Pathogenesis of sepsis-induced AKI is complex; however, it involves both innate and adaptive immune cells such as B cells, T cells, dendritic cells (DCs), macrophages, and neutrophils. Bruton's tyrosine kinase (BTK) is reportedly involved in inflammatory and oxidative signaling in different immune cells, however its contribution with respect to sepsis-induced AKI has not been delineated. This study attempted to investigate the role of BTK and its inhibition on oxidizing enzymes NADPH oxidase (NOX-2) and inducible nitric oxide synthase (iNOS) in DCs, neutrophils, and B cells during AKI. Our data reveal that BTK is activated in DCs, neutrophils, and B cells which causes an increase in AKI associated biochemical markers such as serum creatinine/blood urea nitrogen, renal myeloperoxidase activity, and histopathological disturbances in renal tubular structures. Activation of BTK causes upregulation of NOX-2/iNOS/nitrotyrosine in these immune cells and kidney. Treatment with BTK inhibitor, Ibrutinib causes attenuation in AKI associated dysfunction in biochemical parameters (serum creatinine/blood urea nitrogen, renal myeloperoxidase activity) and oxidative stress in immune cells and kidney (iNOS/NOX2/lipid peroxides/nitrotyrosine/protein carbonyls). In summary, the current investigation reveals a compelling role of BTK signaling in sepsis-induced AKI which is evident from amelioration of AKI associated renal dysfunction after its inhibition.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz M Mahmood
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Di Ceglie I, Kruisbergen NNL, van den Bosch MHJ, van Lent PLEM. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? Rheumatology (Oxford) 2020; 58:1331-1343. [PMID: 31180451 DOI: 10.1093/rheumatology/kez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nik N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Kurdowska AK, Florence JM. Promoting Neutrophil Apoptosis to Treat Acute Lung Injury. Am J Respir Crit Care Med 2020; 200:399-400. [PMID: 31046406 PMCID: PMC6680293 DOI: 10.1164/rccm.201903-0707le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Jon M Florence
- 1University of Texas Health Science Center at TylerTyler, Texas
| |
Collapse
|
9
|
Moore S, Juo HH, Nielsen CT, Tyden H, Bengtsson AA, Lood C. Role of Neutrophil Extracellular Traps Regarding Patients at Risk of Increased Disease Activity and Cardiovascular Comorbidity in Systemic Lupus Erythematosus. J Rheumatol 2019; 47:1652-1660. [PMID: 31839592 DOI: 10.3899/jrheum.190875] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Neutrophil extracellular traps (NET) are essential in host defense, but are also linked to inflammation and autoimmunity, including in systemic lupus erythematosus (SLE). We recently described that immune complexes (IC) induce NET formation, promoting SLE-like disease in mice. In the current study, we investigated, for the first time to our knowledge, the role of NET in human SLE and their association with disease activity and severity. METHODS Levels of NET (myeloperoxidase-DNA complexes) were analyzed in plasma from 4 cross-sectional SLE cohorts (n = 44-142), 1 longitudinal SLE cohort (n = 47), and healthy individuals (n = 100) using ELISA. Type I interferon activity was determined using a cell reporter system. RESULTS Patients with SLE had elevated levels of NET in circulation compared to healthy controls (p < 0.01). NET levels identified patients with a severe disease phenotype characterized by IC-driven nephritis (p < 0.05). Though not associated with current disease activity (p = 0.20), levels of NET were associated with future increase in the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) within 3 months (OR 1.75, p = 0.01), as well as an overall heightened SLEDAI over 1 year (p < 0.01). Finally, levels of NET were associated with arterial events (OR 5.0, p = 0.02) and endothelial cell activation (p < 0.001). CONCLUSION NET levels are elevated in patients with SLE, associated with IC-driven disease. NET levels provide significant clinical value in identifying patients at risk of active disease and/or severe disease, including nephritis and cardiovascular disease, and may allow for early interventions.
Collapse
Affiliation(s)
- Stanley Moore
- S. Moore, H.H. Juo, MD, C. Lood, PhD, Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hsin-Hsuan Juo
- S. Moore, H.H. Juo, MD, C. Lood, PhD, Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Christoffer T Nielsen
- C.T. Nielsen, MD, PhD, Department of Autoimmunity and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Helena Tyden
- H. Tyden, MD, PhD, A.A. Bengtsson, MD, PhD, Division of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- H. Tyden, MD, PhD, A.A. Bengtsson, MD, PhD, Division of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Christian Lood
- S. Moore, H.H. Juo, MD, C. Lood, PhD, Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
10
|
Nelson NLJ, Zajd CM, Lennartz MR, Gosselin EJ. Fcγ receptors and toll-like receptor 9 synergize to drive immune complex-induced dendritic cell maturation. Cell Immunol 2019; 345:103962. [PMID: 31582169 DOI: 10.1016/j.cellimm.2019.103962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Previous in vivo studies established that inactivated Francisella tularensis immune complexes (mAb-iFt) are a more protective vaccine against lethal tularemia than iFt alone. Subsequent in vitro studies revealed enhanced DC maturation marker expression with mAb-iFt stimulation. The goal of this study was to determine the mechanism of enhanced DC maturation. Multiparameter analysis of surface marker expression and cytokine secretion demonstrates a requirement for FcγR signaling in enhanced DC maturation. MyD88 was also found to be essential for heightened DC maturation, implicating MyD88-dependent TLRs in DC maturation. Upon further study, we discovered that TLRs 2 & 4 drive cytokine secretion, but surprisingly TLR9 is required for DC maturation marker upregulation. These studies reveal a separation of DC cytokine and maturation marker induction pathways and demonstrate that FcγR-TLR/MyD88 synergy underlies the enhanced dendritic cell maturation in response to the mAb-iFt vaccine.
Collapse
Affiliation(s)
- Nicole L J Nelson
- Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Cheryl M Zajd
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States
| | - Michelle R Lennartz
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States
| | - Edmund J Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| |
Collapse
|
11
|
Meineke R, Rimmelzwaan GF, Elbahesh H. Influenza Virus Infections and Cellular Kinases. Viruses 2019; 11:E171. [PMID: 30791550 PMCID: PMC6410056 DOI: 10.3390/v11020171] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses (IAVs) are a major cause of respiratory illness and are responsible for yearly epidemics associated with more than 500,000 annual deaths globally. Novel IAVs may cause pandemic outbreaks and zoonotic infections with, for example, highly pathogenic avian influenza virus (HPAIV) of the H5N1 and H7N9 subtypes, which pose a threat to public health. Treatment options are limited and emergence of strains resistant to antiviral drugs jeopardize this even further. Like all viruses, IAVs depend on host factors for every step of the virus replication cycle. Host kinases link multiple signaling pathways in respond to a myriad of stimuli, including viral infections. Their regulation of multiple response networks has justified actively targeting cellular kinases for anti-cancer therapies and immune modulators for decades. There is a growing volume of research highlighting the significant role of cellular kinases in regulating IAV infections. Their functional role is illustrated by the required phosphorylation of several IAV proteins necessary for replication and/or evasion/suppression of the innate immune response. Identified in the majority of host factor screens, functional studies further support the important role of kinases and their potential as host restriction factors. PKC, ERK, PI3K and FAK, to name a few, are kinases that regulate viral entry and replication. Additionally, kinases such as IKK, JNK and p38 MAPK are essential in mediating viral sensor signaling cascades that regulate expression of antiviral chemokines and cytokines. The feasibility of targeting kinases is steadily moving from bench to clinic and already-approved cancer drugs could potentially be repurposed for treatments of severe IAV infections. In this review, we will focus on the contribution of cellular kinases to IAV infections and their value as potential therapeutic targets.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
12
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
13
|
Osthole Protects against Acute Lung Injury by Suppressing NF- κB-Dependent Inflammation. Mediators Inflamm 2018; 2018:4934592. [PMID: 30057486 PMCID: PMC6051001 DOI: 10.1155/2018/4934592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/13/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.
Collapse
|
14
|
Florence JM, Krupa A, Booshehri LM, Davis SA, Matthay MA, Kurdowska AK. Inhibiting Bruton's tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2018. [PMID: 29516781 DOI: 10.1152/ajplung.00047.2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infection with seasonal influenza A virus (IAV) leads to lung inflammation and respiratory failure, a main cause of death in influenza-infected patients. Previous experiments in our laboratory indicate that Bruton's tyrosine kinase (Btk) plays a substantial role in regulating inflammation in the respiratory region during acute lung injury in mice; therefore, we sought to determine if blocking Btk activity has a protective effect in the lung during influenza-induced inflammation. The Btk inhibitor ibrutinib (also known as PCI-32765) was administered intranasally to mice starting 72 h after lethal infection with IAV. Our data indicate that treatment with the Btk inhibitor not only reduced weight loss and led to survival, but also had a dramatic effect on morphological changes to the lungs, in IAV-infected mice. Attenuation of lung inflammation indicative of acute lung injury, such as alveolar hemorrhage, interstitial thickening, and the presence of alveolar exudate, together with reduced levels of the inflammatory mediators TNFα, IL-1β, IL-6, KC, and MCP-1, strongly suggests amelioration of the pathological immune response in the lungs to promote resolution of the infection. Finally, we observed that blocking Btk specifically in the alveolar compartment led to significant attenuation of neutrophil extracellular traps released into the lung in vivo and neutrophil extracellular trap formation in vitro. Our innovative findings suggest that Btk may be a new drug target for influenza-induced lung injury, and, in general, that immunomodulatory treatment may be key in treating lung dysfunction driven by excessive inflammation.
Collapse
Affiliation(s)
- Jon M Florence
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Agnieszka Krupa
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas.,Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz , Lodz , Poland
| | - Laela M Booshehri
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Sandra A Davis
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Michael A Matthay
- Department of Medicine and Anesthesia, Cardiovascular Research Institute, School of Medicine, University of California , San Francisco, California
| | - Anna K Kurdowska
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
15
|
Zeng H, Yang L, Zhang X, Chen Y, Cai J. Dioscin prevents LPS‑induced acute lung injury through inhibiting the TLR4/MyD88 signaling pathway via upregulation of HSP70. Mol Med Rep 2018; 17:6752-6758. [PMID: 29512786 DOI: 10.3892/mmr.2018.8667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
Abstract
Dioscin, as a type of important natural steroidal saponin, has widespread sources, primarily from the fenugreek plant, which is an important raw material in the production of synthetic steroid hormone drugs. Dioscin has anti‑tumor, anti‑inflammatory, antioxidant and other significant pharmacological effects with high medicinal value. The present work aimed to research the protective effect and underlying mechanisms by which dioscin prevents acute lung injury (ALI). Mice were injected with 5 mg/kg LPS to induce lung injury. Mice were treated with dioscin (20, 40 and 60 mg/kg) following LPS‑induced lung injury. Treatment with dioscin significantly decreased total number of alveolar macrophages, water content of lung and total protein concentration in ALI mice. Dioscin treatment significantly suppressed the ALI‑induced interleukin (IL)‑1B, IL‑6, tumor necrosis factor‑α, nuclear factor (NF)‑κB, myeloperoxidase, interferon‑γ and intercellular adhesion molecule‑1 activities in ALI rats. Following this, the authors identified that dioscin significantly also suppressed cyclooxygenase‑2, heat shock protein 70, Toll‑like receptor 4, MyD88 and NF‑κB protein expression in ALI rats. The results suggested that dioscin prevents LPS‑induced ALI through inhibiting the TLR4/MyD88 signaling pathway via upregulation of HSP70.
Collapse
Affiliation(s)
- Huiqing Zeng
- Department of Respiration Medicine, Zhongshan Hospital of Xiamen University, P.R. China
| | - Lijuan Yang
- Basic Medical College, Fujian Medical University, Xiamen, Fujian 361004, P.R. China
| | - Xiaobin Zhang
- Department of Respiration Medicine, Zhongshan Hospital of Xiamen University, P.R. China
| | - Yan Chen
- Department of Respiration Medicine, Zhongshan Hospital of Xiamen University, P.R. China
| | - Jianghang Cai
- Department of Respiration Medicine, Zhongshan Hospital of Xiamen University, P.R. China
| |
Collapse
|
16
|
Florence JM, Krupa A, Booshehri LM, Gajewski AL, Kurdowska AK. Disrupting the Btk Pathway Suppresses COPD-Like Lung Alterations in Atherosclerosis Prone ApoE -/- Mice Following Regular Exposure to Cigarette Smoke. Int J Mol Sci 2018; 19:ijms19020343. [PMID: 29364178 PMCID: PMC5855565 DOI: 10.3390/ijms19020343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with severe chronic inflammation that promotes irreversible tissue destruction. Moreover, the most broadly accepted cause of COPD is exposure to cigarette smoke. There is no effective cure and significantly, the mechanism behind the development and progression of this disease remains unknown. Our laboratory has demonstrated that Bruton’s tyrosine kinase (Btk) is a critical regulator of pro-inflammatory processes in the lungs and that Btk controls expression of matrix metalloproteinase-9 (MMP-9) in the alveolar compartment. For this study apolipoprotein E null (ApoE−/−) mice were exposed to SHS to facilitate study in a COPD/atherosclerosis comorbidity model. We applied two types of treatments, animals received either a pharmacological inhibitor of Btk or MMP-9 specific siRNA to minimize MMP-9 expression in endothelial cells or neutrophils. We have shown that these treatments had a protective effect in the lung. We have noted a decrease in alveolar changes related to SHS induced inflammation in treated animals. In summary, we are presenting a novel concept in the field of COPD, i.e., that Btk may be a new drug target for this disease. Moreover, cell specific targeting of MMP-9 may also benefit patients affected by this disease.
Collapse
Affiliation(s)
- Jon M Florence
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
| | - Agnieszka Krupa
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Laela M Booshehri
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
| | - Adrian L Gajewski
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Anna K Kurdowska
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|
17
|
Lee SK, Xing J, Catlett IM, Adamczyk R, Griffies A, Liu A, Murthy B, Nowak M. Safety, pharmacokinetics, and pharmacodynamics of BMS-986142, a novel reversible BTK inhibitor, in healthy participants. Eur J Clin Pharmacol 2017; 73:689-698. [PMID: 28265691 PMCID: PMC5423977 DOI: 10.1007/s00228-017-2226-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE BMS-986142 is an oral, small-molecule reversible inhibitor of Bruton's tyrosine kinase. The main objectives of our phase I studies were to characterize the safety and tolerability, pharmacokinetics, and pharmacodynamics of BMS-986142 in healthy participants, and to investigate the potential for the effect of BMS-986142 on the PK of methotrexate (MTX) in combination. METHODS In a combined single ascending dose and multiple ascending dose study, the safety, pharmacokinetics, and pharmacodynamics of BMS-986142 were assessed in healthy non-Japanese participants following administration of a single dose (5-900 mg) or multiple doses (25-350 mg, once daily for 14 days). In a drug-drug interaction study, the effect of BMS-986142 (350 mg, once daily for 5 days) on the single-dose pharmacokinetics of MTX (7.5 mg) was assessed in healthy participants. RESULTS BMS-986142 was generally well tolerated, alone and in combination with MTX. BMS-986142 was rapidly absorbed with peak concentrations occurring within 2 h, and was eliminated with a mean half-life ranging from 7 to 11 h. Exposure of BMS-986142 appeared dose proportional within the dose ranges tested. A dose- and concentration-dependent inhibition of CD69 expression was observed following administration of BMS-986142. BMS-986142 did not affect the pharmacokinetics of MTX. CONCLUSIONS BMS-986142 was well tolerated at the doses tested, had pharmacokinetic and pharmacodynamic profiles which support once-daily dosing, and can be coadministered with MTX without the pharmacokinetic interaction of BMS-986142 on MTX.
Collapse
Affiliation(s)
- Sun Ku Lee
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA.
| | - Jun Xing
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Ian M Catlett
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Robert Adamczyk
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Amber Griffies
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Ang Liu
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Bindu Murthy
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Miroslawa Nowak
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| |
Collapse
|
18
|
Florence JM, Krupa A, Booshehri LM, Allen TC, Kurdowska AK. Metalloproteinase-9 contributes to endothelial dysfunction in atherosclerosis via protease activated receptor-1. PLoS One 2017; 12:e0171427. [PMID: 28166283 PMCID: PMC5293219 DOI: 10.1371/journal.pone.0171427] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/20/2017] [Indexed: 01/05/2023] Open
Abstract
The atherosclerotic process begins when vascular endothelial cells undergo pro-inflammatory changes such as aberrant activation to dysfunctional phenotypes and apoptosis, leading to loss of vascular integrity. Our laboratory has demonstrated that exposure of mice to second hand smoke triggers an increase in expression of metalloproteinase-9. Further, metalloproteinase-9 released by second hand smoke-activated leukocytes may propagate pro-atherogenic alterations in endothelial cells. We have shown that levels of metalloproteinase-9 were increased in the plasma from apolipoprotein E deficient (ApoE-/-) mice exposed to second hand smoke relative to non-exposed controls. Moreover, we have collected data from two different, but complementary, treatments of second hand smoke exposed atherosclerotic mice. Animals received either cell specific metalloproteinase-9 directed siRNA to minimize metalloproteinase-9 expression in neutrophils and endothelial cells, or a pharmacological inhibitor of Bruton's tyrosine kinase which indirectly limits metalloproteinase-9 production in neutrophils. These treatments reduced atherosclerotic changes in mice and improved overall vascular health. We also demonstrated that metalloproteinase-9 could activate endothelial cells and induce their apoptosis via cleavage of protease activated receptor-1. In summary, better understanding of metalloproteinase-9's pathogenic capabilities as well as novel signaling pathways involved may lead to development of treatments which may provide additional benefits to atherosclerosis patients with a history of second hand smoke exposure.
Collapse
Affiliation(s)
- Jon M. Florence
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Agnieszka Krupa
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Laela M. Booshehri
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Timothy C. Allen
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anna K. Kurdowska
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| |
Collapse
|
19
|
Manivel VA, Sohrabian A, Rönnelid J. Granulocyte-augmented chemokine production induced by type II collagen containing immune complexes is mediated via TLR4 in rheumatoid arthritis patients. Eur J Immunol 2016; 46:2822-2834. [PMID: 27621106 PMCID: PMC5157752 DOI: 10.1002/eji.201646496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) patients with early elevations of antibodies against collagen type II (CII) have a distinct acute onset phenotype, associated with cytokine induction by surface‐bound anti‐CII‐containing immune complexes (ICs) and high C‐reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Polymorphonuclear granulocytes (PMNs) and peripheral blood mononuclear cells (PBMCs) are abundant in the vicinity of CII in RA joints, and both PMN and PBMC reactivity against anti‐CII IC individually relate to early joint destruction and early elevation of CRP and ESR in RA. We searched for CII‐dependent mechanisms that might attract PMNs and PBMCs to RA joints. Human PBMCs and PMNs were stimulated with anti‐CII ICs and control ICs, either individually or in cocultures. Cocultured PMNs and PBMCs stimulated with anti‐CII ICs synergistically augmented production of the chemokines CXCL8, RANTES and MCP‐1, whereas downregulation was seen with control IC. This upregulation was unique to chemokines, as TNF‐α, IL‐1β, and GM‐CSF were downregulated in anti‐CII IC‐stimulated cocultures. The coculture‐associated chemokine upregulation depended on endogenous TLR4 ligand(s) and functionally active PMN enzymes, and was partially mediated by GM‐CSF. As anti‐CII levels peak around the time of RA diagnosis, this mechanism can attract inflammatory cells to joints in early RA and intensify the anti‐CII‐associated acute onset RA phenotype.
Collapse
Affiliation(s)
- Vivek Anand Manivel
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Azita Sohrabian
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Unit of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2014; 72:557-581. [PMID: 25332099 PMCID: PMC4293489 DOI: 10.1007/s00018-014-1762-5] [Citation(s) in RCA: 510] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 4 (TLR4) is activated by lipopolysaccharide (LPS), a component of Gram-negative bacteria to induce production of pro-inflammatory mediators aiming at eradication of the bacteria. Dysregulation of the host responses to LPS can lead to a systemic inflammatory condition named sepsis. In a typical scenario, activation of TLR4 is preceded by binding of LPS to CD14 protein anchored in cholesterol- and sphingolipid-rich microdomains of the plasma membrane called rafts. CD14 then transfers the LPS to the TLR4/MD-2 complex which dimerizes and triggers MyD88- and TRIF-dependent production of pro-inflammatory cytokines and type I interferons. The TRIF-dependent signaling is linked with endocytosis of the activated TLR4, which is controlled by CD14. In addition to CD14, other raft proteins like Lyn tyrosine kinase of the Src family, acid sphingomyelinase, CD44, Hsp70, and CD36 participate in the TLR4 signaling triggered by LPS and non-microbial endogenous ligands. In this review, we summarize the current state of the knowledge on the involvement of rafts in TLR4 signaling, with an emphasis on how the raft proteins regulate the TLR4 signaling pathways. CD14-bearing rafts, and possibly CD36-rich rafts, are believed to be preferred sites of the assembly of a multimolecular complex which mediates the endocytosis of activated TLR4.
Collapse
Affiliation(s)
- Agnieszka Płóciennikowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Kinga Borzęcka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
21
|
Abstract
INTRODUCTION The Fc receptors (FcRs) and their interactions with immunoglobulin and innate immune opsonins, such as C-reactive protein, are key players in humoral and cellular immune responses. As the effector mechanism for some therapeutic monoclonal antibodies, and often a contributor to the pathogenesis and progression of autoimmunity, FcRs are promising targets for treating autoimmune diseases. AREAS COVERED This review discusses the nature of different FcRs and the various mechanisms of their involvement in initiating and modulating immunocyte functions and their biological consequences. It describes a range of current strategies in targeting FcRs and manipulating their interaction with specific ligands, while presenting the pros and cons of these approaches. This review also discusses potential new strategies including regulation of FcR expression and receptor crosstalk. EXPERT OPINION FcRs are appealing targets in the treatment of inflammatory autoimmune diseases. However, there are still knowledge limitations and technical challenges, the most important being a better understanding of the individual roles of each of the FcRs and enhancement of the specificity in targeting particular cell types and specific FcRs.
Collapse
Affiliation(s)
- Xinrui Li
- The University of Alabama , SHEL 272, 1825 University Blvd, Birmingham, AL 35294 , USA
| | | |
Collapse
|
22
|
Krupa A, Fol M, Rahman M, Stokes KY, Florence JM, Leskov IL, Khoretonenko MV, Matthay MA, Liu KD, Calfee CS, Tvinnereim A, Rosenfield GR, Kurdowska AK. Silencing Bruton's tyrosine kinase in alveolar neutrophils protects mice from LPS/immune complex-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L435-48. [PMID: 25085625 DOI: 10.1152/ajplung.00234.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous observations made by our laboratory indicate that Bruton's tyrosine kinase (Btk) may play an important role in the pathophysiology of local inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). We have shown that there is cross talk between FcγRIIa and TLR4 in alveolar neutrophils from patients with ALI/ARDS and that Btk mediates the molecular cooperation between these two receptors. To study the function of Btk in vivo we have developed a unique two-hit model of ALI: LPS/immune complex (IC)-induced ALI. Furthermore, we conjugated F(ab)2 fragments of anti-neutrophil antibodies (Ly6G1A8) with specific siRNA for Btk to silence Btk specifically in alveolar neutrophils. It should be stressed that we are the first group to perform noninvasive transfections of neutrophils, both in vitro and in vivo. Importantly, our present findings indicate that silencing Btk in alveolar neutrophils has a dramatic protective effect in mice with LPS/IC-induced ALI, and that Btk regulates neutrophil survival and clearance of apoptotic neutrophils in this model. In conclusion, we put forward a hypothesis that Btk-targeted neutrophil specific therapy is a valid goal of research geared toward restoring homeostasis in lungs of patients with ALI/ARDS.
Collapse
Affiliation(s)
- Agnieszka Krupa
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas; Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marek Fol
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas; Department of Immunology and Infectious Biology, University of Lodz, Lodz, Poland
| | - Moshiur Rahman
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jon M Florence
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Igor L Leskov
- Department of Molecular and Cellular Physiology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Mikhail V Khoretonenko
- Department of Molecular and Cellular Physiology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California, San Francisco, California; and
| | - Kathleen D Liu
- Departments of Medicine and Anesthesia, University of California, San Francisco, California; and
| | - Carolyn S Calfee
- Departments of Medicine and Anesthesia, University of California, San Francisco, California; and
| | - Amy Tvinnereim
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Gabriel R Rosenfield
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Anna K Kurdowska
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas;
| |
Collapse
|
23
|
López-Herrera G, Vargas-Hernández A, González-Serrano ME, Berrón-Ruiz L, Rodríguez-Alba JC, Espinosa-Rosales F, Santos-Argumedo L. Bruton's tyrosine kinase--an integral protein of B cell development that also has an essential role in the innate immune system. J Leukoc Biol 2013; 95:243-50. [PMID: 24249742 DOI: 10.1189/jlb.0513307] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Btk is the protein affected in XLA, a disease identified as a B cell differentiation defect. Btk is crucial for B cell differentiation and activation, but its role in other cells is not fully understood. This review focuses on the function of Btk in monocytes, neutrophils, and platelets and the receptors and signaling cascades in such cells with which Btk is associated.
Collapse
Affiliation(s)
- Gabriela López-Herrera
- 1.Col. Insurgentes Cuicuilco, Torre de Investigación 9o. piso, Mexico, D.F., Mexico 04530.
| | | | | | | | | | | | | |
Collapse
|