1
|
Saboor M, Hamali HA, Mobarki AA, Madkhali AM, Dboie G. Exploring antithrombin: insights into its physiological features, clinical implications and analytical techniques. Blood Coagul Fibrinolysis 2024; 35:43-48. [PMID: 38179715 DOI: 10.1097/mbc.0000000000001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Antithrombin is an essential protein that acts as a natural anticoagulant in the human body. It is synthesized by the liver and belongs to the serine protease inhibitors, which are commonly referred to as the SERPINS superfamily. The antithrombin molecule comprises 432 amino acids and has a molecular weight of approximately 58 200 D. It consists of three domains, including an amino-terminal domain, a carbohydrate-rich domain, and a carboxyl-terminal domain. The amino-terminal domain binds with heparin, whereas the carboxyl-terminal domain binds with serine protease. Antithrombin is a crucial natural anticoagulant that contributes approximately 60-80% of plasma anticoagulant activities in the human body. Moreover, antithrombin has anti-inflammatory effects that can be divided into coagulation-dependent and coagulation-independent effects. Furthermore, it exhibits antitumor activity and possesses a broad range of antiviral properties. Inherited type I antithrombin deficiency is a quantitative disorder that is characterized by low antithrombin activity due to low plasma levels. On the other hand, inherited type II antithrombin deficiency is a qualitative disorder that is characterized by defects in the antithrombin molecule. Acquired antithrombin deficiencies are more common than hereditary deficiencies and are associated with various clinical conditions due to reduced synthesis, increased loss, or enhanced consumption. The purpose of this review was to provide an update on the structure, functions, clinical implications, and methods of detection of antithrombin.
Collapse
Affiliation(s)
- Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hassan A Hamali
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdullah A Mobarki
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Aymen M Madkhali
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Gasim Dboie
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Keshava S, Owens S, Qin W, Jeffers A, Kyei P, Komatsu S, Kleam J, Ikebe M, Idell S, Tucker TA. The mTORC2/SGK1/NDRG1 Signaling Axis Is Critical for the Mesomesenchymal Transition of Pleural Mesothelial Cells and the Progression of Pleural Fibrosis. Am J Respir Cell Mol Biol 2024; 70:50-62. [PMID: 37607215 PMCID: PMC10768834 DOI: 10.1165/rcmb.2023-0131oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023] Open
Abstract
Progressive lung scarring because of persistent pleural organization often results in pleural fibrosis (PF). This process affects patients with complicated parapneumonic pleural effusions, empyema, and other pleural diseases prone to loculation. In PF, pleural mesothelial cells undergo mesomesenchymal transition (MesoMT) to become profibrotic, characterized by increased expression of α-smooth muscle actin and matrix proteins, including collagen-1. In our previous study, we showed that blocking PI3K/Akt signaling inhibits MesoMT induction in human pleural mesothelial cells (HPMCs) (1). However, the downstream signaling pathways leading to MesoMT induction remain obscure. Here, we investigated the role of mTOR complexes (mTORC1/2) in MesoMT induction. Our studies show that activation of the downstream mediator mTORC1/2 complex is, likewise, a critical component of MesoMT. Specific targeting of mTORC1/2 complex using pharmacological inhibitors such as INK128 and AZD8055 significantly inhibited transforming growth factor β (TGF-β)-induced MesoMT markers in HPMCs. We further identified the mTORC2/Rictor complex as the principal contributor to MesoMT progression induced by TGF-β. Knockdown of Rictor, but not Raptor, attenuated TGF-β-induced MesoMT in these cells. In these studies, we further show that concomitant activation of the SGK1/NDRG1 signaling cascade is essential for inducing MesoMT. Targeting SGK1 and NDRG1 with siRNA and small molecular inhibitors attenuated TGF-β-induced MesoMT in HPMCs. Additionally, preclinical studies in our Streptococcus pneumoniae-mediated mouse model of PF showed that inhibition of mTORC1/2 with INK128 significantly attenuated the progression of PF in subacute and chronic injury. In conclusion, our studies demonstrate that mTORC2/Rictor-mediated activation of SGK1/NDRG1 is critical for MesoMT induction and that targeting this pathway could inhibit or even reverse the progression of MesoMT and PF.
Collapse
Affiliation(s)
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, and
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, and
| | | | - Perpetual Kyei
- Biotechnology Graduate Program, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | | | - Joshua Kleam
- Department of Cellular and Molecular Biology, and
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, and
| | - Steven Idell
- Texas Lung Injury Institute
- Department of Cellular and Molecular Biology, and
| | - Torry A. Tucker
- Texas Lung Injury Institute
- Department of Cellular and Molecular Biology, and
| |
Collapse
|
3
|
Choo YY, Sakai T, Komatsu S, Ikebe R, Jeffers A, Singh KP, Idell S, Tucker TA, Ikebe M. Calponin 1 contributes to myofibroblast differentiation of human pleural mesothelial cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L348-L364. [PMID: 35018804 PMCID: PMC8858681 DOI: 10.1152/ajplung.00289.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022] Open
Abstract
Pleural mesothelial cells (PMCs) can become myofibroblasts via mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, how these transformed mesothelial cells contribute to lung fibrosis remains unclear. Here, we investigated the mechanism of contractile myofibroblast differentiation of PMCs. Transforming growth factor-β (TGF-β) induced marked upregulation of calponin 1 expression, which was correlated with notable cytoskeletal rearrangement in human PMCs (HPMCs) to produce stress fibers. Downregulation of calponin 1 expression reduced stress fiber formation. Interestingly, induced stress fibers predominantly contain α-smooth muscle actin (αSMA) associated with calponin 1 but not β-actin. Calponin 1-associated stress fibers also contained myosin II and α-actinin. Furthermore, focal adhesions were aligned with the produced stress fibers. These results suggest that calponin 1 facilitates formation of stress fibers that resemble contractile myofibrils. Supporting this notion, TGF-β significantly increased the contractile activity of HPMCs, an effect that was abolished by downregulation of calponin 1 expression. We infer that differentiation of HPMCs to contractile myofibroblasts facilitates stiffness of scar tissue in pleura to promote pleural fibrosis (PF) and that upregulation of calponin 1 plays a central role in this process.
Collapse
Affiliation(s)
- Young-Yeon Choo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Karan P Singh
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
4
|
Physical Exercise as a Modulator of Vascular Pathology and Thrombin Generation to Improve Outcomes After Traumatic Brain Injury. Mol Neurobiol 2021; 59:1124-1138. [PMID: 34846694 DOI: 10.1007/s12035-021-02639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Disruption of the blood-brain barrier and occurrence of coagulopathy after traumatic brain injury (TBI) have important implications for multiple secondary injury processes. Given the extent of post-traumatic changes in neuronal function, significant alterations in some targets, such thrombin (a protease that plays a physiological role in maintaining blood coagulation), play an important role in TBI-induced pathophysiology. Despite the magnitude of thrombin in synaptic plasticity being concentration-dependent, the mechanisms underlying TBI have not been fully elucidated. The understanding of this post-injury neurovascular dysregulation is essential to establish scientific-based rehabilitative strategies. One of these strategies may be supporting physical exercise, considering its relevance in reducing damage after a TBI. However, there are caveats to consider when interpreting the effect of physical exercise on neurovascular dysregulation after TBI. To complete this picture, this review will describe how the interactions established between blood-borne factors (such as thrombin) and physical exercise alter the TBI pathophysiology.
Collapse
|
5
|
TGF-β regulation of the uPA/uPAR axis modulates mesothelial-mesenchymal transition (MesoMT). Sci Rep 2021; 11:21210. [PMID: 34707211 PMCID: PMC8551303 DOI: 10.1038/s41598-021-99520-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Pleural fibrosis (PF) is a chronic and progressive lung disease which affects approximately 30,000 people per year in the United States. Injury and sustained inflammation of the pleural space can result in PF, restricting lung expansion and impairing oxygen exchange. During the progression of pleural injury, normal pleural mesothelial cells (PMCs) undergo a transition, termed mesothelial mesenchymal transition (MesoMT). While multiple components of the fibrinolytic pathway have been investigated in pleural remodeling and PF, the role of the urokinase type plasminogen activator receptor (uPAR) is unknown. We found that uPAR is robustly expressed by pleural mesothelial cells in PF. Downregulation of uPAR by siRNA blocked TGF-β mediated MesoMT. TGF-β was also found to significantly induce uPA expression in PMCs undergoing MesoMT. Like uPAR, uPA downregulation blocked TGF-β mediated MesoMT. Further, uPAR is critical for uPA mediated MesoMT. LRP1 downregulation likewise blunted TGF-β mediated MesoMT. These findings are consistent with in vivo analyses, which showed that uPAR knockout mice were protected from S. pneumoniae-mediated decrements in lung function and restriction. Histological assessments of pleural fibrosis including pleural thickening and α-SMA expression were likewise reduced in uPAR knockout mice compared to WT mice. These studies strongly support the concept that uPAR targeting strategies could be beneficial for the treatment of PF.
Collapse
|
6
|
Chu SJ, Tang SE, Pao HP, Wu SY, Liao WI. Protease-Activated Receptor-1 Antagonist Protects Against Lung Ischemia/Reperfusion Injury. Front Pharmacol 2021; 12:752507. [PMID: 34658893 PMCID: PMC8514687 DOI: 10.3389/fphar.2021.752507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
Protease-activated receptor (PAR)-1 is a thrombin-activated receptor that plays an essential role in ischemia/reperfusion (IR)-induced acute inflammation. PAR-1 antagonists have been shown to alleviate injuries in various IR models. However, the effect of PAR-1 antagonists on IR-induced acute lung injury (ALI) has not yet been elucidated. This study aimed to investigate whether PAR-1 inhibition could attenuate lung IR injury. Lung IR was induced in an isolated perfused rat lung model. Male rats were treated with the specific PAR-1 antagonist SCH530348 (vorapaxar) or vehicle, followed by ischemia for 40 min and reperfusion for 60 min. To examine the role of PAR-1 and the mechanism of SCH530348 in lung IR injury, western blotting and immunohistochemical analysis of lung tissue were performed. In vitro, mouse lung epithelial cells (MLE-12) were treated with SCH530348 or vehicle and subjected to hypoxia-reoxygenation (HR). We found that SCH530348 decreased lung edema and neutrophil infiltration, attenuated thrombin production, reduced inflammatory factors, including cytokine-induced neutrophil chemoattractant-1, interleukin-6 and tumor necrosis factor-α, mitigated lung cell apoptosis, and downregulated the phosphoinositide 3-kinase (PI3K), nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in IR-injured lungs. In addition, SCH530348 prevented HR-induced NF-κB activation and inflammatory chemokine production in MLE12 cells. Our results demonstrate that SCH530348 exerts protective effects by blocking PAR-1 expression and modulating the downstream PI3K, NF-κB and MAPK pathways. These findings indicate that the PAR-1 antagonist protects against IR-induced ALI and is a potential therapeutic candidate for lung protection following IR injury.
Collapse
Affiliation(s)
- Shi-Jye Chu
- Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-En Tang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Qin W, Jeffers A, Owens S, Chauhan P, Komatsu S, Qian G, Guo X, Ikebe M, Idell S, Tucker TA. NOX1 Promotes Mesothelial-Mesenchymal Transition through Modulation of Reactive Oxygen Species-mediated Signaling. Am J Respir Cell Mol Biol 2021; 64:492-503. [PMID: 33513310 PMCID: PMC8008807 DOI: 10.1165/rcmb.2020-0077oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022] Open
Abstract
Pleural organization may occur after empyema or complicated parapneumonic effusion and can result in restrictive lung disease with pleural fibrosis (PF). Pleural mesothelial cells (PMCs) may contribute to PF through acquisition of a profibrotic phenotype, mesothelial-mesenchymal transition (MesoMT), which is characterized by increased expression of α-SMA (α-smooth muscle actin) and other myofibroblast markers. Although MesoMT has been implicated in the pathogenesis of PF, the role of the reactive oxygen species and the NOX (nicotinamide adenine dinucleotide phosphate oxidase) family in pleural remodeling remains unclear. Here, we show that NOX1 expression is enhanced in nonspecific human pleuritis and is induced in PMCs by THB (thrombin). 4-Hydroxy-2-nonenal, an indicator of reactive oxygen species damage, was likewise increased in our mouse model of pleural injury. NOX1 downregulation blocked THB- and Xa (factor Xa)-mediated MesoMT, as did pharmacologic inhibition of NOX1 with ML-171. NOX1 inhibition also reduced phosphorylation of Akt, p65, and tyrosine 216-GSK-3β, signaling molecules previously shown to be implicated in MesoMT. Conversely, ML-171 did not reverse established MesoMT. NOX4 downregulation attenuated TGF-β- and THB-mediated MesoMT. However, NOX1 downregulation did not affect NOX4 expression. NOX1- and NOX4-deficient mice were also protected in our mouse model of Streptococcus pneumoniae-mediated PF. These data show that NOX1 and NOX4 are critical determinants of MesoMT.
Collapse
Affiliation(s)
- Wenyi Qin
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Prashant Chauhan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
8
|
Zhao B, Wu M, Hu Z, Wang T, Yu J, Ma Y, Wang Q, Zhang Y, Chen D, Li T, Li Y, Yu M, Wang H, Mo W. A novel oncotherapy strategy: Direct thrombin inhibitors suppress progression, dissemination and spontaneous metastasis in non-small cell lung cancer. Br J Pharmacol 2021; 179:5056-5073. [PMID: 33481255 DOI: 10.1111/bph.15384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Cancer cachexia and cancer-associated thrombosis are potentially fatal outcomes of advanced cancer. Nevertheless, thrombin expression in non-small cell lung cancer (NSCLC) primary tumour tissues and the association between prognosis of NSCLC patients remain largely unknown. EXPERIMENTAL APPROACH Clinical pathological analysis was performed to determine the relationship between thrombin and tumour progression. Effects of r-hirudin and direct thrombin inhibitor peptide (DTIP) on cancer progression were evaluated. Western blotting, immunohistochemistry, and immunofluorescence were used to explore the inhibition mechanism of r-hirudin and DTIP. The therapeutic effect of the combination of DTIP and chemotherapy was determined. KEY RESULTS Thrombin expression in NSCLC tissues was closely related to clinicopathological features and the prognosis of patients. Thrombin deficiency inhibited tumour progression. The novel thrombin inhibitors, r-hirudin and DTIP, inhibited cell invasion and metastasis in vitro. They inhibited tumour growth and metastasis in orthotopic lung cancer model, inhibited cell invasion, and prolonged survival after injection of tumour cells via the tail vein. They also inhibited angiogenesis and spontaneous metastases from subcutaneously inoculated tumours. The promotion by thrombin of invasion and metastasis was abolished in PAR-1-deficient NSCLC cells. r-hirudin and DTIP inhibited tumour progression through the thrombin-PAR-1-mediated RhoA and NF-κB signalling cascades via inhibiting MMP9 and IL6 expression. DTIP potentiated chemotherapy-induced growth and metastatic inhibition and inhibited chemotherapy-induced resistance in mice. CONCLUSIONS AND IMPLICATIONS Thrombin makes a substantial contribution, together with PAR-1, to NSCLC malignancy. The anti-coagulants, r-hirudin and DTIP, could be used in anti-tumour therapy and a combination of DTIP and chemotherapy might improve therapeutic effects.
Collapse
Affiliation(s)
- Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengfang Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhihuang Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Tianfa Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinchao Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
| | - Yixin Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanling Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Di Chen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianyu Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yaran Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijie Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wei Mo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Cheng Y, Liu B, Qian H, Yang H, Wang Y, Wu Y, Shen F. BAY11-7082 inhibits the expression of tissue factor and plasminogen activator inhibitor-1 in type-II alveolar epithelial cells following TNF-α stimulation via the NF-κB pathway. Exp Ther Med 2020; 21:177. [PMID: 33552241 DOI: 10.3892/etm.2020.9608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary inflammation strongly promotes alveolar hypercoagulation and fibrinolytic inhibition. NF-κB signaling regulates the expression of molecules associated with coagulation and fibrinolytic inhibition in type-II alveolar epithelial cells (AECII) stimulated by lipopolysaccharide. However, whether TNF-α-induced alveolar hypercoagulation and fibrinolysis inhibition is also associated with the NF-κB pathway remains to be determined. The aim of the present study was to determine whether BAY11-7082, an inhibitor of the NF-κB pathway, inhibits the expressions of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) in AECⅡ in response to TNF-α. Rat AECII were treated with BAY11-7082 for 24 h and stimulated with TNF-α for 1 h. The expression of TF and PAI-1 were determined using western blotting and reverse transcription-quantitative PCR. The concentrations of TF and PAI-1 in culture supernatant were also measured by ELISA. Moreover, levels of NF-κB p65 (p65), phosphorylated (p)-p65 (p-p65), inhibitor of NF-κB α (IκBα) and p-IκBα were also evaluated. Immunofluorescence was used to detect p65 levels in cell nuclei. TNF-α significantly promoted TF and PAI-1 expression either at the mRNA or protein level in AECII cells. Concentrations of TF and PAI-1 in supernatant also significantly increased upon TNF-α stimulation. Furthermore, TNF-α upregulated the levels of p-IκBα, p65, and p-p65 in the cytoplasm. Immunofluorescence analysis indicated that TNF-α increased p65 translocation from the cytoplasm to the nucleus. However, AECII pre-treated with BAY11-7082 expressed lower levels of TF and PAI-1 following TNF-α treatment. Levels of p-IκBα, p65 and p-p65 in the cytoplasm also decreased, and translocation of p65 from cytoplasm into the nucleus was inhibited by BAY11-7082 pretreatment. These findings suggest that BAY11-7082 improves the hypercoagulation and fibrinolytic inhibition induced by TNF-α in alveolar epithelial cells via the NF-κB signaling pathway. BAY11-7082 might represent a therapeutic option for alveolar hypercoagulation and fibrinolytic inhibition in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yumei Cheng
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Bo Liu
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Hong Qian
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Huilin Yang
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Yahui Wang
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Yanqi Wu
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Feng Shen
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
10
|
TFPIα alleviated vascular endothelial cell injury by inhibiting autophagy and the class III PI3K/Beclin-1 pathway. Thromb Res 2020; 195:151-157. [PMID: 32702563 DOI: 10.1016/j.thromres.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022]
Abstract
Endothelium (EC) dysfunction plays an important role in vascular diseases, such as arteriosclerosis and hypoxia/reoxygenation (H/R) injury. Tissue factor pathway inhibitor (TFPI) is the only physiological inhibitor of the TF/FVIIa complex in vivo. This experiment aimed to determine the effect of TFPIα on H/R-induced EC injury and the possible mechanisms. The MIC101 hypoxia system was used to establish an EC H/R injury model in vitro. Our results showed that 6 h after reoxygenation, the EC injury in H/R group was higher than that in the control group, whereas after adding TFPIα, the EC injury was alleviate than that in H/R group. The level of ROS was higher in the H/R group than in the control group, while it was apparently lower in the H/R+TFPIα group than in the H/R group. After H/R, the number of autophagosomes and the autophagic flux were significantly increased, whereas TFPIα could decrease the autophagy level after H/R. The expressions of LC3-II/LC3-I, Beclin-1 and PI3K were obviously higher after H/R and lower after adding TFPIα. In conclusion, autophagy contributes to EC injury during the H/R period. TFPIα could decrease autophagy in ECs, and the mechanism might be class III PI3K/Beclin-1 pathway regulation.
Collapse
|
11
|
Zhao B, Wu M, Hu Z, Ma Y, Qi W, Zhang Y, Li Y, Yu M, Wang H, Mo W. Thrombin is a therapeutic target for non-small-cell lung cancer to inhibit vasculogenic mimicry formation. Signal Transduct Target Ther 2020; 5:117. [PMID: 32647187 PMCID: PMC7347850 DOI: 10.1038/s41392-020-0167-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/17/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023] Open
Abstract
Tumor cells transform into endothelial cells by epithelial-to-mesenchymal transition, which is characterized by vasculogenic mimicry (VM). VM not only accelerates tumor progression but also increases drug-induced resistance. However, very little is currently known about the molecular determinants that enable VM. Targeting VM might bring a new breakthrough in cancer treatment. Thrombin is the key enzyme of the blood coagulation system and could contribute to tumor progression. Nevertheless, the association between thrombin and VM formation remains largely unknown. We found that VM was associated with the overall survival of non-small-cell lung cancer (NSCLC) patients, and that thrombin expression was closely related to VM formation. This research revealed that thrombin induced VM formation via PAR-1-mediated NF-κB signaling cascades. The novel thrombin inhibitors r-hirudin and DTIP inhibited VM formation and spontaneous metastases in subcutaneous tumors. Clinical pathological analysis confirmed that NSCLC patients with thrombin-positive/PAR-1-high expression had the poorest prognosis and were the most likely to form VM. The promotional activity of thrombin in VM formation and tumor metastasis was abolished in PAR-1-deficient NSCLC cells. The EGFR inhibitor gefitinib had no effect on VM and increased VEGF expression in tumors. The combination therapy of DTIP and gefitinib achieved a better therapeutic effect than either agent alone. This study is the first to illustrate that thrombin substantially contributes, together with PAR-1, to VM formation and to illustrate that VM might be a target of r-hirudin and DTIP to suppress tumor progression. The anticoagulants r-hirudin and DTIP could be employed for antitumor therapy. Combination therapy with DTIP with an EGFR inhibitor might achieve superior therapeutic effects.
Collapse
Affiliation(s)
- Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
- The Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengfang Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
- The Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhihuang Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yixin Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
- The Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wang Qi
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
- The Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanling Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
- The Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yaran Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
- The Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
- The Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijie Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Wei Mo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.
- The Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Jeffers A, Qin W, Owens S, Koenig KB, Komatsu S, Giles FJ, Schmitt DM, Idell S, Tucker TA. Glycogen Synthase Kinase-3β Inhibition with 9-ING-41 Attenuates the Progression of Pulmonary Fibrosis. Sci Rep 2019; 9:18925. [PMID: 31831767 PMCID: PMC6908609 DOI: 10.1038/s41598-019-55176-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a median survival of 3 years after diagnosis. Although the etiology of IPF is unknown, it is characterized by extensive alveolar epithelial cell apoptosis and proliferation of myofibroblasts in the lungs. While the origins of these myofibroblast appear to be diverse, fibroblast differentiation contributes to expansion of myofibroblasts and to disease progression. We found that agents that contribute to neomatrix formation and remodeling in pulmonary fibrosis (PF); TGF-β, Factor Xa, thrombin, plasmin and uPA all induced fibroblast/myofibroblast differentiation. These same mediators enhanced GSK-3β activation via phosphorylation of tyrosine-216 (p-Y216). Inhibition of GSK-3β signaling with the novel inhibitor 9-ING-41 blocked the induction of myofibroblast markers; α-SMA and Col-1 and reduced morphological changes of myofibroblast differentiation. In in vivo studies, the progression of TGF-β and bleomycin mediated PF was significantly attenuated by 9-ING-41 administered at 7 and 14 days respectively after the establishment of injury. Specifically, 9-ING-41 treatment significantly improved lung function (compliance and lung volumes; p < 0.05) of TGF-β adenovirus treated mice compared to controls. Similar results were found in mice with bleomycin-induced PF. These studies clearly show that activation of the GSK-3β signaling pathway is critical for the induction of myofibroblast differentiation in lung fibroblasts ex vivo and pulmonary fibrosis in vivo. The results offer a strong premise supporting the continued investigation of the GSK-3β signaling pathway in the control of fibroblast-myofibroblast differentiation and fibrosing lung injury. These data provide a strong rationale for extension of clinical trials of 9-ING-41 to patients with IPF.
Collapse
Affiliation(s)
- Ann Jeffers
- The Texas Lung Injury Institute, Tyler, TX, USA.,Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Kathleen B Koenig
- The Texas Lung Injury Institute, Tyler, TX, USA.,Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | | | - Steven Idell
- The Texas Lung Injury Institute, Tyler, TX, USA.,Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Torry A Tucker
- The Texas Lung Injury Institute, Tyler, TX, USA. .,Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
13
|
Thrombin Upregulates PAI-1 and Mesothelial-Mesenchymal Transition Through PAR-1 and Contributes to Tuberculous Pleural Fibrosis. Int J Mol Sci 2019; 20:ijms20205076. [PMID: 31614900 PMCID: PMC6834128 DOI: 10.3390/ijms20205076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/19/2023] Open
Abstract
Thrombin is an essential procoagulant and profibrotic mediator. However, its implication in tuberculous pleural effusion (TBPE) remains unknown. The effusion thrombin and plasminogen activator inhibitor-1 (PAI-1) levels were measured among transudative pleural effusion (TPE, n = 22) and TBPE (n = 24) patients. Pleural fibrosis, identified as radiological residual pleural thickening (RPT) and shadowing, was measured at 12-month follow-up. Moreover, in vivo and in vitro effects of thrombin on PAI-1 expression and mesothelial-mesenchymal transition (MMT) were assessed. We demonstrated the effusion thrombin levels were significantly higher in TBPE than TPE, especially greater in TBPE patients with RPT > 10mm than those without, and correlated positively with PAI-1 and pleural fibrosis area. In carbon black/bleomycin-treated mice, knockdown of protease-activated receptor-1 (PAR-1) markedly downregulated α-smooth muscle actin (α-SMA) and fibronectin, and attenuated pleural fibrosis. In pleural mesothelial cells (PMCs), thrombin concentration-dependently increased PAI-1, α-SMA, and collagen I expression. Specifically, Mycobacterium tuberculosis H37Ra (MTBRa) induced thrombin production by PMCs via upregulating tissue factor and prothrombin, and PAR-1 silencing considerably abrogated MTBRa-stimulated PAI-1 expression and MMT. Consistently, prothrombin/PAR-1 expression was evident in the pleural mesothelium of TBPE patients. Conclusively, thrombin upregulates PAI-1 and MMT and may contribute to tuberculous pleural fibrosis. Thrombin/PAR-1 inhibition may confer potential therapy for pleural fibrosis.
Collapse
|
14
|
Liu B, Wang Y, Wu Y, Cheng Y, Qian H, Yang H, Shen F. IKKβ regulates the expression of coagulation and fibrinolysis factors through the NF-κB canonical pathway in LPS-stimulated alveolar epithelial cells type II. Exp Ther Med 2019; 18:2859-2866. [PMID: 31572531 PMCID: PMC6755483 DOI: 10.3892/etm.2019.7928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 07/12/2019] [Indexed: 01/11/2023] Open
Abstract
Aim: Hypercoagulation and fibrinolysis inhibition in the alveolar cavity are important characteristics in acute respiratory distress syndrome (ARDS). Alveolar epithelial cells type II (AEC II) have been confirmed to have significant role in regulating alveolar hypercoagulation and fibrinolysis inhibition, but the mechanism is unknown. Nuclear factor-κB (NF-κB) signaling pathway has been demonstrated to participate in the pathogenesis of these two abnormalities in ARDS. The purpose of the present study is to explore whether controlling the upstream crucial factor IκB kinase (IKK)β could regulate coagulation and fibrinolysis factors in LPS-stimulated AEC II. Materials and methods: An IKKβ gene regulation model (IKKβ+/+ and IKKβ−/−) was prepared using lentiviral vector transfection. The models with wild type cells were all stimulated by lipopolysaccharide (LPS) or saline for 24 h. Expression of the related proteins were determined by western-blotting, ELISA and revere transcription-PCR respectively. Tissue factor (TF) procoagulant activity and nuclear p65 protein level were also detected. Results: IKKβ increased in IKKβ+/+ cells but decreased in IKKβ−/− cells. LPS stimulation promoted the expression of p-IκBα, p65, p-p65 and p-IKKβ as well as TF and plasminogen activator inhibitor (PAI)-1, at the mRNA or protein level, and this was significantly enhanced by IKKβ upregulation but weakened by IKKβ downregulation. TF procoagulant activity presented the same changes as the molecules above. ELISAs showed additional increases in the concentrations of as thrombin antithrombin, procollagen III propeptide, thrombomodulin and PAI-1 in IKKβ+/+ cell supernatant under LPS stimulation, however they decreased in IKKβ−/−. The level of as antithrombin III however, appeared to show the opposite change to those other factors. Immunofluorescence demonstrated a greatly enhanced expression of p65 in the nucleus by IKKβ upregulation, which was reduced by IKKβ downregulation. Conclusions: IKKβ could regulate the expression and secretion of coagulation and fibrinolysis factors in LPS-stimulated AEC II via the NF-κB p65 signaling pathway. The IKKβ molecule is expected to be a new target for prevention of coagulation and fibrinolysis abnormalities in ARDS.
Collapse
Affiliation(s)
- Bo Liu
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Yahui Wang
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Yanqi Wu
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Yumei Cheng
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Hong Qian
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Huilin Yang
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Feng Shen
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
15
|
Liu B, Wu Y, Wang Y, Cheng Y, Yao L, Liu Y, Qian H, Yang H, Shen F. NF-κB p65 Knock-down inhibits TF, PAI-1 and promotes activated protein C production in lipopolysaccharide-stimulated alveolar epithelial cells type II. Exp Lung Res 2018; 44:241-251. [PMID: 30449218 DOI: 10.1080/01902148.2018.1505975] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose/aim: Activated coagulation and reduced fibrinolysis in alveolar compartment are an important characteristics in acute respiratory distress syndrome (ARDS). Alveolar epithelial cell type II (AECII) participates in regulating the intra-alveolar abnormalities of coagulation and fibrinolysis mainly through adjusting the productions of tissue factor (TF), plasminogen activator inhibitor (PAI)-1 and activated protein C (APC) in ARDS. NF-κB signal pathway may be involved in coagulation regulation in sepsis-induced ALI. The purpose of this study was to testify the hypothesis that NF-κB p65 (p65) knock-down would improve the abnormalities of coagulation and fibrinolysis mediated by lipopolysaccharide (LPS) stimulation in AECII. MATERIALS AND METHODS p65 gene knock-down in AECII was achieved by small interfering RNA (siRNA) transfection. Rat AECII (RLE-6TN) with or without p65 gene knock-down were stimulated by LPS for 24 hours. And then cytolysate was used for TF, PAI-1 expression examination, and supernatant was collected for TF, PAI-1 and PC concentrations determination. Activation of NF-κB canonical pathway was simultaneously checked by western-blotting, RT-PCR and immunofluorescence respectively. RESULTS TF, PAI-1 expressions in normal cells obviously increased under LPS stimulation with NF-κB canonical pathway activation represented by high levels of p65, p-p65, p-IκB with increased nuclear translocation of p-p65. Cells with NF-κB p65 knock-down, however, showed significant decreases in TF, PAI-1, p65, p-p65, p-IκB expressions following LPS stimulation with significant reduction in p-p65 nuclear translocation as compared to normal and siRNA control cells. The high concentrations of TF, PAI-1 and low level of APC in supernatant induced by LPS in normal cells were significantly reversed through p65 knock-down. CONCLUSIONS The experimental findings demonstrate that NF-kB signaling pathway is involved in regulating the expressions of coagulation and fibrinolysis factors in LPS-stimulated AECII, which suggest that NF-kB signaling pathway may be a new target to correct intra-alveolar coagulation and fibrinolytic abnormalities in ARDS.
Collapse
Affiliation(s)
- Bo Liu
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Yanqi Wu
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Yahui Wang
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Yumei Cheng
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Ling Yao
- b Department of Critical Care Medicine , The Second Affiliated Hospital of Guizhou Medical University , Kaili China
| | - Yuqin Liu
- c Department of Critical Care Medicine , The Fourth People's Hospital of Zhenjiang Ctiy , Zhenjiang , China
| | - Hong Qian
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Huilin Yang
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Feng Shen
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| |
Collapse
|
16
|
Inhibition of Glycogen Synthase Kinase 3β Blocks Mesomesenchymal Transition and Attenuates Streptococcus pneumonia-Mediated Pleural Injury in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2461-2472. [PMID: 29073967 DOI: 10.1016/j.ajpath.2017.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 01/13/2023]
Abstract
Pleural loculation affects about 30,000 patients annually in the United States and in severe cases can resolve with restrictive lung disease and pleural fibrosis. Pleural mesothelial cells contribute to pleural rind formation by undergoing mesothelial mesenchymal transition (MesoMT), whereby they acquire a profibrotic phenotype characterized by increased expression of α-smooth muscle actin and collagen 1. Components of the fibrinolytic pathway (urokinase plasminogen activator and plasmin) are elaborated in pleural injury and strongly induce MesoMT in vitro. These same stimuli enhance glycogen synthase kinase (GSK)-3β activity through increased phosphorylation of Tyr-216 in pleural mesothelial cells and GSK-3β mobilization from the cytoplasm to the nucleus. GSK-3β down-regulation blocked induction of MesoMT. Likewise, GSK-3β inhibitor 9ING41 blocked induction of MesoMT and reversed established MesoMT. Similar results were demonstrated in a mouse model of Streptococcus pneumoniae-induced empyema. Intraperitoneal administration of 9ING41, after the induction of pleural injury, attenuated injury progression and improved lung function (lung volume and compliance; P < 0.05 compared with untreated and vehicle controls). MesoMT marker α-smooth muscle actin was reduced in 9ING41-treated mice. Pleural thickening was also notably reduced in 9ING41-treated mice (P < 0.05). Collectively, these studies identify GSK-3β as a newly identified target for amelioration of empyema-related pleural fibrosis and provide a strong rationale for further investigation of GSK-3β signaling in the control of MesoMT and pleural injury.
Collapse
|
17
|
Takahashi Y, Matsutani N, Dejima H, Nakayama T, Uehara H, Kawamura M. Nuclear factor-kappa B influences early phase of compensatory lung growth after pneumonectomy in mice. J Biomed Sci 2017; 24:41. [PMID: 28679393 PMCID: PMC5499001 DOI: 10.1186/s12929-017-0350-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023] Open
Abstract
Background Compensatory lung growth (CLG) is a well-established lung regeneration model. However, the sequential mechanisms, including unknown molecular triggers or regulators, remain unclear. Nuclear factor- kappa B (NF-κB) is known to be essential for inflammation and tissue regeneration; therefore, we investigated the role of NF-κB in CLG. Methods C57BL/6 J mice underwent either a left pneumonectomy or a thoracotomy (n = 77). Gene microarray analysis was performed to detect genes that were upregulated at 12 h after pneumonectomy. NF-κB protein expression was examined by immunohistochemistry and Western blot. To investigate the influence of NF-κB on CLG, either an NF-κB inhibitor SN50 or saline was administered following pneumonectomy and the degree of CLG was evaluated in each group by measuring the lung dry weight index (LDWI) and the mean linear intercept. Results Gene microarray analysis identified 11 genes that were significantly but transiently increased at 12 h after pneumonectomy. Among the 11 genes, NF-κB was selected based on its reported functions. Western blot analysis showed that NF-κB protein expression after pneumonectomy was significantly higher at 12 h compared to 48 h. Additionally, NF-κB protein expression at 12 h after pneumonectomy was significantly higher than at both 12 and 48 h after thoracotomy (p < 0.029 for all). NF-κB protein expression, evaluated through immunohistochemistry, was expressed mainly in type 2 alveolar epithelial cells and was significant increased 12 h after pneumonectomy compared to 48 h after pneumonectomy and both 12 and 48 h after thoracotomy (p < 0.001 for all). SN50 administration following pneumonectomy induced a significant decrease in NF-κB expression (p = 0.004) and LDWI compared to the vehicle administration (p = 0.009). Conclusions This is the first report demonstrating that NF-κB signaling may play a key role in CLG. Given its pathway is crucial in tissue regeneration of various organs, NF-κB may shed light on identification of molecular triggers or clinically usable key regulators of CLG.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan.
| | - Noriyuki Matsutani
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hitoshi Dejima
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Takashi Nakayama
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hirofumi Uehara
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Masafumi Kawamura
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| |
Collapse
|
18
|
Precision-guided, Personalized Intrapleural Fibrinolytic Therapy for Empyema and Complicated Parapneumonic Pleural Effusions: The Case for the Fibrinolytic Potential. ACTA ACUST UNITED AC 2017; 24:163-169. [PMID: 29081644 DOI: 10.1097/cpm.0000000000000216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complicated pleural effusions and empyema with loculation and failed drainage are common clinical problems. In adults, intrapleural fibrinolytic therapy is commonly used with variable results and therapy remains empiric. Despite the intrapleural use of various plasminogen activators; fibrinolysins, for about sixty years, there is no clear consensus about which agent is most effective. Emerging evidence demonstrates that intrapleural administration of plasminogen activators is subject to rapid inhibition by plasminogen activator inhibitor-1 and that processing of fibrinolysins is importantly influenced by other factors including the levels and quality of pleural fluid DNA. Current therapy for loculation that accompanies pleural infections also includes surgery, which is invasive and for which patient selection can be problematic. Most of the clinical literature published to date has used flat dosing of intrapleural fibrinolytic therapy in all subjects but little is known about how that strategy influences the processing of the administered fibrinolysin or how this influences outcomes. We developed a new test of pleural fluids ex vivo, which is called the Fibrinolytic Potential or FP, in which a dose of a fibrinolysin is added to pleural fluids ex vivo after which the fibrinolytic activity is measured and normalized to baseline levels. Testing in preclinical and clinical empyema fluids reveals a wide range of responses, indicating that individual patients will likely respond differently to flat dosing of fibrinolysins. The test remains under development but is envisioned as a guide for dosing of these agents, representing a novel candidate approach to personalization of intrapleural fibrinolytic therapy.
Collapse
|
19
|
Lee YCG, Idell S, Stathopoulos GT. Translational Research in Pleural Infection and Beyond. Chest 2016; 150:1361-1370. [DOI: 10.1016/j.chest.2016.07.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/10/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022] Open
|
20
|
Tucker TA, Jeffers A, Boren J, Quaid B, Owens S, Koenig KB, Tsukasaki Y, Florova G, Komissarov AA, Ikebe M, Idell S. Organizing empyema induced in mice by Streptococcus pneumoniae: effects of plasminogen activator inhibitor-1 deficiency. Clin Transl Med 2016; 5:17. [PMID: 27271877 PMCID: PMC4896893 DOI: 10.1186/s40169-016-0097-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/03/2016] [Indexed: 01/28/2023] Open
Abstract
Background Pleural infection affects about 65,000 patients annually in the US and UK. In this and other forms of pleural injury, mesothelial cells (PMCs) undergo a process called mesothelial (Meso) mesenchymal transition (MT), by which PMCs acquire a profibrogenic phenotype with increased expression of α-smooth muscle actin (α-SMA) and matrix proteins. MesoMT thereby contributes to pleural organization with fibrosis and lung restriction. Current murine empyema models are characterized by early mortality, limiting analysis of the pathogenesis of pleural organization and mechanisms that promote MesoMT after infection. Methods A new murine empyema model was generated in C57BL/6 J mice by intrapleural delivery of Streptococcus pneumoniae (D39, 3 × 107–5 × 109 cfu) to enable use of genetically manipulated animals. CT-scanning and pulmonary function tests were used to characterize the physiologic consequences of organizing empyema. Histology, immunohistochemistry, and immunofluorescence were used to assess pleural injury. ELISA, cytokine array and western analyses were used to assess pleural fluid mediators and markers of MesoMT in primary PMCs. Results Induction of empyema was done through intranasal or intrapleural delivery of S. pneumoniae. Intranasal delivery impaired lung compliance (p < 0.05) and reduced lung volume (p < 0.05) by 7 days, but failed to reliably induce empyema and was characterized by unacceptable mortality. Intrapleural delivery of S. pneumoniae induced empyema by 24 h with lung restriction and development of pleural fibrosis which persisted for up to 14 days. Markers of MesoMT were increased in the visceral pleura of S. pneumoniae infected mice. KC, IL-17A, MIP-1β, MCP-1, PGE2 and plasmin activity were increased in pleural lavage of infected mice at 7 days. PAI-1−/− mice died within 4 days, had increased pleural inflammation and higher PGE2 levels than WT mice. PGE2 was induced in primary PMCs by uPA and plasmin and induced markers of MesoMT. Conclusion To our knowledge, this is the first murine model of subacute, organizing empyema. The model can be used to identify factors that, like PAI-1 deficiency, alter outcomes and dissect their contribution to pleural organization, rind formation and lung restriction.
Collapse
Affiliation(s)
- Torry A Tucker
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA.
| | - Ann Jeffers
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| | - Jake Boren
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| | - Brandon Quaid
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| | - Shuzi Owens
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| | - Kathleen B Koenig
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| | - Yoshikazu Tsukasaki
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| | - Galina Florova
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| | - Andrey A Komissarov
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| | - Mitsuo Ikebe
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| | - Steven Idell
- The Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Biomedical Research Building, Lab C-5, Tyler, TX, 75708, USA
| |
Collapse
|
21
|
Venkatasubramanian S, Tripathi D, Tucker T, Paidipally P, Cheekatla S, Welch E, Raghunath A, Jeffers A, Tvinnereim AR, Schechter ME, Andrade BB, Mackman N, Idell S, Vankayalapati R. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection. Eur J Immunol 2016; 46:464-79. [PMID: 26471500 PMCID: PMC4740218 DOI: 10.1002/eji.201545817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/03/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022]
Abstract
Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth.
Collapse
Affiliation(s)
| | - Deepak Tripathi
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Torry Tucker
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Padmaja Paidipally
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Satyanarayana Cheekatla
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Elwyn Welch
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Anjana Raghunath
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Amy R. Tvinnereim
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Melissa E Schechter
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruno B Andrade
- Investigative Medicine Branch, Laboratory of Immune Regulation, Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
- Research Center, Brazilian Institute for Tuberculosis Research, Salvador, Bahia, 45204-040, Brazil
| | - Nizel Mackman
- Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, NC 27516, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| |
Collapse
|
22
|
Owens S, Jeffers A, Boren J, Tsukasaki Y, Koenig K, Ikebe M, Idell S, Tucker TA. Mesomesenchymal transition of pleural mesothelial cells is PI3K and NF-κB dependent. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1265-73. [PMID: 25888576 DOI: 10.1152/ajplung.00396.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/13/2015] [Indexed: 11/22/2022] Open
Abstract
Pleural organization follows acute injury and is characterized by pleural fibrosis, which may involve the visceral and parietal pleural surfaces. This process affects patients with complicated parapneumonic pleural effusions, empyema, and other pleural diseases prone to pleural fibrosis and loculation. Pleural mesothelial cells (PMCs) undergo a process called mesothelial mesenchymal transition (MesoMT), by which PMCs acquire a profibrotic phenotype characterized by cellular enlargement and elongation, increased expression of α-smooth muscle actin (α-SMA), and matrix proteins including collagen-1. Although MesoMT contributes to pleural fibrosis and lung restriction in mice with carbon black/bleomycin-induced pleural injury and procoagulants and fibrinolytic proteases strongly induce MesoMT in vitro, the mechanism by which this transition occurs remains unclear. We found that thrombin and plasmin potently induce MesoMT in vitro as does TGF-β. Furthermore, these mediators of MesoMT activate phosphatidylinositol-3-kinase (PI3K)/Akt and NF-κB signaling pathways. Inhibition of PI3K/Akt signaling prevented TGF-β-, thrombin-, and plasmin-mediated induction of the MesoMT phenotype exhibited by primary human PMCs. Similar effects were demonstrated through blockade of the NF-κB signaling cascade using two distinctly different NF-κB inhibitors, SN50 and Bay-11 7085. Conversely, expression of constitutively active Akt-induced mesenchymal transition in human PMCs whereas the process was blocked by PX866 and AKT8. Furthermore, thrombin-mediated MesoMT is dependent on PAR-1 expression, which is linked to PI3K/Akt signaling downstream. These are the first studies to demonstrate that PI3K/Akt and/or NF-κB signaling is critical for induction of MesoMT.
Collapse
Affiliation(s)
- Shuzi Owens
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Ann Jeffers
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Jake Boren
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Yoshikazu Tsukasaki
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Kathleen Koenig
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Torry A Tucker
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| |
Collapse
|