1
|
Kim S, Rhee CK, Jo YS, Lim JU, Kim SH, Yoo J, Choi JY. Longitudinal analysis of adiponectin to leptin and apolipoprotein B to A1 ratios as markers of future airflow obstruction and lung function decline. Sci Rep 2024; 14:29502. [PMID: 39604437 PMCID: PMC11603159 DOI: 10.1038/s41598-024-80055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Previous studies suggest associations between the risk of developing chronic obstructive pulmonary disease (COPD) and adiponectin/leptin (ALR) and apolipoprotein B/A1 (APOR) ratios. This longitudinal observational study, using data from the Korean Genome and Epidemiology Study (KoGES), examined the rate of lung function decline, risk factors for the airflow obstruction (AFO), and the time to first AFO based on ALR and APOR groups. Among 5578 participants, high ALR and low APOR were associated with rapid decline in lung function and a shorter time to the first AFO. The high ALR group and the combined high ALR and low APOR group showed higher risk of experiencing AFO both at least once (RR 1.46, 95% CI 1.12-1.90; RR 1.74, 95% CI 1.23-2.46, respectively) and at the final follow up (RR 1.44, 95% CI 1.05-1.96; RR 1.72, 95% CI 1.14-2.60, respectively). High ALR and the combined high ALR and low APOR were identified as risk factors for earlier time to first AFO. This study highlights the potential of ALR and APOR as makers for predicting the risk of future airflow obstruction.
Collapse
Affiliation(s)
- Seohyun Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Suk Jo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Hyuk Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Dongguk University Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea.
| |
Collapse
|
2
|
Bartel S, Wolters JC, Noor H, Rafie K, Fang J, Kirchner B, Nolte-′t Hoen E, Pfaffl MW, Rutgers S, Timens W, van den Berge M, Hylkema MN. Altered Extracellular Vesicle-Derived Protein and microRNA Signatures in Bronchoalveolar Lavage Fluid from Patients with Chronic Obstructive Pulmonary Disease. Cells 2024; 13:945. [PMID: 38891077 PMCID: PMC11171984 DOI: 10.3390/cells13110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease for which there is no cure. Accumulating research results suggest a role for extracellular vesicles (EVs) in the pathogenesis of COPD. This study aimed to uncover the involvement of EVs and their molecular cargo in the progression of COPD by identification of EV-associated protein and microRNA (miRNA) profiles. We isolated EVs from the bronchial alveolar lavage fluid (BALF) of 18 patients with COPD and 11 healthy controls using size-exclusion chromatography. EV isolates were characterized using nanoparticle tracking analysis and protein content. Proteomic analysis revealed a higher abundance of 284 proteins (log2FC > 1) and a lower abundance of 3 proteins (log2FC < -1) in EVs derived from patients with COPD. Ingenuity pathway analysis showed that proteins enriched in COPD-associated EVs trigger inflammatory responses, including neutrophil degranulation. Variances in surface receptors and ligands associated with COPD EVs suggest a preferential interaction with alveolar cells. Small RNAseq analysis identified a higher abundance of ten miRNAs and a lower abundance of one miRNA in EVs from COPD versus controls (Basemean > 100, FDR < 0.05). Our data indicate that the molecular composition of EVs in the BALF of patients with COPD is altered compared to healthy control EVs. Several components in COPD EVs were identified that may perpetuate inflammation and alveolar tissue destruction.
Collapse
Affiliation(s)
- Sabine Bartel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Justina C. Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Hasnat Noor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Karim Rafie
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9712 CP Groningen, The Netherlands
| | - Jiahua Fang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- Institute of Human Genetics, LMU University Hospital, LMU Munich, 80539 Munich, Germany
| | - Esther Nolte-′t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | | | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Machteld N. Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
3
|
Lee C, Cha Y, Bae SH, Kim YS. Association between serum high-density lipoprotein cholesterol and lung function in adults: three cross-sectional studies from US and Korea National Health and Nutrition Examination Survey. BMJ Open Respir Res 2023; 10:e001792. [PMID: 37940356 PMCID: PMC10632896 DOI: 10.1136/bmjresp-2023-001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Cholesterol is an irreplaceable nutrient in pulmonary metabolism; however, studies on high-density lipoprotein cholesterol (HDL-C) levels have shown conflicting results regarding lung function. Therefore, we investigated the association between lung function and HDL-C levels in three cross-sectional studies conducted in the USA and South Korea. METHODS US National Health and Nutrition Examination Survey (NHANES) III, US NHANES 2007-2012, and Korea National Health and Nutrition Examination Survey (KNHANES) IV-VII performed spirometry and met the American Thoracic Society recommendations. Multiple linear regression models were used to determine the relationship between serum lipid levels and lung function. The models were adjusted for age, sex, household income, body mass index, smoking pack year, use of lipid-lowering medication and race. Serum HDL-C levels were classified into three groups to assess the dose-response relationship according to the guideline from the National Cholesterol Education Program-Adult Treatment Panel III. RESULTS The adult participants of the KNHANES (n=31 288), NHANES III (n=12 182) and NHANES 2007-2012 (n=9122) were analysed. Multivariate linear regression analysis of the serum cholesterol profiles revealed that only serum HDL-C was associated with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) in all three studies. A 1 SD increase in the HDL-C level increased the percent predicted FVC by 0.5%-1.5% p, and the per cent predicted FEV1 by 0.5%-1.7% p. In terms of HDL-C levels, correlations between the HDL-C groups and the per cent predicted FVC and FEV1 showed dose-response relationships. Compared with the normal group, high HDL-C levels increased FVC by 0.75%-1.79% p and FEV1 by 0.55%-1.90% p, while low levels led to 0.74%-2.19% p and 0.86%-2.68% p reductions in FVC and FEV1, respectively. Subgroup analyses revealed weaker associations in females from KNHANES and NHANES III. CONCLUSION In the three nationwide cross-sectional studies, high HDL-C levels were associated with improved FVC and FEV1. However, future studies are needed to confirm this correlation and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Chanho Lee
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngjae Cha
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Soo Han Bae
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Fan LC, McConn K, Plataki M, Kenny S, Williams NC, Kim K, Quirke JA, Chen Y, Sauler M, Möbius ME, Chung KP, Area Gomez E, Choi AM, Xu JF, Cloonan SM. Alveolar type II epithelial cell FASN maintains lipid homeostasis in experimental COPD. JCI Insight 2023; 8:e163403. [PMID: 37606038 PMCID: PMC10543729 DOI: 10.1172/jci.insight.163403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/10/2023] [Indexed: 08/23/2023] Open
Abstract
Alveolar epithelial type II (AEC2) cells strictly regulate lipid metabolism to maintain surfactant synthesis. Loss of AEC2 cell function and surfactant production are implicated in the pathogenesis of the smoking-related lung disease chronic obstructive pulmonary disease (COPD). Whether smoking alters lipid synthesis in AEC2 cells and whether altering lipid metabolism in AEC2 cells contributes to COPD development are unclear. In this study, high-throughput lipidomic analysis revealed increased lipid biosynthesis in AEC2 cells isolated from mice chronically exposed to cigarette smoke (CS). Mice with a targeted deletion of the de novo lipogenesis enzyme, fatty acid synthase (FASN), in AEC2 cells (FasniΔAEC2) exposed to CS exhibited higher bronchoalveolar lavage fluid (BALF) neutrophils, higher BALF protein, and more severe airspace enlargement. FasniΔAEC2 mice exposed to CS had lower levels of key surfactant phospholipids but higher levels of BALF ether phospholipids, sphingomyelins, and polyunsaturated fatty acid-containing phospholipids, as well as increased BALF surface tension. FasniΔAEC2 mice exposed to CS also had higher levels of protective ferroptosis markers in the lung. These data suggest that AEC2 cell FASN modulates the response of the lung to smoke by regulating the composition of the surfactant phospholipidome.
Collapse
Affiliation(s)
- Li-Chao Fan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keith McConn
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, and
| | | | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Yan Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Laboratory Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Estela Area Gomez
- Division of Neuromuscular Medicine, Department of Neurology, Columbia University Irving Medical Center, Neurological Institute, New York, New York, USA
- Center for Biological Research “Margarita Salas”, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Augustine M.K. Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- School of Medicine, Trinity Biomedical Sciences Institute, and
| |
Collapse
|
5
|
Wu M, Yang Q, Yang C, Han J, Liu H, Qiao L, Duan H, Xing L, Liu Q, Dong L, Wang Q, Zuo L. Characteristics of plasma exosomes in drug-resistant tuberculosis patients. Tuberculosis (Edinb) 2023; 141:102359. [PMID: 37329682 DOI: 10.1016/j.tube.2023.102359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Increasing prevalence of drug-resistant tuberculosis (DR-TB) poses a major challenge to the early detection and effective control of tuberculosis (TB). Exosomes carrying proteins and nucleic acid mediate intercellular communication between host and pathogen including Mycobacterium tuberculosis. However, molecular events of exosomes indicating the status and development of DR-TB remain unknown. This study determined the proteomics of exosome in DR-TB and explored the potential pathogenesis of DR-TB. METHODS Plasma samples were collected from 17 DR-TB patients and 33 non-drug-resistant tuberculosis (NDR-TB) patients using grouped case-control study design. After exosomes of plasma were isolated and confirmed by compositional and morphological measurement for exosomal characteristics, a label-free quantitative proteomics of exosomes was performed and differential protein components were determined via bioinformatics analysis. RESULTS Compared with the NDR-TB group, we identified 16 up-regulated proteins and 10 down-regulated proteins in the DR-TB group. The down-regulated proteins were mainly apolipoproteins and mainly enriched in cholesterol metabolism-related pathways. Apolipoproteins family including APOA1, APOB, APOC1 were key proteins in protein-protein interaction network. CONCLUSION Differentially expressed proteins in the exosomes may indicate the status of DR-TB from NDR-TB. Apolipoproteins family including APOA1, APOB, APOC1 may be involved in the pathogenesis of DR-TB by regulating cholesterol metabolism via exosomes.
Collapse
Affiliation(s)
- Mingrui Wu
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, School of Basic Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qianwei Yang
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Caiting Yang
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jie Han
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Hai Liu
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Lingran Qiao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, School of Basic Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Huiping Duan
- The Fourth People's Hospital of Taiyuan, Taiyuan, 030024, China
| | - Li Xing
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Qunqun Liu
- The Fourth People's Hospital of Taiyuan, Taiyuan, 030024, China
| | - Li Dong
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Quanhong Wang
- The Fourth People's Hospital of Taiyuan, Taiyuan, 030024, China.
| | - Lin Zuo
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, School of Basic Sciences, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
6
|
Shin H, Park S, Hong J, Baek AR, Lee J, Kim DJ, Jang AS, Chin SS, Jeong SH, Park SW. Overexpression of fatty acid synthase attenuates bleomycin induced lung fibrosis by restoring mitochondrial dysfunction in mice. Sci Rep 2023; 13:9044. [PMID: 37270622 DOI: 10.1038/s41598-023-36009-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Proper lipid metabolism is crucial to maintain alveolar epithelial cell (AEC) function, and excessive AEC death plays a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The mRNA expression of fatty acid synthase (FASN), a key enzyme in the production of palmitate and other fatty acids, is downregulated in the lungs of IPF patients. However, the precise role of FASN in IPF and its mechanism of action remain unclear. In this study, we showed that FASN expression is significantly reduced in the lungs of IPF patients and bleomycin (BLM)-treated mice. Overexpression of FASN significantly inhibited BLM-induced AEC death, which was significantly potentiated by FASN knockdown. Moreover, FASN overexpression reduced BLM-induced loss of mitochondrial membrane potential and the production of mitochondrial reactive oxygen species (ROS). Oleic acid, a fatty acid component increased by FASN overexpression, inhibited BLM-induced cell death in primary murine AECs and rescue BLM induced mouse lung injury/fibrosis. FASN transgenic mice exposed to BLM exhibited attenuated lung inflammation and collagen deposition compared to controls. Our findings suggest that defects in FASN production may be associated with the pathogenesis of IPF, especially mitochondrial dysfunction, and augmentation of FASN in the lung may have therapeutic potential in preventing lung fibrosis.
Collapse
Affiliation(s)
- Hyesun Shin
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Ae-Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Junehyuk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Do-Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - An-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Su Sie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-do, South Korea
| | - Sung Hwan Jeong
- Department of Internal Medicine, Gachon University of Medicine and Science, Gil Medical Center, Incheon, Korea
| | - Sung-Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea.
| |
Collapse
|
7
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
8
|
Effect of Siberian Ginseng Water Extract as a Dietary Additive on Growth Performance, Blood Biochemical Indexes, Lipid Metabolism, and Expression of PPARs Pathway-Related Genes in Genetically Improved Farmed Tilapia (Oreochromis niloticus). FISHES 2022. [DOI: 10.3390/fishes7040149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overnutrition in high-density aquaculture can negatively affect the health of farmed fish. The Chinese herbal medicine Siberian ginseng (Acanthopanax senticosus, AS) can promote animal growth and immunity, and regulate lipid metabolism. Therefore, we conducted an 8-week experiment, in which Oreochromis niloticus was fed with a diet supplemented with different concentrations of AS water extract (ASW) (0‰, 0.1‰, 0.2‰, 0.4‰, 0.8‰, and 1.6‰). The ASW improved the growth performance and increased the specific growth rate (SGR). Linear regression analysis based on the SGR estimated that the optimal ASW amount was 0.74‰. Dietary supplementation with 0.4–0.8‰ ASW reduced the triglyceride and total cholesterol levels in the serum and liver, and regulated lipid transport by increasing the high-density lipoprotein cholesterol concentration and lowering the low-density lipoprotein cholesterol concentration. Dietary supplementation with ASW increased the activities of superoxide dismutase and catalase in the liver, thereby improving the antioxidant capacity. Moreover, ASW modulated the transcription of genes in the peroxisome proliferator-activated receptor signaling pathway in the liver (upregulation of PPARα, APOA1b, and FABP10a and downregulation of PPARγ), thereby regulating fatty acid synthesis and metabolism and slowing fat deposition. These results showed that 0.4–0.8‰ ASW can slow fat deposition and protected the liver from cell damage and abnormal lipid metabolism.
Collapse
|
9
|
Hayek H, Kosmider B, Bahmed K. The role of miRNAs in alveolar epithelial cells in emphysema. Biomed Pharmacother 2021; 143:112216. [PMID: 34649347 PMCID: PMC9275516 DOI: 10.1016/j.biopha.2021.112216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease becoming one of the leading causes of mortality and morbidity globally. The significant risk factors for COPD are exposure to harmful particles such as cigarette smoke, biomass smoke, and air pollution. Pulmonary emphysema belongs to COPD and is characterized by a unique alveolar destruction pattern resulting in marked airspace enlargement. Alveolar type II (ATII) cells have stem cell potential; they proliferate and differentiate to alveolar type I cells to restore the epithelium after damage. Oxidative stress causes premature cell senescence that can contribute to emphysema development. MiRNAs regulate gene expression, are essential for maintaining ATII cell homeostasis, and their dysregulation contributes to this disease development. They also serve as biomarkers of lung diseases and potential therapeutics. In this review, we summarize recent findings on miRNAs’ role in alveolar epithelial cells in emphysema.
Collapse
Affiliation(s)
- Hassan Hayek
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA; Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA; Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA; Department of Biomedical Education and Data Science, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA; Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
10
|
Effects of Air Pollutants on Airway Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189905. [PMID: 34574829 PMCID: PMC8465980 DOI: 10.3390/ijerph18189905] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Air pollutants include toxic particles and gases emitted in large quantities from many different combustible materials. They also include particulate matter (PM) and ozone, and biological contaminants, such as viruses and bacteria, which can penetrate the human airway and reach the bloodstream, triggering airway inflammation, dysfunction, and fibrosis. Pollutants that accumulate in the lungs exacerbate symptoms of respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Asthma, a heterogeneous disease with complex pathological mechanisms, is characterized by particular symptoms such as shortness of breath, a tight chest, coughing, and wheezing. Patients with COPD often experience exacerbations and worsening of symptoms, which may result in hospitalization and disease progression. PM varies in terms of composition, and can include solid and liquid particles of various sizes. PM concentrations are higher in urban areas. Ozone is one of the most toxic photochemical air pollutants. In general, air pollution decreases quality of life and life expectancy. It exacerbates acute and chronic respiratory symptoms in patients with chronic airway diseases, and increases the morbidity and risk of hospitalization associated with respiratory diseases. However, the mechanisms underlying these effects remain unclear. Therefore, we reviewed the impact of air pollutants on airway diseases such as asthma and COPD, focusing on their underlying mechanisms.
Collapse
|
11
|
Lugg ST, Scott A, Parekh D, Naidu B, Thickett DR. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax 2021; 77:94-101. [PMID: 33986144 PMCID: PMC8685655 DOI: 10.1136/thoraxjnl-2020-216296] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
Cigarette smoking is the leading cause of preventable death worldwide. It causes chronic lung disease and predisposes individuals to acute lung injury and pulmonary infection. Alveolar macrophages are sentinel cells strategically positioned in the interface between the airway lumen and the alveolar spaces. These are the most abundant immune cells and are the first line of defence against inhaled particulates and pathogens. Recently, there has been a better understanding about the ontogeny, phenotype and function of alveolar macrophages and their role, not only in phagocytosis, but also in initiating and resolving immune response. Many of the functions of the alveolar macrophage have been shown to be dysregulated following exposure to cigarette smoke. While the mechanisms for these changes remain poorly understood, they are important in the understanding of cigarette smoking-induced lung disease. We review the mechanisms by which smoking influences alveolar macrophage: (1) recruitment, (2) phenotype, (3) immune function (bacterial killing, phagocytosis, proteinase/anti-proteinase release and reactive oxygen species production) and (4) homeostasis (surfactant/lipid processing, iron homeostasis and efferocytosis). Further understanding of the mechanisms of cigarette smoking on alveolar macrophages and other lung monocyte/macrophage populations may allow novel ways of restoring cellular function in those patients who have stopped smoking in order to reduce the risk of subsequent infection or further lung injury.
Collapse
Affiliation(s)
- Sebastian T Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Babu Naidu
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - David R Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Tripathi LP, Itoh MN, Takeda Y, Tsujino K, Kondo Y, Kumanogoh A, Mizuguchi K. Integrative Analysis Reveals Common and Unique Roles of Tetraspanins in Fibrosis and Emphysema. Front Genet 2020; 11:585998. [PMID: 33424923 PMCID: PMC7793877 DOI: 10.3389/fgene.2020.585998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
While both chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are multifactorial disorders characterized by distinct clinical and pathological features, their commonalities and differences have not been fully elucidated. We sought to investigate the preventive roles of tetraspanins Cd151 and Cd9 -that are involved in diverse cellular processes in lung pathophysiology- in pulmonary fibrosis and emphysema, respectively, and to obtain a deeper understanding of their underlying molecular mechanisms toward facilitating improved therapeutic outcomes. Using an integrative approach, we examined the transcriptomic changes in the lungs of Cd151- and Cd9-deficient mice using functional-enrichment-analysis, pathway-perturbation-analysis and protein-protein-interaction (PPI) network analysis. Circadian-rhythm, extracellular-matrix (ECM), cell-adhesion and inflammatory responses and associated factors were prominently influenced by Cd151-deletion. Conversely, cellular-junctions, focal-adhesion, vascular-remodeling, and TNF-signaling were deeply impacted by Cd9-deletion. We also highlighted a “common core” of factors and signaling cascades that underlie the functions of both Cd151 and Cd9 in lung pathology. Circadian dysregulation following Cd151-deletion seemingly facilitated progressive fibrotic lung phenotype. Conversely, TGF-β signaling attenuation and TNF-signaling activation emerged as potentially novel functionaries of Cd9-deletion-induced emphysema. Our findings offer promising avenues for developing novel therapeutic treatments for pulmonary fibrosis and emphysema.
Collapse
Affiliation(s)
- Lokesh P Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Mari N Itoh
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuyuki Tsujino
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Kondo
- Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
13
|
Plosa EJ, Benjamin JT, Sucre JM, Gulleman PM, Gleaves LA, Han W, Kook S, Polosukhin VV, Haake SM, Guttentag SH, Young LR, Pozzi A, Blackwell TS, Zent R. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 2020; 5:129259. [PMID: 31873073 PMCID: PMC7098727 DOI: 10.1172/jci.insight.129259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
Integrins, the extracellular matrix receptors that facilitate cell adhesion and migration, are necessary for organ morphogenesis; however, their role in maintaining adult tissue homeostasis is poorly understood. To define the functional importance of β1 integrin in adult mouse lung, we deleted it after completion of development in type 2 alveolar epithelial cells (AECs). Aged β1 integrin-deficient mice exhibited chronic obstructive pulmonary disease-like (COPD-like) pathology characterized by emphysema, lymphoid aggregates, and increased macrophage infiltration. These histopathological abnormalities were preceded by β1 integrin-deficient AEC dysfunction such as excessive ROS production and upregulation of NF-κB-dependent chemokines, including CCL2. Genetic deletion of the CCL2 receptor, Ccr2, in mice with β1 integrin-deficient type 2 AECs impaired recruitment of monocyte-derived macrophages and resulted in accelerated inflammation and severe premature emphysematous destruction. The lungs exhibited reduced AEC efferocytosis and excessive numbers of inflamed type 2 AECs, demonstrating the requirement for recruited monocytes/macrophages in limiting lung injury and remodeling in the setting of a chronically inflamed epithelium. These studies support a critical role for β1 integrin in alveolar homeostasis in the adult lung.
Collapse
Affiliation(s)
| | | | | | | | - Linda A. Gleaves
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Wei Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | | | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Scott M. Haake
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | | - Lisa R. Young
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ambra Pozzi
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Molecular Physiology and Biophysics, and
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roy Zent
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Cigarette Smoke Condensate Exposure Changes RNA Content of Extracellular Vesicles Released from Small Airway Epithelial Cells. Cells 2019; 8:cells8121652. [PMID: 31861112 PMCID: PMC6953119 DOI: 10.3390/cells8121652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023] Open
Abstract
Exposure to environmental tobacco smoke (ETS) is a known risk factor for the development of chronic lung diseases, cancer, and the exacerbation of viral infections. Extracellular vesicles (EVs) have been identified as novel mediators of cell–cell communication through the release of biological content. Few studies have investigated the composition/function of EVs derived from human airway epithelial cells (AECs) exposed to cigarette smoke condensate (CSC), as surrogates for ETS. Using novel high-throughput technologies, we identified a diverse range of small noncoding RNAs (sncRNAs), including microRNA (miRNAs), Piwi-interacting RNA (piRNAs), and transfer RNA (tRNAs) in EVs from control and CSC-treated SAE cells. CSC treatment resulted in significant changes in the EV content of miRNAs. A total of 289 miRNAs were identified, with five being significantly upregulated and three downregulated in CSC EVs. A total of 62 piRNAs were also detected in our EV preparations, with five significantly downregulated and two upregulated in CSC EVs. We used TargetScan and Gene Ontology (GO) analysis to predict the biological targets of hsa-miR-3913-5p, the most represented miRNA in CSC EVs. Understanding fingerprint molecules in EVs will increase our knowledge of the relationship between ETS exposure and lung disease, and might identify potential molecular targets for future treatments.
Collapse
|
15
|
Chen H, Li Z, Dong L, Wu Y, Shen H, Chen Z. Lipid metabolism in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1009-1018. [PMID: 31190786 PMCID: PMC6524761 DOI: 10.2147/copd.s196210] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Dysregulated lipid metabolism plays crucial roles in various diseases, including diabetes mellitus, cancer, and neurodegeneration. Recent studies suggest that alterations in major lipid metabolic pathways contribute to pathogenesis of lung diseases, including chronic obstructive pulmonary disease (COPD). These changes allow lung tissue to meet the energy needs and trigger anabolic pathways that initiate the synthesis of active molecules directly involved in the inflammation. In this review, we summarize the changes of catabolism and anabolism of lipids, lipid molecules including lipid mediators, lipid synthesis transcription factors, cholesterol, and phospholipids, and how those lipid molecules participate in the initiation and resolution of inflammation in COPD.
Collapse
Affiliation(s)
- Haipin Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Lingling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China.,State Key Lab of Respiratory Disease, Guangzhou, Guangdong, People's Republic of China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Mamazhakypov A, Schermuly RT, Schaefer L, Wygrecka M. Lipids - two sides of the same coin in lung fibrosis. Cell Signal 2019; 60:65-80. [PMID: 30998969 DOI: 10.1016/j.cellsig.2019.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive extracellular matrix deposition in the lung parenchyma leading to the destruction of lung structure, respiratory failure and premature death. Recent studies revealed that the pathogenesis of IPF is associated with alterations in the synthesis and the activity of lipids, lipid regulating proteins and cell membrane lipid transporters and receptors in different lung cells. Furthermore, deregulated lipid metabolism was found to contribute to the profibrotic phenotypes of lung fibroblasts and alveolar epithelial cells. Consequently, several pharmacological agents, targeting lipids, lipid mediators, and lipoprotein receptors, was successfully tested in the animal models of lung fibrosis and entered early phase clinical trials. In this review, we highlight new therapeutic options to counteract disturbed lipid hemostasis in the maladaptive lung remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Liliana Schaefer
- Goethe University School of Medicine, Frankfurt am Main, Germany.
| | - Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| |
Collapse
|
17
|
Lycopene mitigates pulmonary emphysema induced by cigarette smoke in a murine model. J Nutr Biochem 2019; 65:93-100. [DOI: 10.1016/j.jnutbio.2018.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/09/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022]
|
18
|
Chen J, Si L, Zhou L, Deng Y. Role of bone marrow mesenchymal stem cells in the development of PQ‑induced pulmonary fibrosis. Mol Med Rep 2019; 19:3283-3290. [PMID: 30816470 DOI: 10.3892/mmr.2019.9976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/11/2019] [Indexed: 11/06/2022] Open
Abstract
Paraquat (PQ) poisoning‑induced pulmonary fibrosis is one of the primary causes of mortality in patients with PQ poisoning. The potential mechanism of PQ‑induced pulmonary fibrosis was thought to be mediated by inflammation. Recently, bone marrow‑derived mesenchymal stem cells (BMSCs) have been considered as a potential strategy for the treatment of fibrotic disease due to their anti‑inflammatory and immunosuppressive effects. In the present study, an increased accumulation of BMSCs in a mouse model of PQ‑induced pulmonary fibrosis following their transplantation, markedly improving the survival rate of mice with PQ poisoning. In addition, the results indicated that BMSC transplantation may inhibit the production of pro‑inflammatory cytokines, including tumor necrosis factor‑α interleukin (IL)‑1β, IL‑6 and IL‑10 in the lung tissues of PQ‑poisoned mice, and ultimately attenuate the pulmonary fibrosis. In vitro, BMSCs may suppress PQ‑induced epithelial‑to‑mesenchymal transition and protect pulmonary epithelial cells from PQ‑induced apoptosis. These findings suggest that BMSC transplantation may be a promising treatment for pulmonary fibrosis induced by PQ poisoning.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Linjie Si
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Liangliang Zhou
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Yijun Deng
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
19
|
Cui P, Xin H, Yao Y, Xiao S, Zhu F, Gong Z, Tang Z, Zhan Q, Qin W, Lai Y, Li X, Tong Y, Xia Z. Human amnion-derived mesenchymal stem cells alleviate lung injury induced by white smoke inhalation in rats. Stem Cell Res Ther 2018; 9:101. [PMID: 29650044 PMCID: PMC5898065 DOI: 10.1186/s13287-018-0856-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background White smoke inhalation (WSI) is an uncommon but potentially deadly cause of acute lung injury and acute respiratory distress syndrome for which no effective pharmaceutical treatment has been developed. This study aimed to determine the protective effects of human amnion-derived mesenchymal stem cells (hAMSCs) against WSI-induced lung injury in rats. Methods hAMSCs were injected into rats via the tail vein 4 h after WSI. At 1, 3, 7, 14, and 28 days after cell injection, hAMSCs labeled with PKH26 in lung, heart, liver, and kidney tissues were observed by fluorescence microscopy. The lung injury score was determined by hematoxylin and eosin staining. Lung fibrosis was assessed by Masson’s trichrome staining. The computed tomography (CT) score was assessed by CT scanning. The wet/dry weight ratio was calculated. The levels of interleukin (IL)-1β, IL-6, and IL-10 were determined by enzyme-linked immunosorbent assays. The expression of surfactant protein (SP)-A, SP-C, and SP-D was measured by Western blotting. Results The injected hAMSCs were primarily distributed in the lung tissues in WSI-induced rats. Compared with the model and phosphate-buffered saline (PBS) group, hAMSC treatment led to reduced lung injury, lung fibrosis, CT score, and inflammation levels in WSI-induced mice. hAMSC treatment also resulted in increased cell retention in the lung, partial pressure of oxygen (PaO2), and PaO2/fraction of inspired oxygen (FiO2) levels, and pulmonary SP-A, SP-C, and SP-D expression compared with that in the model and PBS group. Conclusions hAMSCs are a potential cell-based therapy for WSI-induced lung injury.
Collapse
Affiliation(s)
- Pei Cui
- Research Laboratory of Burns and Trauma, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns, Plastic and Wound repair surgery, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China
| | - Yongming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Shichu Xiao
- Department of Burn surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Feng Zhu
- Department of Burn surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Zhenyu Gong
- Department of Burns, Plastic and Wound repair surgery, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China
| | - Zhiping Tang
- Research Laboratory of Burns and Trauma, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China
| | - Qiu Zhan
- Research Laboratory of Burns and Trauma, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China
| | - Wei Qin
- Department of Burns, Plastic and Wound repair surgery, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China
| | - Yanhua Lai
- Research Laboratory of Burns and Trauma, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China
| | - Xiaohui Li
- Research Laboratory of Burns and Trauma, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China
| | - Yalin Tong
- Research Laboratory of Burns and Trauma, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China. .,Department of Burns, Plastic and Wound repair surgery, the 181st Hospital of Chinese PLA, Guilin, 541002, People's Republic of China.
| | - Zhaofan Xia
- Department of Burn surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Yao X, Gordon EM, Figueroa DM, Barochia AV, Levine SJ. Emerging Roles of Apolipoprotein E and Apolipoprotein A-I in the Pathogenesis and Treatment of Lung Disease. Am J Respir Cell Mol Biol 2017; 55:159-69. [PMID: 27073971 DOI: 10.1165/rcmb.2016-0060tr] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Emerging roles are being recognized increasingly for apolipoproteins in the pathogenesis and treatment of lung diseases on the basis of their ability to suppress inflammation, oxidative stress, and tissue remodeling, and to promote adaptive immunity and host defense. Apolipoproteins, such as apolipoprotein E (apoE) and apolipoprotein A-I (apoA-I), are important components of lipoprotein particles that facilitate the transport of cholesterol, triglycerides, and phospholipids between plasma and cells. ApoE-containing lipoprotein particles are internalized into cells by low-density lipoprotein receptors (LDLRs), whereas apoA-I can interact with the ATP-binding cassette subfamily A member 1 (ABCA1) transporter to efflux cholesterol and phospholipids out of cells. ApoE and apoA-I also mediate receptor-independent effects, such as binding to and neutralizing LPS. Both apoE and apoA-I are expressed by lung cells, which allows apoE/LDLR- and apoA-I/ABCA1-dependent pathways to modulate normal lung health and the pathogenesis of respiratory diseases, including asthma, acute lung injury, cancer, emphysema, pulmonary fibrosis, and pulmonary hypertension. Data from human studies and research using experimental murine model systems have shown that both apoE and apoA-I pathways play primarily protective roles in lung biology and respiratory disease. Furthermore, apolipoprotein mimetic peptides, corresponding to the LDLR-binding domain of apoE or the class A amphipathic α-helical structure of apoA-I, have antiinflammatory and antioxidant effects that attenuate the severity of lung disease in murine models. Thus, the development of inhaled apolipoprotein mimetic peptides as a novel treatment paradigm could represent a significant advance for patients with respiratory disease who do not respond to current therapies.
Collapse
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Debbie M Figueroa
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Carleo A, Chorostowska-Wynimko J, Koeck T, Mischak H, Czajkowska-Malinowska M, Rozy A, Welte T, Janciauskiene S. Does urinary peptide content differ between COPD patients with and without inherited alpha-1 antitrypsin deficiency? Int J Chron Obstruct Pulmon Dis 2017; 12:829-837. [PMID: 28331304 PMCID: PMC5352160 DOI: 10.2147/copd.s125240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Differentiating between chronic obstructive pulmonary disease (COPD) patients with normal (PiMM) or deficient (PiZZ) genetic variants of alpha-1 antitrypsin (A1AT) is important not only for understanding the pathobiology of disease progression but also for improving personalized therapies. This pilot study aimed to investigate whether urinary peptides reflect the A1AT-related phenotypes of COPD. Urine samples from 19 clinically stable COPD cases (7 PiMM and 12 PiZZ A1AT) were analyzed by capillary electrophoresis coupled to mass spectrometry. We identified 66 peptides (corresponding to 36 unique proteins) that differed between PiZZ and PiMM COPD. Among these, peptides from the collagen family were the most abundant and divergent. A logistic regression model based on COL1A1 or COL5A3 peptides enabled differentiation between PiMM and PiZZ groups, with a sensitivity of 100% and specificity of 85.71% for COL1A1 and a sensitivity of 91.67% and specificity of 85.71% for COL5A3. Furthermore, patients with PiZZ presented low levels of urinary peptides involved in lipoproteins/lipids and retinoic acid metabolism, such as apolipoprotein A-I and C4, retinol-binding protein 4 and prostaglandin-H2 D-isomerase. However, peptides of MDS1 and EVII complex locus, gelsolin and hemoglobin alpha were found in the urine of COPD cases with PiZZ, but not with PiMM. These capillary electrophoresis coupled to mass spectrometry-based results provide the first evidence that urinary peptide content differs between PiMM and PiZZ patients with COPD.
Collapse
Affiliation(s)
- Alfonso Carleo
- Department of Respiratory Medicine, Hannover Medical School; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), DZL Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Thomas Koeck
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany
| | - Harald Mischak
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), DZL Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), DZL Hannover, Germany
| |
Collapse
|
22
|
Atorvastatin and Simvastatin Promoted Mouse Lung Repair After Cigarette Smoke-Induced Emphysema. Inflammation 2017; 40:965-979. [DOI: 10.1007/s10753-017-0541-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Swertfeger DK, Li H, Rebholz S, Zhu X, Shah AS, Davidson WS, Lu LJ. Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma. Mol Cell Proteomics 2017; 16:680-693. [PMID: 28223350 DOI: 10.1074/mcp.m116.066290] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux (r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions (r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux and antioxidation.
Collapse
Affiliation(s)
- Debi K Swertfeger
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Hailong Li
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Sandra Rebholz
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039.,¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Xiaoting Zhu
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Amy S Shah
- ‖Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - W Sean Davidson
- ¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Long J Lu
- From the ‡School of Information Management, Wuhan University, Wuhan 430072, China; .,§Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| |
Collapse
|
24
|
Gordon EM, Figueroa DM, Barochia AV, Yao X, Levine SJ. High-density Lipoproteins and Apolipoprotein A-I: Potential New Players in the Prevention and Treatment of Lung Disease. Front Pharmacol 2016; 7:323. [PMID: 27708582 PMCID: PMC5030281 DOI: 10.3389/fphar.2016.00323] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) and high-density lipoproteins (HDL) mediate reverse cholesterol transport out of cells. Furthermore, HDL has additional protective functions, which include anti-oxidative, anti-inflammatory, anti-apoptotic, and vasoprotective effects. In contrast, HDL can become dysfunctional with a reduction in both cholesterol efflux and anti-inflammatory properties in the setting of disease or the acute phase response. These paradigms are increasingly being recognized to be active in the pulmonary system, where apoA-I and HDL have protective effects in normal lung health, as well as in a variety of disease states, including acute lung injury (ALI), asthma, chronic obstructive pulmonary disease, lung cancer, pulmonary arterial hypertension, pulmonary fibrosis, and viral pneumonia. Similar to observations in cardiovascular disease, however, HDL may become dysfunctional and contribute to disease pathogenesis in respiratory disorders. Furthermore, synthetic apoA-I mimetic peptides have been shown to have protective effects in animal models of ALI, asthma, pulmonary hypertension, and influenza pneumonia. These findings provide evidence to support the concept that apoA-I mimetic peptides might be developed into a new treatment that can either prevent or attenuate the manifestations of lung diseases, such as asthma. Thus, the lung is positioned to take a page from the cardiovascular disease playbook and utilize the protective properties of HDL and apoA-I as a novel therapeutic approach.
Collapse
Affiliation(s)
- Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Debbie M Figueroa
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|