1
|
Tingay DG, Fatmous M, Kenna K, Chapman J, Douglas E, Sett A, Poh QH, Dahm SI, Quach TK, Sourial M, Fang H, Greening DW, Pereira-Fantini PM. Speed of lung inflation at birth influences the initiation of lung injury in preterm lambs. JCI Insight 2024; 9:e181228. [PMID: 39106107 PMCID: PMC11457856 DOI: 10.1172/jci.insight.181228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Gas flow is fundamental for driving tidal ventilation and, thus, the speed of lung motion, but current bias flow settings to support the preterm lung after birth do not have an evidence base. We aimed to determine the role of gas bias flow rates to generate positive pressure ventilation in initiating early lung injury pathways in the preterm lamb. Using slower speeds to inflate the lung during tidal ventilation (gas flow rates 4-6 L/min) did not affect lung mechanics, mechanical power, or gas exchange compared with those currently used in clinical practice (8-10 L/min). Speed of pressure and volume change during inflation were faster with higher flow rates. Lower flow rates resulted in less bronchoalveolar fluid protein, better lung morphology, and fewer detached epithelial cells. Overall, relative to unventilated fetal controls, there was greater protein change using 8-10 L/min, which was associated with enrichment of acute inflammatory and innate responses. Slowing the speed of lung motion by supporting the preterm lung from birth with lower flow rates than in current clinical use resulted in less lung injury without compromising tidal ventilation or gas exchange.
Collapse
Affiliation(s)
- David G. Tingay
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Monique Fatmous
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
| | - Kelly Kenna
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
| | - Jack Chapman
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ellen Douglas
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
| | - Arun Sett
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
- Newborn Services, Joan Kirner Women’s and Children’s, Sunshine Hospital, Western Health, St Albans, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| | - Qi Hui Poh
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
| | - Sophia I. Dahm
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
| | - Tuyen Kim Quach
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Magdy Sourial
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
- Translational Research Unit, Murdoch Children’s Research Institute, Parkville, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Australia
| | - David W. Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Prue M. Pereira-Fantini
- Neonatal Research, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Bizzotto D, Dahl MJ, Veneroni C, Lavizzari A, Rebentisch A, Dawson E, Bowen S, Zuspan K, Yoder BA, Albertine KH, Dellacà RL. Impact of neonatal noninvasive resuscitation strategies on lung mechanics, tracheal pressure, and tidal volume in preterm lambs. Am J Physiol Lung Cell Mol Physiol 2024; 327:L203-L217. [PMID: 38771135 DOI: 10.1152/ajplung.00236.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
This study investigated the relationship between three respiratory support approaches on lung volume recruitment during the first 2 h of postnatal life in preterm lambs. We estimated changes in lung aeration, measuring respiratory resistance and reactance by oscillometry at 5 Hz. We also measured intratracheal pressure in subsets of lambs. The first main finding is that sustained inflation (SI) applied noninvasively (Mask SI; n = 7) or invasively [endotracheal tube (ETT) SI; n = 6] led to similar rapid lung volume recruitment (∼6 min). In contrast, Mask continuous positive airway pressure (CPAP) without SI (n = 6) resuscitation took longer (∼30-45 min) to reach similar lung volume recruitment. The second main finding is that, in the first 15 min of postnatal life, the Mask CPAP without SI group closed their larynx during custom ventilator-driven expiration, leading to intratracheal positive end-expiratory pressure of ∼17 cmH2O (instead of 8 cmH2O provided by the ventilator). In contrast, the Mask SI group used the larynx to limit inspiratory pressure to ∼26 cmH2O (instead of 30 cmH2O provided by the ventilator). These different responses affected tidal volume, being larger in the Mask CPAP without SI group [8.4 mL/kg; 6.7-9.3 interquartile range (IQR)] compared to the Mask SI (5.0 mL/kg; 4.4-5.2 IQR) and ETT SI groups (3.3 mL/kg; 2.6-3.7 IQR). Distinct physiological responses suggest that spontaneous respiratory activity of the larynx of preterm lambs at birth can uncouple pressure applied by the ventilator to that applied to the lung, leading to unpredictable lung pressure and tidal volume delivery independently from the ventilator settings.NEW & NOTEWORTHY We compared invasive and noninvasive resuscitation on lambs at birth, including or not sustained inflation (SI). Lung volume recruitment was faster in those receiving SI. During noninvasive resuscitation, larynx modulation reduced tracheal pressure from that applied to the mask in lambs receiving SI, while it led to increased auto-positive end-expiratory pressure and very large tidal volumes in lambs not receiving SI. Our results highlight the need for individualizing pressures and monitoring tidal volumes during resuscitation at birth.
Collapse
Affiliation(s)
- Davide Bizzotto
- TechRes Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - Mar Janna Dahl
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Chiara Veneroni
- TechRes Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - Anna Lavizzari
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrew Rebentisch
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Elaine Dawson
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Sydney Bowen
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Kaitlin Zuspan
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Bradley A Yoder
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Kurt H Albertine
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Raffaele L Dellacà
- TechRes Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| |
Collapse
|
3
|
Pearson-Lemme J, Halibullah I, Becher T, Tingay HD, Douglas E, Fatmous M, Kenna KR, Pereira-Fantini PM, Tingay DG, Sett A. Mechanical power made simple: validating a simplified calculation of mechanical power in preterm lungs. Pediatr Res 2024:10.1038/s41390-024-03339-5. [PMID: 38886507 DOI: 10.1038/s41390-024-03339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The incidence of chronic lung disease is increasing, suggesting a need to explore novel ways to understand ventilator induced lung injury (VILI) in preterm infants. Mechanical power (MP) is a unifying measure of energy transferred to the respiratory system and a proposed determinant of VILI. The gold-standard method for calculating MP (geometric method) is not feasible in the clinical setting. This has prompted the derivation of simplified equations for calculating MP. OBJECTIVE To validate the agreement between a simplified calculation of MP (MPSimple) and the true MP calculated using the geometric method (MPRef). METHODS MPSimple and MPRef was calculated in mechanically ventilated preterm lambs (n = 71) and the agreement between both measures was determined using intraclass correlation coefficients (ICC), linear regression, and Bland-Altman analysis. RESULTS A strong linear relationship (adjusted R2 = 0.98), and excellent agreement (ICC = 0.99, 95% CI = 0.98-0.99) between MPSimple and MPRef was demonstrated. Bland-Altman analysis demonstrated a negligible positive bias (mean difference = 0.131 J/min·kg). The 95% limits of agreement were -0.06 to 0.32 J/min·kg. CONCLUSIONS In a controlled setting, there was excellent agreement between MPSimple and gold-standard calculations. MPSimple should be validated and explored in preterm neonates to assess the cause-effect relationship with VILI and neonatal outcomes. IMPACT STATEMENT Mechanical power (MP) unifies the individual components of ventilator induced lung injury (VILI) and provides an estimate of total energy transferred to the respiratory system during mechanical ventilation. As gold-standard calculations of mechanical power at the bedside are not feasible, alternative simplified equations have been proposed. In this study, MP calculated using a simplified equation had excellent agreement with true MP in mechanically ventilated preterm lambs. These results lay foundations to explore the role of MP in neonatal VILI and determine its relationship with short and long term respiratory outcomes.
Collapse
Affiliation(s)
- Jack Pearson-Lemme
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Newborn Services, Joan Kirner Women's and Children's, Sunshine Hospital, Western Health, Melbourne, VIC, Australia
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Ikhwan Halibullah
- Newborn Services, Joan Kirner Women's and Children's, Sunshine Hospital, Western Health, Melbourne, VIC, Australia
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Tobias Becher
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Schleswig-Holstein, Germany
| | - Hamish D Tingay
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Ellen Douglas
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Monique Fatmous
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Kelly R Kenna
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Prue M Pereira-Fantini
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David G Tingay
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Arun Sett
- Newborn Services, Joan Kirner Women's and Children's, Sunshine Hospital, Western Health, Melbourne, VIC, Australia.
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
He LLH, Foo G, Kenna KR, Douglas E, Fatmous M, Sutton RJ, Perkins EJ, Sourial M, Pereira-Fantini PM, Tingay DG, Sett A. Lung ultrasound detects regional aeration inhomogeneity in ventilated preterm lambs. Pediatr Res 2024; 95:129-134. [PMID: 37591926 PMCID: PMC10798896 DOI: 10.1038/s41390-023-02781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Inhomogeneous lung aeration is a significant contributor to preterm lung injury. EIT detects inhomogeneous aeration in the research setting. Whether LUS detects inhomogeneous aeration is unknown. The aim was to determine whether LUS detects regional inhomogeneity identified by EIT in preterm lambs. METHODS LUS and EIT were simultaneously performed on mechanically ventilated preterm lambs. LUS images from non-dependent and dependent regions were acquired and reported using a validated scoring system and computer-assisted quantitative LUS greyscale analysis (Q-LUSMGV). Regional inhomogeneity was calculated by observed over predicted aeration ratio from the EIT reconstructive model. LUS scores and Q-LUSMGV were compared with EIT aeration ratios using one-way ANOVA. RESULTS LUS was performed in 32 lambs (~125d gestation, 128 images). LUS scores were greater in upper anterior (non-dependent) compared to lower lateral (dependent) regions of the left (3.4 vs 2.9, p = 0.1) and right (3.4 vs 2.7, p < 0.0087). The left and right upper regions also had greater LUS scores compared to right lower (3.4 vs 2.7, p < 0.0087) and left lower (3.7 vs 2.9, p = 0.1). Q-LUSMGV yielded similar results. All LUS findings corresponded with EIT regional differences. CONCLUSION LUS may have potential in measuring regional aeration, which should be further explored in human studies. IMPACT Inhomogeneous lung aeration is an important contributor to preterm lung injury, however, tools detecting inhomogeneous aeration at the bedside are limited. Currently, the only tool clinically available to detect this is electrical impedance tomography (EIT), however, its use is largely limited to research. Lung ultrasound (LUS) may play a role in monitoring lung aeration in preterm infants, however, whether it detects inhomogeneous lung aeration is unknown. Visual LUS scores and mean greyscale image analysis using computer assisted quantitative LUS (Q-LUSMGV) detects regional lung aeration differences when compared to EIT. This suggests LUS reliably detects aeration inhomogeneity warranting further investigation in human trials.
Collapse
Affiliation(s)
- Laura L H He
- Neonatal Research, Murdoch Children's Research Institute, Victoria, VIC, Australia.
- Department of Paediatrics, University of Melbourne, Victoria, VIC, Australia.
| | - Gillian Foo
- Joan Kirner Women's and Children's Hospital, Western Health, Victoria, VIC, Australia
| | - Kelly R Kenna
- Neonatal Research, Murdoch Children's Research Institute, Victoria, VIC, Australia
| | - Ellen Douglas
- Neonatal Research, Murdoch Children's Research Institute, Victoria, VIC, Australia
| | - Monique Fatmous
- Neonatal Research, Murdoch Children's Research Institute, Victoria, VIC, Australia
| | - Rebecca J Sutton
- Neonatal Research, Murdoch Children's Research Institute, Victoria, VIC, Australia
- Translational Research Unit, Murdoch Children's Research Institute, Victoria, VIC, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Victoria, VIC, Australia
| | - Magdy Sourial
- Translational Research Unit, Murdoch Children's Research Institute, Victoria, VIC, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Victoria, VIC, Australia
- Department of Paediatrics, University of Melbourne, Victoria, VIC, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Victoria, VIC, Australia
- Department of Paediatrics, University of Melbourne, Victoria, VIC, Australia
| | - Arun Sett
- Neonatal Research, Murdoch Children's Research Institute, Victoria, VIC, Australia
- Department of Paediatrics, University of Melbourne, Victoria, VIC, Australia
- Joan Kirner Women's and Children's Hospital, Western Health, Victoria, VIC, Australia
- Newborn Research Centre, The Royal Women's Hospital, Victoria, VIC, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, VIC, Australia
| |
Collapse
|
5
|
Pereira-Fantini PM, Kenna KR, Fatmous M, Sett A, Douglas E, Dahm S, Sourial M, Fang H, Greening DW, Tingay DG. Impact of tidal volume strategy at birth on initiating lung injury in preterm lambs. Am J Physiol Lung Cell Mol Physiol 2023; 325:L594-L603. [PMID: 37727901 DOI: 10.1152/ajplung.00159.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
Tidal ventilation is essential in supporting the transition to air-breathing at birth, but excessive tidal volume (VT) is an important factor in preterm lung injury. Few studies have assessed the impact of specific VT levels on injury development. Here, we used a lamb model of preterm birth to investigate the role of different levels of VT during positive pressure ventilation (PPV) in promoting aeration and initiating early lung injury pathways. VT was delivered as 1) 7 mL/kg throughout (VTstatic), 2) begun at 3 mL/kg and increased to a final VT of 7 mL/kg over 3 min (VTinc), or 3) commenced at 7 mL/kg, decreased to 3 mL/kg, and then returned to 7 mL/kg (VTalt). VT, inflating pressure, lung compliance, and aeration were similar in all groups from 4 min, as was postmortem histology and lung lavage protein concentration. However, transient decrease in VT in the VTalt group caused increased ventilation heterogeneity. Following TMT-based quantitative mass spectrometry proteomics, 1,610 proteins were identified in the lung. Threefold more proteins were significantly altered with VTalt compared with VTstatic or VTinc strategies. Gene set enrichment analysis identified VTalt specific enrichment of immune and angiogenesis pathways and VTstatic enrichment of metabolic processes. Our finding of comparable lung physiology and volutrauma across VT groups challenges the paradigm that there is a need to rapidly aerate the preterm lung at birth. Increased lung injury and ventilation heterogeneity were identified when initial VT was suddenly decreased during respiratory support at birth, further supporting the benefit of a gentle VT approach.NEW & NOTEWORTHY There is little evidence to guide the best tidal volume (VT) strategy at birth. In this study, comparable aeration, lung mechanics, and lung morphology were observed using static, incremental, and alternating VT strategies. However, transient reduction in VT was associated with ventilation heterogeneity and inflammation. Our results suggest that rapidly aerating the preterm lung may not be as clinically critical as previously thought, providing clinicians with reassurance that gently supporting the preterm lung maybe permissible at birth.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly R Kenna
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Monique Fatmous
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Arun Sett
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Newborn Services, Joan Kirner Women's and Children's Hospital, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ellen Douglas
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sophia Dahm
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Magdy Sourial
- Translational Research Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Davies IM, Polglase GR. Inflating or Overinflation? New Evidence for Lung Injury at Birth. Am J Respir Crit Care Med 2023; 208:517-518. [PMID: 37450842 PMCID: PMC10492251 DOI: 10.1164/rccm.202306-1053ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Indya M Davies
- Department of Obstetrics and Gynaecology Monash University Clayton, Victoria, Australia and The Ritchie Centre Hudson Institute of Medical Research Clayton Victoria, Australia
| | - Graeme R Polglase
- Department of Obstetrics and Gynaecology Monash University Clayton, Victoria, Australia and The Ritchie Centre Hudson Institute of Medical Research Clayton Victoria, Australia
| |
Collapse
|
7
|
Tingay DG, Fatmous M, Kenna K, Dowse G, Douglas E, Sett A, Perkins EJ, Sourial M, Pereira-Fantini PM. Inflating Pressure and Not Expiratory Pressure Initiates Lung Injury at Birth in Preterm Lambs. Am J Respir Crit Care Med 2023; 208:589-599. [PMID: 37276583 DOI: 10.1164/rccm.202301-0104oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
Rationale: Inflation is essential for aeration at birth, but current inflating pressure settings are without an evidence base. Objectives: To determine the role of inflating pressure (ΔP), and its relationship with positive end-expiratory pressure (PEEP), in initiating early lung injury pathways in the preterm lamb lung. Methods: Preterm (124 to 127 d) steroid-exposed lambs (n = 45) were randomly allocated (8-10 per group) to 15 minutes of respiratory support with placental circulation and 20 or 30 cm H2O ΔP, with an initial high PEEP (maximum, 20 cm H2O) recruitment maneuver known to facilitate aeration (dynamic PEEP), and compared with dynamic PEEP with no ΔP or 30 cm H2O ΔP and low (4 cm H2O) PEEP. Lung mechanics and aeration were measured throughout. After an additional 30 minutes of apneic placental support, lung tissue and bronchoalveolar fluid were analyzed for regional lung injury, including proteomics. Measurements and Main Results: The 30 cm H2O ΔP and dynamic PEEP strategies resulted in quicker aeration and better compliance but higher tidal volumes (often >8 ml/kg, all P < 0.0001; mixed effects) and injury. ΔP 20 cm H2O with dynamic PEEP resulted in the same lung mechanics and aeration, but less energy transmission (tidal mechanical power), as ΔP 30 cm H2O with low PEEP. Dynamic PEEP without any tidal inflations resulted in the least lung injury. Use of any tidal inflating pressures altered metabolic, coagulation and complement protein pathways within the lung. Conclusions: Inflating pressure is essential for the preterm lung at birth, but it is also the primary mediator of lung injury. Greater focus is needed on strategies that identify the safest application of pressure in the delivery room.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research and
- Translational Research Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics and
| | | | | | | | | | - Arun Sett
- Neonatal Research and
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
- Newborn Services, Joan Kirner Women's and Children's, Sunshine Hospital, Western Health, St. Albans, Victoria, Australia
| | | | - Magdy Sourial
- Neonatal Research and
- Translational Research Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | |
Collapse
|
8
|
Gaertner VD, Mühlbacher T, Waldmann AD, Bassler D, Rüegger CM. Early prediction of pulmonary outcomes in preterm infants using electrical impedance tomography. Front Pediatr 2023; 11:1167077. [PMID: 37292377 PMCID: PMC10244619 DOI: 10.3389/fped.2023.1167077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Electrical impedance tomography (EIT) allows assessment of ventilation and aeration homogeneity which may be associated with respiratory outcomes in preterm infants. Methods This was a secondary analysis to a recent randomized controlled trial in very preterm infants in the delivery room (DR). The predictive value of various EIT parameters assessed 30 min after birth on important respiratory outcomes (early intubation <24 h after birth, oxygen dependency at 28 days after birth, and moderate/severe bronchopulmonary dysplasia; BPD) was assessed. Results Thirty-two infants were analyzed. A lower percentage of aerated lung volume [OR (95% CI) = 0.8 (0.66-0.98), p = 0.027] as well as a higher aeration homogeneity ratio (i.e., more aeration in the non-gravity-dependent lung) predicted the need for supplemental oxygen at 28 days after birth [9.58 (5.16-17.78), p = 0.0028]. Both variables together had a similar predictive value to a model using known clinical contributors. There was no association with intubation or BPD, where numbers were small. Discussion In very preterm infants, EIT markers of aeration at 30 min after birth accurately predicted the need for supplemental oxygen at 28 days after birth but not BPD. EIT-guided individualized optimization of respiratory support in the DR may be possible.
Collapse
Affiliation(s)
- Vincent D. Gaertner
- Newborn Research Zurich, Department of Neonatology, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neonatology, Dr von Hauner University Children's Hospital, Ludwig-Maximilian-University, Munich, Germany
| | - Tobias Mühlbacher
- Newborn Research Zurich, Department of Neonatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Andreas D. Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Dirk Bassler
- Newborn Research Zurich, Department of Neonatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christoph M. Rüegger
- Newborn Research Zurich, Department of Neonatology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Tingay DG, Naidu H, Tingay HD, Pereira-Fantini PM, Kneyber MCJ, Becher T. Is mechanical power an under-recognised entity within the preterm lung? Intensive Care Med Exp 2023; 11:28. [PMID: 37211573 DOI: 10.1186/s40635-023-00511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Mechanical power is a major contributor to lung injury and mortality in adults receiving mechanical ventilation. Recent advances in our understanding of mechanical power have allowed the different mechanical components to be isolated. The preterm lung shares many of the same similarities that would indicate mechanical power may be relevant in this group. To date, the role of mechanical power in neonatal lung injury is unknown. We hypothesise that mechanical power maybe useful in expanding our understanding of preterm lung disease. Specifically, that mechanical power measures may account for gaps in knowledge in how lung injury is initiated. HYPOTHESIS-GENERATING DATA SET To provide a justification for our hypothesis, data in a repository at the Murdoch Children's Research Institute, Melbourne (Australia) were re-analysed. 16 preterm lambs 124-127d gestation (term 145d) who received 90 min of standardised positive pressure ventilation from birth via a cuffed endotracheal tube were chosen as each was exposed to three distinct and clinically relevant respiratory states with unique mechanics. These were (1) the respiratory transition to air-breathing from an entirely fluid-filled lung (rapid aeration and fall in resistance); (2) commencement of tidal ventilation in an acutely surfactant-deficient state (low compliance) and (3) exogenous surfactant therapy (improved aeration and compliance). Total, tidal, resistive and elastic-dynamic mechanical power were calculated from the flow, pressure and volume signals (200 Hz) for each inflation. RESULTS All components of mechanical power behaved as expected for each state. Mechanical power increased during lung aeration from birth to 5 min, before again falling immediately after surfactant therapy. Before surfactant therapy tidal power contributed 70% of total mechanical power, and 53.7% after. The contribution of resistive power was greatest at birth, demonstrating the initial high respiratory system resistance at birth. CONCLUSIONS In our hypothesis-generating dataset, changes in mechanical power were evident during clinically important states for the preterm lung, specifically transition to air-breathing, changes in aeration and surfactant administration. Future preclinical studies using ventilation strategies designed to highlight different types of lung injury, including volu-, baro- and ergotrauma, are needed to test our hypothesis.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Neonatology, The Royal Children's Hospital, Parkville, Australia
| | - Hannah Naidu
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia
| | - Hamish D Tingay
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Martin C J Kneyber
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
- Critical Care, Anaesthesiology, Peri-Operative and Emergency Medicine, The University of Groningen, Groningen, The Netherlands
| | - Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus R3, 24105, Kiel, Germany.
| |
Collapse
|
10
|
Dahm SI, Kenna KR, Stewart D, Pereira-Fantini PM, McCall KE, Perkins EJ, Sourial M, Tingay DG. Aeration strategy at birth does not impact carotid haemodynamics in preterm lambs. Pediatr Res 2023; 93:1226-1232. [PMID: 35974157 PMCID: PMC10132978 DOI: 10.1038/s41390-022-02244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The impact of different respiratory strategies at birth on the preterm lung is well understood; however, concerns have been raised that lung recruitment may impede cerebral haemodynamics. This study aims to examine the effect of three different ventilation strategies on carotid blood flow, carotid artery oxygen content and carotid oxygen delivery. METHODS 124-127-day gestation apnoeic intubated preterm lambs studied as part of a larger programme primarily assessing lung injury were randomised to positive pressure ventilation with positive end-expiratory pressure (PEEP) 8 cmH2O (No-RM; n = 12), sustained inflation (SI; n = 15) or dynamic PEEP strategy (DynPEEP; maximum PEEP 14 or 20 cmH2O, n = 41) at birth, followed by 90 min of standardised ventilation. Haemodynamic data were continuously recorded, with intermittent arterial blood gas analysis. RESULTS Overall carotid blood flow measures were comparable between strategies. Except for mean carotid blood flow that was significantly lower for the SI group compared to the No-RM and DynPEEP groups over the first 3 min (p < 0.0001, mixed effects model). Carotid oxygen content and oxygen delivery were similar between strategies. Maximum PEEP level did not alter cerebral haemodynamic measures. CONCLUSIONS Although there were some short-term variations in cerebral haemodynamics between different PEEP strategies and SI, these were not sustained. IMPACT Different pressure strategies to facilitate lung aeration at birth in preterm infants have been proposed. There is minimal information on the effect of lung recruitment on cerebral haemodynamics. This is the first study that compares the effect of sustained lung inflation and dynamic and static positive end-expiratory pressure on cerebral haemodynamics. We found that the different ventilation strategies did not alter carotid blood flow, carotid oxygen content or carotid oxygen delivery. This preclinical study provides some reassurance that respiratory strategies designed to focus on lung aeration at birth may not impact cerebral haemodynamics in preterm neonates.
Collapse
Affiliation(s)
- Sophia I Dahm
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Kelly R Kenna
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - David Stewart
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Neonatology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Karen E McCall
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Neonatology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Neonatology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Magdy Sourial
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Neonatology, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Sett A, Kenna KR, Sutton RJ, Perkins EJ, Sourial M, Chapman JD, Donath SM, Sasi A, Rogerson SR, Manley BJ, Davis PG, Pereira-Fantini PM, Tingay DG. Lung ultrasound of the dependent lung detects real-time changes in lung volume in the preterm lamb. Arch Dis Child Fetal Neonatal Ed 2023; 108:51-56. [PMID: 35750468 PMCID: PMC9763221 DOI: 10.1136/archdischild-2022-323900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/03/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Effective lung protective ventilation requires reliable, real-time estimation of lung volume at the bedside. Neonatal clinicians lack a readily available imaging tool for this purpose. OBJECTIVE To determine the ability of lung ultrasound (LUS) of the dependent region to detect real-time changes in lung volume, identify opening and closing pressures of the lung, and detect pulmonary hysteresis. METHODS LUS was performed on preterm lambs (n=20) during in vivo mapping of the pressure-volume relationship of the respiratory system using the super-syringe method. Electrical impedance tomography was used to derive regional lung volumes. Images were blindly graded using an expanded scoring system. The scores were compared with total and regional lung volumes, and differences in LUS scores between pressure increments were calculated. RESULTS Changes in LUS scores correlated moderately with changes in total lung volume (r=0.56, 95% CI 0.47-0.64, p<0.0001) and fairly with right whole (r=0.41, CI 0.30-0.51, p<0.0001), ventral (r=0.39, CI 0.28-0.49, p<0.0001), central (r=0.41, CI 0.31-0.52, p<0.0001) and dorsal (r=0.38, CI 0.27-0.49, p<0.0001) regional lung volumes. The pressure-volume relationship of the lung exhibited hysteresis in all lambs. LUS was able to detect hysteresis in 17 (85%) lambs. The greatest changes in LUS scores occurred at the opening and closing pressures. CONCLUSION LUS was able to detect large changes in total and regional lung volume in real time and correctly identified opening and closing pressures but lacked the precision to detect small changes in lung volume. Further work is needed to improve precision prior to translation to clinical practice.
Collapse
Affiliation(s)
- Arun Sett
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia .,Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia.,Newborn Services, Joan Kirner Women's and Children's, Sunshine Hospital, Western Health, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.,Paediatric Infant Perinatal Emergency Retrieval, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Kelly R Kenna
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Rebecca J Sutton
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Translational Research Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Magdy Sourial
- Translational Research Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jack D Chapman
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Susan M Donath
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Arun Sasi
- Paediatric Infant Perinatal Emergency Retrieval, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sheryle R Rogerson
- Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia,Paediatric Infant Perinatal Emergency Retrieval, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Brett J Manley
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Davis
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia,Department of Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Pereira-Fantini PM, Ferguson K, McCall K, Oakley R, Perkins E, Byars S, Williamson N, Nie S, Tingay DG. Respiratory strategy at birth initiates distinct lung injury phenotypes in the preterm lamb lung. Respir Res 2022; 23:346. [DOI: 10.1186/s12931-022-02244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
A lack of clear trial evidence often hampers clinical decision-making during support of the preterm lung at birth. Protein biomarkers have been used to define acute lung injury phenotypes and improve patient selection for specific interventions in adult respiratory distress syndrome. The objective of the study was to use proteomics to provide a deeper biological understanding of acute lung injury phenotypes resulting from different aeration strategies at birth in the preterm lung.
Methods
Changes in protein abundance against an unventilated group (n = 7) were identified via mass spectrometry in a biobank of gravity dependent and non-dependent lung tissue from preterm lambs managed with either a Sustained Inflation (SI, n = 20), Dynamic PEEP (DynPEEP, n = 19) or static PEEP (StatPEEP, n = 11). Ventilation strategy-specific pathways and functions were identified (PANTHER and WebGestalt Tool) and phenotypes defined using integrated analysis of proteome, physiological and clinical datasets (MixOmics package).
Results
2372 proteins were identified. More altered proteins were identified in the non-dependent lung, and in SI group than StatPEEP and DynPEEP. Different inflammation, immune system, apoptosis and cytokine pathway enrichment were identified for each strategy and lung region. Specific integration maps of clinical and physiological outcomes to specific proteins could be generated for each strategy.
Conclusions
Proteomics mapped the molecular events initiating acute lung injury and identified detailed strategy-specific phenotypes. This study demonstrates the potential to characterise preterm lung injury by the direct aetiology and response to lung injury; the first step towards true precision medicine in neonatology.
Collapse
|
13
|
Sett A, Foo GWC, Kenna KR, Sutton RJ, Perkins EJ, Sourial M, Rogerson SR, Manley BJ, Davis PG, Pereira-Fantini PM, Tingay DG. Quantitative lung ultrasound detects dynamic changes in lung recruitment in the preterm lamb. Pediatr Res 2022; 93:1591-1598. [PMID: 36167816 PMCID: PMC10172106 DOI: 10.1038/s41390-022-02316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Lung ultrasound (LUS) may not detect small, dynamic changes in lung volume. Mean greyscale measurement using computer-assisted image analysis (Q-LUSMGV) may improve the precision of these measurements. METHODS Preterm lambs (n = 40) underwent LUS of the dependent or non-dependent lung during static pressure-volume curve mapping. Total and regional lung volumes were determined using the super-syringe technique and electrical impedance tomography. Q-LUSMGV and gold standard measurements of lung volume were compared in 520 images. RESULTS Dependent Q-LUSMGV moderately correlated with total lung volume (rho = 0.60, 95% CI 0.51-0.67) and fairly with right whole (rho = 0.39, 0.27-0.49), central (rho = 0.38, 0.27-0.48), ventral (rho = 0.41, 0.31-0.51) and dorsal regional lung volumes (rho = 0.32, 0.21-0.43). Non-dependent Q-LUSMGV moderately correlated with total lung volume (rho = 0.57, 0.48-0.65) and fairly with right whole (rho = 0.43, 0.32-0.52), central (rho = 0.46, 0.35-0.55), ventral (rho = 0.36, 0.25-0.47) and dorsal lung volumes (rho = 0.36, 0.25-0.47). All correlation coefficients were statistically significant. Distinct inflation and deflation limbs, and sonographic pulmonary hysteresis occurred in 95% of lambs. The greatest changes in Q-LUSMGV occurred at the opening and closing pressures. CONCLUSION Q-LUSMGV detected changes in total and regional lung volume and offers objective quantification of LUS images, and may improve bedside discrimination of real-time changes in lung volume. IMPACT Lung ultrasound (LUS) offers continuous, radiation-free imaging that may play a role in assessing lung recruitment but may not detect small changes in lung volume. Mean greyscale image analysis using computer-assisted quantitative LUS (Q-LUSMGV) moderately correlated with changes in total and regional lung volume. Q-LUSMGV identified opening and closing pressure and pulmonary hysteresis in 95% of lambs. Computer-assisted image analysis may enhance LUS estimation of lung recruitment at the bedside. Future research should focus on improving precision prior to clinical translation.
Collapse
Affiliation(s)
- Arun Sett
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia. .,Newborn Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia. .,Joan Kirner Women's and Children's Hospital, Western Health, St Albans, VIC, Australia. .,Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia. .,Paediatric Infant Perinatal Emergency Retrieval, The Royal Children's Hospital, Parkville, VIC, Australia.
| | - Gillian W C Foo
- Newborn Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia
| | - Kelly R Kenna
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Rebecca J Sutton
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Translational Research Unit, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Magdy Sourial
- Translational Research Unit, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sheryle R Rogerson
- Newborn Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Paediatric Infant Perinatal Emergency Retrieval, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Brett J Manley
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Newborn Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
| | - Peter G Davis
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Newborn Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Newborn Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Newborn Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of Neonatology, The Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|
14
|
Gaertner VD, Waldmann AD, Davis PG, Bassler D, Springer L, Thomson J, Tingay DG, Rüegger CM. Lung volume distribution in preterm infants on non-invasive high-frequency ventilation. Arch Dis Child Fetal Neonatal Ed 2022; 107:551-557. [PMID: 35101993 DOI: 10.1136/archdischild-2021-322990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Non-invasive high-frequency oscillatory ventilation (nHFOV) is an extension of nasal continuous positive airway pressure (nCPAP) support in neonates. We aimed to compare global and regional distribution of lung volumes during nHFOV versus nCPAP. METHODS In 30 preterm infants enrolled in a randomised crossover trial comparing nHFOV with nCPAP, electrical impedance tomography data were recorded in prone position. For each mode of respiratory support, four episodes of artefact-free tidal ventilation, each comprising 30 consecutive breaths, were extracted. Tidal volumes (VT) in 36 horizontal slices, indicators of ventilation homogeneity and end-expiratory lung impedance (EELI) for the whole lung and for four horizontal regions of interest (non-gravity-dependent to gravity-dependent; EELINGD, EELImidNGD, EELImidGD, EELIGD) were compared between nHFOV and nCPAP. Aeration homogeneity ratio (AHR) was determined by dividing aeration in non-gravity-dependent parts of the lung through gravity-dependent regions. MAIN RESULTS Overall, 228 recordings were analysed. Relative VT was greater in all but the six most gravity-dependent lung slices during nCPAP (all p<0.05). Indicators of ventilation homogeneity were similar between nHFOV and nCPAP (all p>0.05). Aeration was increased during nHFOV (mean difference (95% CI)=0.4 (0.2 to 0.6) arbitrary units per kilogram (AU/kg), p=0.013), mainly due to an increase in non-gravity-dependent regions of the lung (∆EELINGD=6.9 (0.0 to 13.8) AU/kg, p=0.028; ∆EELImidNGD=6.8 (1.2 to 12.4) AU/kg, p=0.009). Aeration was more homogeneous during nHFOV compared with nCPAP (mean difference (95% CI) in AHR=0.01 (0.00 to 0.02), p=0.0014). CONCLUSION Although regional ventilation was similar between nHFOV and nCPAP, end-expiratory lung volume was higher and aeration homogeneity was slightly improved during nHFOV. The aeration difference was greatest in non-gravity dependent regions, possibly due to the oscillatory pressure waveform. The clinical importance of these findings is still unclear.
Collapse
Affiliation(s)
- Vincent D Gaertner
- Newborn Research, Department of Neonatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Peter G Davis
- Newborn Research Centre and Neonatal Services, The Royal Women's Hospital, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,University of Melbourne, Melbourne, Victoria, Australia
| | - Dirk Bassler
- Newborn Research, Department of Neonatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Laila Springer
- Department of Neonatology, University Children's Hospital Tubingen, Tubingen, Germany
| | - Jessica Thomson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,University of Melbourne, Melbourne, Victoria, Australia
| | - David Gerald Tingay
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,University of Melbourne, Melbourne, Victoria, Australia.,Department of Neonatology, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Christoph Martin Rüegger
- Newborn Research, Department of Neonatology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Bhatia R, Carlisle HR, Armstrong RK, Kamlin COF, Davis PG, Tingay DG. Extubation generates lung volume inhomogeneity in preterm infants. Arch Dis Child Fetal Neonatal Ed 2022; 107:82-86. [PMID: 34162692 DOI: 10.1136/archdischild-2021-321788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/26/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate the feasibility of electrical impedance tomography (EIT) to describe the regional tidal ventilation (VT) and change in end-expiratory lung volume (EELV) patterns in preterm infants during the process of extubation from invasive to non-invasive respiratory support. DESIGN Prospective observational study. SETTING Single-centre tertiary neonatal intensive care unit. PATIENTS Preterm infants born <32 weeks' gestation who were being extubated to nasal continuous positive airway pressure as per clinician discretion. INTERVENTIONS EIT measurements were taken in supine infants during elective extubation from synchronised positive pressure ventilation (SIPPV) before extubation, during and then at 2 and 20 min after commencing nasal continuous positive applied pressure (nCPAP). Extubation and pressure settings were determined by clinicians. MAIN OUTCOME MEASURES Global and regional ΔEELV and ΔVT, heart rate, respiratory rate and oxygen saturation were measured throughout. RESULTS Thirty infants of median (range) 2 (1, 21) days were extubated to a median (range) CPAP 7 (6, 8) cm H2O. SpO2/FiO2 ratio was a mean (95% CI) 50 (35, 65) lower 20 min after nCPAP compared with SIPPV. EELV was lower at all points after extubation compared with SIPPV, and EELV loss was primarily in the ventral lung (p=0.04). VT was increased immediately after extubation, especially in the central and ventral regions of the lung, but the application of nCPAP returned VT to pre-extubation patterns. CONCLUSIONS EIT was able to describe the complex lung conditions occurring during extubation to nCPAP, specifically lung volume loss and greater use of the dorsal lung. EIT may have a role in guiding peri-extubation respiratory support.
Collapse
Affiliation(s)
- Risha Bhatia
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia .,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Monash Newborn, Monash Children's Hospital, Clayton, Victoria, Australia
| | - Hazel R Carlisle
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Neonatology, Centenary Hospital for Women and Children, Canberra, Australian Capital Territory, Australia
| | - Ruth K Armstrong
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Neonatology, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - C Omar Farouk Kamlin
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Peter G Davis
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - David G Tingay
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Neonatology, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Abstract
Mechanical ventilation can be life-saving for the premature infant, but is often injurious to immature and underdeveloped lungs. Lung injury is caused by atelectrauma, oxygen toxicity, and volutrauma. Lung protection must include appropriate lung recruitment starting in the delivery suite and throughout mechanical ventilation. Strategies include open lung ventilation, positive end-expiratory pressure, and volume-targeted ventilation. Respiratory function monitoring, such as capnography and ventilator graphics, provides clinicians with continuous real-time information and an adjunct to optimize lung-protective ventilatory strategies. Further research is needed to assess which lung-protective strategies result in a decrease in long-term respiratory morbidity.
Collapse
|
17
|
Thomson J, Rüegger CM, Perkins EJ, Pereira-Fantini PM, Farrell O, Owen LS, Tingay DG. Regional ventilation characteristics during non-invasive respiratory support in preterm infants. Arch Dis Child Fetal Neonatal Ed 2021; 106:370-375. [PMID: 33246967 DOI: 10.1136/archdischild-2020-320449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To determine the regional ventilation characteristics during non-invasive ventilation (NIV) in stable preterm infants. The secondary aim was to explore the relationship between indicators of ventilation homogeneity and other clinical measures of respiratory status. DESIGN Prospective observational study. SETTING Two tertiary neonatal intensive care units. PATIENTS Forty stable preterm infants born <30 weeks of gestation receiving either continuous positive airway pressure (n=32) or high-flow nasal cannulae (n=8) at least 24 hours after extubation at time of study. INTERVENTIONS Continuous electrical impedance tomography imaging of regional ventilation during 60 min of quiet breathing on clinician-determined non-invasive settings. MAIN OUTCOME MEASURES Gravity-dependent and right-left centre of ventilation (CoV), percentage of whole lung tidal volume (VT) by lung region and percentage of lung unventilated were determined for 120 artefact-free breaths/infant (4770 breaths included). Oxygen saturation, heart and respiratory rates were also measured. RESULTS Ventilation was greater in the right lung (mean 69.1 (SD 14.9)%) total VT and the gravity-non-dependent (ND) lung; ideal-actual CoV 1.4 (4.5)%. The central third of the lung received the most VT, followed by the non-dependent and dependent regions (p<0.0001 repeated-measure analysis of variance). Ventilation inhomogeneity was associated with worse peripheral capillary oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) (p=0.031, r2 0.12; linear regression). In those infants that later developed bronchopulmonary dysplasia (n=25), SpO2/FiO2 was worse and non-dependent ventilation inhomogeneity was greater than in those that did not (both p<0.05, t-test Welch correction). CONCLUSIONS There is high breath-by-breath variability in regional ventilation patterns during NIV in preterm infants. Ventilation favoured the ND lung, with ventilation inhomogeneity associated with worse oxygenation.
Collapse
Affiliation(s)
- Jessica Thomson
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia .,Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Christoph M Rüegger
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Newborn Research, Department of Neonatology, University Hospital and University of Zürich, Zürich, Switzerland
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | | | - Olivia Farrell
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Louise S Owen
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Neonatology, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Gaertner VD, Waldmann AD, Davis PG, Bassler D, Springer L, Thomson J, Tingay DG, Rüegger CM. Transmission of Oscillatory Volumes into the Preterm Lung during Noninvasive High-Frequency Ventilation. Am J Respir Crit Care Med 2021; 203:998-1005. [PMID: 33095994 DOI: 10.1164/rccm.202007-2701oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: There is increasing evidence for a clinical benefit of noninvasive high-frequency oscillatory ventilation (nHFOV) in preterm infants. However, it is still unknown whether the generated oscillations are effectively transmitted to the alveoli.Objectives: To assess magnitude and regional distribution of oscillatory volumes (VOsc) at the lung level.Methods: In 30 prone preterm infants enrolled in a randomized crossover trial comparing nHFOV with nasal continuous positive airway pressure, electrical impedance tomography recordings were performed. During nHFOV, the smallest amplitude to achieve visible chest wall vibration was used, and the frequency was set at 8 hertz.Measurements and Main Results: Thirty consecutive breaths during artifact-free tidal ventilation were extracted for each of the 228 electrical impedance tomography recordings. After application of corresponding frequency filters, Vt and VOsc were calculated. There was a signal at 8 and 16 Hz during nHFOV, which was not detectable during nasal continuous positive airway pressure, corresponding to the set oscillatory frequency and its second harmonic. During nHFOV, the mean (SD) VOsc/Vt ratio was 0.20 (0.13). Oscillations were more likely to be transmitted to the non-gravity-dependent (mean difference [95% confidence interval], 0.041 [0.025-0.058]; P < 0.001) and right-sided lung (mean difference [95% confidence interval], 0.040 [0.019-0.061]; P < 0.001) when compared with spontaneous Vt.Conclusions: In preterm infants, VOsc during nHFOV are transmitted to the lung. Compared with the regional distribution of tidal breaths, oscillations preferentially reach the right and non-gravity-dependent lung. These data increase our understanding of the physiological processes underpinning nHFOV and may lead to further refinement of this novel technique.
Collapse
Affiliation(s)
- Vincent D Gaertner
- Newborn Research, Department of Neonatology, University Hospital and University of Zürich, Zürich, Switzerland
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Peter G Davis
- Newborn Research Centre and Neonatal Services, The Royal Women's Hospital, Melbourne, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Dirk Bassler
- Newborn Research, Department of Neonatology, University Hospital and University of Zürich, Zürich, Switzerland
| | - Laila Springer
- Department of Neonatology, University Children's Hospital, Tübingen, Germany; and
| | - Jessica Thomson
- The University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David G Tingay
- The University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Christoph M Rüegger
- Newborn Research, Department of Neonatology, University Hospital and University of Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Tingay DG, Farrell O, Thomson J, Perkins EJ, Pereira-Fantini PM, Waldmann AD, Rüegger C, Adler A, Davis PG, Frerichs I. Imaging the Respiratory Transition at Birth: Unraveling the Complexities of the First Breaths of Life. Am J Respir Crit Care Med 2021; 204:82-91. [PMID: 33545023 DOI: 10.1164/rccm.202007-2997oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: The transition to air breathing at birth is a seminal respiratory event common to all humans, but the intrathoracic processes remain poorly understood. Objectives: The objectives of this prospective, observational study were to describe the spatiotemporal gas flow, aeration, and ventilation patterns within the lung in term neonates undergoing successful respiratory transition. Methods: Electrical impedance tomography was used to image intrathoracic volume patterns for every breath until 6 minutes from birth in neonates born by elective cesearean section and not needing resuscitation. Breaths were classified by video data, and measures of lung aeration, tidal flow conditions, and intrathoracic volume distribution calculated for each inflation. Measurements and Main Results: A total of 1,401 breaths from 17 neonates met all eligibility and data analysis criteria. Stable FRC was obtained by median (interquartile range) 43 (21-77) breaths. Breathing patterns changed from predominantly crying (80.9% first min) to tidal breathing (65.3% sixth min). From birth, tidal ventilation was not uniform within the lung, favoring the right and nondependent regions; P < 0.001 versus left and dependent regions (mixed-effects model). Initial crying created a unique volumetric pattern with delayed midexpiratory gas flow associated with intrathoracic volume redistribution (pendelluft flow) within the lung. This preserved FRC, especially within the dorsal and right regions. Conclusions: The commencement of air breathing at birth generates unique flow and volume states associated with marked spatiotemporal ventilation inhomogeneity not seen elsewhere in respiratory physiology. At birth, neonates innately brake expiratory flow to defend FRC gains and redistribute gas to less aerated regions.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Neonatology, Royal Children's Hospital, Melbourne, Australia.,Neonatal Research, The Royal Women's Hospital, Melbourne, Australia
| | - Olivia Farrell
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jessica Thomson
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Germany
| | | | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada; and
| | - Peter G Davis
- Neonatal Research, The Royal Women's Hospital, Melbourne, Australia
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
20
|
Synchronized Inflations Generate Greater Gravity-Dependent Lung Ventilation in Neonates. J Pediatr 2021; 228:24-30.e10. [PMID: 32827530 DOI: 10.1016/j.jpeds.2020.08.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To describe the regional distribution patterns of tidal ventilation within the lung during mechanical ventilation that is synchronous or asynchronous with an infant's own breathing effort. STUDY DESIGN Intubated infants receiving synchronized mechanical ventilation at The Royal Children's Hospital neonatal intensive care unit were studied. During four 10-minute periods of routine care, regional distribution of tidal volume (VT; electrical impedance tomography), delivered pressure, and airway flow (Florian Respiratory Monitor) were measured for every inflation. Post hoc, each inflation was then classified as synchronous or asynchronous from video data of the ventilator screen, and the distribution of absolute VT and delivered ventilation characteristics determined. RESULTS In total, 2749 inflations (2462 synchronous) were analyzed in 19 infants; mean (SD) age 28 (30) days, gestational age 35 (5) weeks. Synchronous inflations were associated with a shorter respiratory cycle (P = .004) and more homogenous VT (center of ventilation) along the right (0%) to left (100%) lung plane; 45.3 (8.6)% vs 48.8 (9.4)% (uniform ventilation 46%). The gravity-dependent center of ventilation was a mean (95% CI) 2.1 (-0.5, 4.6)% toward the dependent lung during synchronous inflations. Tidal ventilation relative to anatomical lung size was more homogenous during synchronized inflations in the dependent lung. CONCLUSIONS Synchronous mechanical ventilator lung inflations generate more gravity-dependent lung ventilation and more uniform right-to-left ventilation than asynchronous inflations.
Collapse
|
21
|
Schmid C, Ignjatovic V, Pang B, Nie S, Williamson NA, Tingay DG, Pereira-Fantini PM. Proteomics reveals region-specific hemostatic alterations in response to mechanical ventilation in a preterm lamb model of lung injury. Thromb Res 2020; 196:466-475. [PMID: 33075590 DOI: 10.1016/j.thromres.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Preterm infants often require assisted ventilation, however ventilation when applied to the immature lung can initiate ventilator-induced lung injury (VILI). The biotrauma which underscores VILI is largely undefined, and is likely to involve vascular injury responses, including hemostasis. We aimed to use a ventilated, preterm lamb model to: (1) characterize regional alterations in hemostatic mediators within the lung and (2) assess the functional impact of protein alterations on hemostasis by analyzing temporal thrombin generation. MATERIALS AND METHODS Preterm lambs delivered at 124 to 127 days gestation received 90 min of mechanical ventilation (positive end-expiratory pressure = 8 cm H2O, VT = 6-8 ml/kg) and were compared with unventilated control lambs. At study completion, lung tissue was taken from standardized nondependent and gravity-dependent regions, and Orbitrap-mass spectrometry and KEGG were used to identify and map regional alterations in hemostasis pathway members. Temporal alterations in plasma thrombin generation were assessed. RESULTS Ventilation was distributed towards the nondependent lung. Significant changes in hemostatic protein abundance, were detected at a two-fold higher rate in the nondependent lung when compared with the gravity-dependent lung. Seven proteins were uniquely altered in non-dependent lung (SERPINA1, MYL12A, RAP1B, RHOA, ITGB1, A2M, GNAI2), compared with a single proteins in gravity-dependent lung (COL1A2). Four proteins were altered in both regions (VTN, FGG, FGA, and ACTB). Tissue protein alterations were mirrored by plasma hypocoagulability at 90-minutes of ventilation. CONCLUSIONS We observed regionally specific, hemostatic alterations within the preterm lung together with disturbed fibrinolysis following a short period of mechanical ventilation.
Collapse
Affiliation(s)
- Christine Schmid
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Neonatology, Royal Children's Hospital, Parkville, Australia
| | - Vera Ignjatovic
- Department of Paediatrics, University of Melbourne, Parkville, Australia; Haematology Research, Murdoch Children's Research Institute, Parkville, Australia
| | - Boyuan Pang
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Shuai Nie
- Bio21 Institute, University of Melbourne, Parkville, Australia
| | | | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Neonatology, Royal Children's Hospital, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| |
Collapse
|
22
|
Pereira-Fantini PM, Pang B, Byars SG, Oakley RB, Perkins EJ, Dargaville PA, Davis PG, Nie S, Williamson NA, Ignjatovic V, Tingay DG. Preterm Lung Exhibits Distinct Spatiotemporal Proteome Expression at Initiation of Lung Injury. Am J Respir Cell Mol Biol 2020; 61:631-642. [PMID: 30995072 DOI: 10.1165/rcmb.2019-0084oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of regional lung injury in the preterm lung is not well understood. This study aimed to characterize time-dependent and regionally specific injury patterns associated with early ventilation of the preterm lung using a mass spectrometry-based proteomic approach. Preterm lambs delivered at 124-127 days gestation received 15 or 90 minutes of mechanical ventilation (positive end-expiratory pressure = 8 cm H2O, Vt = 6-8 ml/kg) and were compared with unventilated control lambs. At study completion, lung tissue was taken from standardized nondependent and dependent regions, and assessed for lung injury via histology, quantitative PCR, and proteomic analysis using Orbitrap-mass spectrometry. Ingenuity pathway analysis software was used to identify temporal and region-specific enrichments in pathways and functions. Apoptotic cell numbers were ninefold higher in nondependent lung at 15 and 90 minutes compared with controls, whereas proliferative cells were increased fourfold in the dependent lung at 90 minutes. The relative gene expression of lung injury markers was increased at 90 minutes in nondependent lung and unchanged in gravity-dependent lung. Within the proteome, the number of differentially expressed proteins was fourfold higher in the nondependent lung than the dependent lung. The number of differential proteins increased over time in both lung regions. A total of 95% of enriched canonical pathways and 94% of enriched cellular and molecular functions were identified only in nondependent lung tissue from the 90-minute ventilation group. In conclusion, complex injury pathways are initiated within the preterm lung after 15 minutes of ventilation and amplified by continuing ventilation. Injury development is region specific, with greater alterations within the proteome of nondependent lung.
Collapse
Affiliation(s)
| | | | - Sean G Byars
- Department of Clinical Pathology.,Melbourne Integrative Genomics
| | | | | | - Peter A Dargaville
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter G Davis
- Neonatal Research, and.,Department of Obstetrics and Gynaecology, and.,The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Shuai Nie
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics
| | - David G Tingay
- Neonatal Research, and.,Department of Paediatrics.,Department of Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Oxygen for respiratory support of moderate and late preterm and term infants at birth: Is air best? Semin Fetal Neonatal Med 2020; 25:101074. [PMID: 31843378 DOI: 10.1016/j.siny.2019.101074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxygen has been used for newborn infant resuscitation for more than two centuries. In the last two decades, concerns about oxidative stress and injury have changed this practice. Air (FiO2 0.21) is now preferred as the starting point for respiratory support of infants 34 weeks gestation and above. These recommendations are derived from studies that were conducted on asphyxiated, term infants, recruited more than 10 years ago using strategies that are not commonly used today. The applicability of these recommendations to current practice, is uncertain. In addition, whether initiating respiratory support with air for infants with pulmonary disorders provides sufficient oxygenation is also unclear. This review will address these concerns and provide suggestions for future steps to address knowledge and practice gaps.
Collapse
|
24
|
Feasibility of combining two individualized lung recruitment maneuvers at birth for very low gestational age infants: a retrospective cohort study. BMC Pediatr 2020; 20:144. [PMID: 32238150 PMCID: PMC7114798 DOI: 10.1186/s12887-020-02055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/27/2020] [Indexed: 01/21/2023] Open
Abstract
Background Lung recruitment at birth has been advocated as an effective method of improving the respiratory transition at birth. Sustained inflations (SI) and dynamic positive end-expiratory pressure (PEEP) were assessed in clinical and animal studies to define the optimal level. Our working hypothesis was that very low gestational age infants (VLGAI) < 32 weeks’ gestation require an individualized lung recruitment based on combining both manoeuvers. Methods Between 2014 and 2016, 91 and 72 inborn VLGAI, requiring a respiratory support beyond a continuous positive airway pressure (CPAP) = 5 cmH2O, were enrolled before and after introducing these manoeuvers based on progressive increase in SI up to 15 s, with simultaneous gradual increase in PEEP up to 15 cmH2O, according to the cardiorespiratory response. Retrospective comparisons of the incidence of mechanical ventilation (MV) < 72 h of life, short-term and before discharge morbidity were then performed. Results Among extremely low gestational age infants (ELGAI) < 29 weeks’ gestation, the following outcomes decreased significantly: intubation (90 to 55%) and surfactant administration (54 to 12%) in the delivery room, MV (92 to 71%) and its mean duration < 72 h of life (45 h to 13 h), administration of a 2nd dose of surfactant (35 to 12%) and postnatal corticosteroids (52 to 19%), and the rate of bronchopulmonary dysplasia (23 to 5%). Among VLGAI, all of these results were also significant. Neonatal mortality and morbidity were not different. Conclusions In our setting, combining two individualized lung recruitment maneuvers at birth was feasible and may be beneficial on short-term and before discharge pulmonary outcomes. A randomized controlled trial is needed to confirm these results.
Collapse
|
25
|
Tingay DG, Pereira-Fantini PM, Oakley R, McCall KE, Perkins EJ, Miedema M, Sourial M, Thomson J, Waldmann A, Dellaca RL, Davis PG, Dargaville PA. Gradual Aeration at Birth Is More Lung Protective Than a Sustained Inflation in Preterm Lambs. Am J Respir Crit Care Med 2020; 200:608-616. [PMID: 30730759 DOI: 10.1164/rccm.201807-1397oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rationale: The preterm lung is susceptible to injury during transition to air breathing at birth. It remains unclear whether rapid or gradual lung aeration at birth causes less lung injury.Objectives: To examine the effect of gradual and rapid aeration at birth on: 1) the spatiotemporal volume conditions of the lung; and 2) resultant regional lung injury.Methods: Preterm lambs (125 ± 1 d gestation) were randomized at birth to receive: 1) tidal ventilation without an intentional recruitment (no-recruitment maneuver [No-RM]; n = 19); 2) sustained inflation (SI) until full aeration (n = 26); or 3) tidal ventilation with an initial escalating/de-escalating (dynamic) positive end-expiratory pressure (DynPEEP; n = 26). Ventilation thereafter continued for 90 minutes at standardized settings, including PEEP of 8 cm H2O. Lung mechanics and regional aeration and ventilation (electrical impedance tomography) were measured throughout and correlated with histological and gene markers of early lung injury.Measurements and Main Results: DynPEEP significantly improved dynamic compliance (P < 0.0001). An SI, but not DynPEEP or No-RM, resulted in preferential nondependent lung aeration that became less uniform with time (P = 0.0006). The nondependent lung was preferential ventilated by 5 minutes in all groups, with ventilation only becoming uniform with time in the No-RM and DynPEEP groups. All strategies generated similar nondependent lung injury patterns. Only an SI caused greater upregulation of dependent lung gene markers compared with unventilated fetal controls (P < 0.05).Conclusions: Rapidly aerating the preterm lung at birth creates heterogeneous volume states, producing distinct regional injury patterns that affect subsequent tidal ventilation. Gradual aeration with tidal ventilation and PEEP produced the least lung injury.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Neonatology, The Royal Children's Hospital, Parkville, Victoria, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics and
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics and
| | - Regina Oakley
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Karen E McCall
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Neonatology, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Martijn Miedema
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Neonatology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Magdy Sourial
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Jessica Thomson
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | | | - Raffaele L Dellaca
- Dipartimento di Elettronica, Informazione e Ingegneria Biomedica, Politecnico di Milano University, Milan, Italy
| | - Peter G Davis
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter A Dargaville
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Neonatal and Paediatric Intensive Care Unit, Royal Hobart Hospital, Hobart, Tasmania, Australia; and.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
26
|
Veneroni C, Tingay DG, McCall KE, Pereira-Fantini PM, Perkins EJ, Dargaville PA, Dellacà RL. Respiratory mechanics during initial lung aeration at birth in the preterm lamb. Am J Physiol Lung Cell Mol Physiol 2020; 318:L525-L532. [PMID: 31913650 DOI: 10.1152/ajplung.00302.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite recent insights into the dynamic processes during lung aeration at birth, several aspects remain poorly understood. We aimed to characterize changes in lung mechanics during the first inflation at birth and their relationship to changes in lung volume. Intubated preterm lambs (gestational age, 124-127 days; n = 17) were studied at birth. Lung volume changes were measured by electrical impedance tomography (VLEIT). Respiratory system resistance (R5) and oscillatory compliance (Cx5) were monitored with the forced oscillation technique at 5 Hz. Lambs received 3-7 s of 8 cmH2O of continuous distending pressure (CDP) before delivery of a sustained inflation (SI) of 40 cmH2O. The SI was then applied until either Cx5 or the VLEIT or the airway opening volume was stable. CDP was resumed for 3-7 s before commencement of mechanical ventilation. The exponential increases with time of Cx5 and VLEIT from commencement of the SI were characterized by estimating their time constants (τCx5 and τVLEIT, respectively). During SI, a fast decrease in R5 and an exponential increase in Cx5 and VLEIT were observed. Cx5 and VLEIT provided comparable information on the dynamics of lung aeration in all lambs, with τCx5 and τVLEIT being highly linearly correlated (r2 = 0.87, P < 0.001). Cx5 and VLEIT decreased immediately after SI. Despite the standardization of the animal model, changes in Cx5 and R5 both during and after SI were highly variable. Lung aeration at birth is characterized by a fast reduction in resistance and a slower increase in oscillatory compliance, the latter being a direct reflection of the amount of lung aeration.
Collapse
Affiliation(s)
- Chiara Veneroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neonatology, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Karen E McCall
- Department of Neonatology, Wishaw General Hospital, Wishaw, United Kingdom.,School of Medicine and Medical Sciences, University College Dublin, Ireland
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Peter A Dargaville
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Raffaele L Dellacà
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| |
Collapse
|
27
|
Lambert CJ, Hooper SB, Te Pas AB, McGillick EV. Improving Newborn Respiratory Outcomes With a Sustained Inflation: A Systematic Narrative Review of Factors Regulating Outcome in Animal and Clinical Studies. Front Pediatr 2020; 8:516698. [PMID: 33194881 PMCID: PMC7658322 DOI: 10.3389/fped.2020.516698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Respiratory support is critically important for survival of newborns who fail to breathe spontaneously at birth. Although there is no internationally accepted definition of a sustained inflation (SI), it has commonly been defined as a positive pressure inflation designed to establish functional residual capacity and applied over a longer time period than normally used in standard respiratory support (SRS). Outcomes vary distinctly between studies and to date there has been no comprehensive investigation of differences in SI approach and study outcome in both pre-clinical and clinical studies. A systematic literature search was performed and, after screening, identified 17 animal studies and 17 clinical studies evaluating use of a SI in newborns compared to SRS during neonatal resuscitation. Study demographics including gestational age, SI parameters (length, repetitions, pressure, method of delivery) and study outcomes were compared. Animal studies provide mechanistic understanding of a SI on the physiology underpinning the cardiorespiratory transition at birth. In clinical studies, there is considerable difference in study quality, delivery of SIs (number, pressure, length) and timing of primary outcome evaluation which limits direct comparison between studies. The largest difference is method of delivery, where the role of a SI has been observed in intubated animals, as the inflation pressure is directly applied to the lung, bypassing the obstructed upper airway in an apnoeic state. This highlights a potential limitation in clinical use of a SI applied non-invasively. Further research is required to identify if a SI may have greater benefits in subpopulations of newborns.
Collapse
Affiliation(s)
- Calista J Lambert
- The Ritchie Centre Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre Hudson Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Arjan B Te Pas
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Erin V McGillick
- The Ritchie Centre Hudson Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Tingay DG, Togo A, Pereira-Fantini PM, Miedema M, McCall KE, Perkins EJ, Thomson J, Dowse G, Sourial M, Dellacà RL, Davis PG, Dargaville PA. Aeration strategy at birth influences the physiological response to surfactant in preterm lambs. Arch Dis Child Fetal Neonatal Ed 2019; 104:F587-F593. [PMID: 31498776 DOI: 10.1136/archdischild-2018-316240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/26/2018] [Accepted: 12/19/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND The influence of pressure strategies to promote lung aeration at birth on the subsequent physiological response to exogenous surfactant therapy has not been investigated. OBJECTIVES To compare the effect of sustained inflation (SI) and a dynamic positive end-expiratory pressure (PEEP) manoeuvre at birth on the subsequent physiological response to exogenous surfactant therapy in preterm lambs. METHODS Steroid-exposed preterm lambs (124-127 days' gestation; n=71) were randomly assigned from birth to either (1) positive-pressure ventilation (PPV) with no recruitment manoeuvre; (2) SI until stable aeration; or (3) 3 min dynamic stepwise PEEP strategy (maximum 14-20 cmH2O; dynamic PEEP (DynPEEP)), followed by PPV for 60 min using a standardised protocol. Surfactant (200 mg/kg poractant alfa) was administered at 10 min. Dynamic compliance, gas exchange and regional ventilation and aeration characteristics (electrical impedance tomography) were measured throughout and compared between groups, and with a historical group (n=38) managed using the same strategies without surfactant. RESULTS Compliance increased after surfactant only in the DynPEEP group (p<0.0001, repeated measures analysis of variance), being 0.17 (0.10, 0.23) mL/kg/cmH2O higher at 60 min than the SI group. An SI resulted in the least uniform aeration, and unlike the no-recruitment and DynPEEP groups, the distribution of aeration and tidal ventilation did not improve with surfactant. All groups had similar improvements in oxygenation post-surfactant compared with the corresponding groups not treated with surfactant. CONCLUSIONS A DynPEEP strategy at birth may improve the response to early surfactant therapy, whereas rapid lung inflation with SI creates non-uniform aeration that appears to inhibit surfactant efficacy.
Collapse
Affiliation(s)
- David Gerald Tingay
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Andrea Togo
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Martijn Miedema
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia.,Neonatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Karen E McCall
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Elizabeth J Perkins
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jessica Thomson
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Georgie Dowse
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Magdy Sourial
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Raffaele L Dellacà
- TBM Lab, Dipartimento di Elettronica, Informazione e BioIngegneria (DEIB), Politecnico di Milano University, Milan, Italy
| | - Peter G Davis
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Anderson Dargaville
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Neonatal and Paediatric Intensive Care Unit, Royal Hobart Hospital, Hobart, Tasmania, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
29
|
Oakley RB, Tingay DG, McCall KE, Perkins EJ, Sourial M, Dargaville PA, Pereira-Fantini PM. Gestational Age Influences the Early Microarchitectural Changes in Response to Mechanical Ventilation in the Preterm Lamb Lung. Front Pediatr 2019; 7:325. [PMID: 31497582 PMCID: PMC6712425 DOI: 10.3389/fped.2019.00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/19/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm birth is associated with abnormal lung architecture, and a reduction in pulmonary function related to the degree of prematurity. A thorough understanding of the impact of gestational age on lung microarchitecture requires reproducible quantitative analysis of lung structure abnormalities. The objectives of this study were (1) to use quantitative histological software (ImageJ) to map morphological patterns of injury resulting from delivery of an identical ventilation strategy to the lung at varying gestational ages and (2) to identify associations between gestational age-specific morphological alterations and key functional outcomes. Method: Lung morphology was compared after 60 min of a standardized ventilation protocol (40 cm H2O sustained inflation and then volume-targeted positive pressure ventilation with positive end-expiratory pressure 8 cm H2O) in lambs at different gestations (119, 124, 128, 133, 140d) representing the spectrum of premature developmental lung states and the term lung. Age-matched controls were compared at 124 and 128d gestation. Automated and manual functions of Image J were used to measure key histological features. Correlation analysis compared morphological and functional outcomes in lambs aged ≤128 and >128d. Results: In initial studies, unventilated lung was indistinguishable at 124 and 128d. Ventilated lung from lambs aged 124d gestation exhibited increased numbers of detached epithelial cells and lung tissue compared with 128d lambs. Comparing results from saccular to alveolar development (120-140d), lambs aged ≤124d exhibited increased lung tissue, average alveolar area, and increased numbers of detached epithelial cells. Alveolar septal width was increased in lambs aged ≤128d. These findings were mirrored in the measures of gas exchange, lung mechanics, and molecular markers of lung injury. Correlation analysis confirmed the gestation-specific relationships between the histological assessments and functional measures in ventilated lambs at gestation ≤128 vs. >128d. Conclusion: Image J allowed rapid, quantitative assessment of alveolar morphology, and lung injury in the preterm lamb model. Gestational age-specific patterns of injury in response to delivery of an identical ventilation strategy were identified, with 128d being a transition point for associations between morphological alterations and functional outcomes. These results further support the need to develop individualized respiratory support approaches tailored to both the gestational age of the infant and their underlying injury response.
Collapse
Affiliation(s)
- Regina B Oakley
- Neonatal Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - David G Tingay
- Neonatal Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Neonatology, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Karen E McCall
- Neonatal Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,School of Medicine and Medicinal Sciences, University College Dublin, Dublin, Ireland
| | - Elizabeth J Perkins
- Neonatal Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Magdy Sourial
- Neonatal Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Peter A Dargaville
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Pereira-Fantini PM, Byars SG, McCall KE, Perkins EJ, Oakley RB, Dellacà RL, Dargaville PA, Davis PG, Ignjatovic V, Tingay DG. Plasma proteomics reveals gestational age-specific responses to mechanical ventilation and identifies the mechanistic pathways that initiate preterm lung injury. Sci Rep 2018; 8:12616. [PMID: 30135517 PMCID: PMC6105628 DOI: 10.1038/s41598-018-30868-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
The preterm lung is particularly vulnerable to ventilator-induced lung injury (VILI) as a result of mechanical ventilation. However the developmental and pathological cellular mechanisms influencing the changing patterns of VILI have not been comprehensively delineated, preventing the advancement of targeted lung protective therapies. This study aimed to use SWATH-MS to comprehensively map the plasma proteome alterations associated with the initiation of VILI following 60 minutes of standardized mechanical ventilation from birth in three distinctly different developmental lung states; the extremely preterm, preterm and term lung using the ventilated lamb model. Across these gestations, 34 proteins were differentially altered in matched plasma samples taken at birth and 60 minutes. Multivariate analysis of the plasma proteomes confirmed a gestation-specific response to mechanical ventilation with 79% of differentially-expressed proteins altered in a single gestation group only. Six cellular and molecular functions and two physiological functions were uniquely enriched in either the extremely preterm or preterm group. Correlation analysis supported gestation-specific protein-function associations within each group. In identifying the gestation-specific proteome and functional responses to ventilation we provide the founding evidence required for the potential development of individualized respiratory support approaches tailored to both the developmental and pathological state of the lung.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, Australia.
| | - Sean G Byars
- Department of Pathology, University of Melbourne, Parkville, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, Australia
| | - Karen E McCall
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia.,University College Dublin, Dublin, Ireland
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia
| | - Regina B Oakley
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia
| | - R L Dellacà
- Laboratorio di Tecnologie Biomediche, Dipartimento di Elettronica, Informazione e Ingegneria Biomedica-DEIB, Politecnico di Milano University, Milano, Italy
| | - Peter A Dargaville
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Peter G Davis
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia.,The Royal Women's Hospital, Parkville, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
| | - Vera Ignjatovic
- Department of Paediatrics, University of Melbourne, Parkville, Australia.,Haematology Research, Murdoch Childrens Research Institute, Parkville, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia.,Department of Neonatology, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
31
|
Farrell O, Perkins EJ, Black D, Miedema M, Paul JD, Pereira-Fantini PM, Tingay DG. Volume guaranteed? Accuracy of a volume-targeted ventilation mode in infants. Arch Dis Child Fetal Neonatal Ed 2018; 103:F120-F125. [PMID: 28659362 DOI: 10.1136/archdischild-2017-312640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Volume-targeted ventilation (VTV) is widely used and may reduce lung injury, but this assumes the clinically set tidal volume (VTset) is accurately delivered. This prospective observational study aimed to determine the relationship between VTset, expiratory VT (VTe) and endotracheal tube leak in a modern neonatal -volume-targeted ventilator (VTV) and the resultant partial arterial pressure of carbon dioxide (PaCO2) relationship with and without VTV. DESIGN Continuous inflations were recorded for 24 hours in 100 infants, mean (SD) 34 (4) weeks gestation and 2483 (985) g birth weight, receiving synchronised mechanical ventilation (SLE5000, SLE, UK) with or without VTV and either the manufacturer's V4 (n=50) or newer V5 (n=50) VTV algorithm. The VTset, VTe and leak were determined for each inflation (maximum 90 000/infant). If PaCO2 was sampled (maximum of 2 per infant), this was compared with the average VTe data from the preceding 15 min. RESULTS A total of 7 497 137 inflations were analysed. With VTV enabled (77 infants), the VTset-VTe bias (95% CI) was 0.03 (-0.12 to 0.19) mL/kg, with a median of 80% of VTe being ±1.0 mL/kg of VTset. Endotracheal tube leak up to 30% influenced VTset-VTe bias with the V4 (r2=-0.64, p<0.0001; linear regression) but not V5 algorithm (r2=0.04, p=0.21). There was an inverse linear relationship between VTe and PaCO2 without VTV (r2=0.26, p=0.004), but not with VTV (r2=0.04, p=0.10), and less PaCO2 within 40-60 mm Hg, 53% versus 72%, relative risk (95% CI) 1.7 (1.0 to 2.9). CONCLUSION VTV was accurate and reliable even with moderate leak and PaCO2 more stable. VTV algorithm differences may exist in other devices.
Collapse
Affiliation(s)
- Olivia Farrell
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Don Black
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn Miedema
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Neonatology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Joel Don Paul
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David Gerald Tingay
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Neonatology, Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
32
|
Miedema M, McCall KE, Perkins EJ, Oakley RB, Pereira-Fantini PM, Rajapaksa AE, Waldmann AD, Tingay DG, van Kaam AH. Lung Recruitment Strategies During High Frequency Oscillatory Ventilation in Preterm Lambs. Front Pediatr 2018; 6:436. [PMID: 30723711 PMCID: PMC6349831 DOI: 10.3389/fped.2018.00436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/31/2018] [Indexed: 01/28/2023] Open
Abstract
Background: High frequency oscillatory ventilation (HFOV) is considered a lung protective ventilation mode in preterm infants only if lung volume is optimized. However, whilst a "high lung volume strategy" is advocated for HFOV in preterm infants this strategy is not precisely defined. It is not known to what extent lung recruitment should be pursued to provide lung protection. In this study we aimed to determine the relationship between the magnitude of lung volume optimization and its effect on gas exchange and lung injury in preterm lambs. Methods: 36 surfactant-deficient 124-127 d lambs commenced HFOV immediately following a sustained inflation at birth and were allocated to either (1) no recruitment (low lung volume; LLV), (2) medium- (MLV), or (3) high lung volume (HLV) recruitment strategy. Gas exchange and lung volume changes over time were measured. Lung injury was analyzed by post mortem pressure-volume curves, alveolar protein leakage, gene expression, and histological injury score. Results: More animals in the LLV developed a pneumothorax compared to both recruitment groups. Gas exchange was superior in both recruitment groups compared to LLV. Total lung capacity tended to be lower in the LLV group. Other parameters of lung injury were not different. Conclusions: Lung recruitment during HFOV optimizes gas exchange but has only modest effects on lung injury in a preterm animal model. In the HLV group aiming at a more extensive lung recruitment gas exchange was better without affecting lung injury.
Collapse
Affiliation(s)
- Martijn Miedema
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karen E McCall
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Regina B Oakley
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Anushi E Rajapaksa
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Neonatology, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | | | - David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Neonatology, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
McCall KE, Waldmann AD, Pereira-Fantini P, Oakley R, Miedema M, Perkins EJ, Davis PG, Dargaville PA, Böhm SH, Dellacà R, Sourial M, Zannin E, Rajapaksa AE, Tan A, Adler A, Frerichs I, Tingay DG. Time to lung aeration during a sustained inflation at birth is influenced by gestation in lambs. Pediatr Res 2017; 82:712-720. [PMID: 28604757 DOI: 10.1038/pr.2017.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/20/2017] [Indexed: 11/10/2022]
Abstract
BackgroundCurrent sustained lung inflation (SI) approaches use uniform pressures and durations. We hypothesized that gestational-age-related mechanical and developmental differences would affect the time required to achieve optimal lung aeration, and resultant lung volumes, during SI delivery at birth in lambs.Methods49 lambs, in five cohorts between 118 and 139 days of gestation (term 142 d), received a standardized 40 cmH2O SI, which was delivered until 10 s after lung volume stability (optimal aeration) was visualized on real-time electrical impedance tomography (EIT), or to a maximum duration of 180 s. Time to stable lung aeration (Tstable) within the whole lung, gravity-dependent, and non-gravity-dependent regions, was determined from EIT recordings.ResultsTstable was inversely related to gestation (P<0.0001, Kruskal-Wallis test), with the median (range) being 229 (85,306) s and 72 (50,162) s in the 118-d and 139-d cohorts, respectively. Lung volume at Tstable increased with gestation from a mean (SD) of 20 (17) ml/kg at 118 d to 56 (13) ml/kg at 139 d (P=0.002, one-way ANOVA). There were no gravity-dependent regional differences in Tstable or aeration.ConclusionsThe trajectory of aeration during an SI at birth is influenced by gestational age in lambs. An understanding of this may assist in developing SI protocols that optimize lung aeration for all infants.
Collapse
Affiliation(s)
- Karen E McCall
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | | | - Prue Pereira-Fantini
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Regina Oakley
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Martijn Miedema
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Peter G Davis
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter A Dargaville
- Department of Paediatrics, Royal Hobart Hospital, Hobart, Tasmania, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Raffaele Dellacà
- TBM Lab, Dipartimento di Elettronica, Informazione e Ingegneria Biomedica-DEIB, Politecnico di Milano University, Milano, Italy
| | - Magdy Sourial
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Emanuela Zannin
- TBM Lab, Dipartimento di Elettronica, Informazione e Ingegneria Biomedica-DEIB, Politecnico di Milano University, Milano, Italy
| | - Anushi E Rajapaksa
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Andre Tan
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neonatology, The Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Supraglottic Atomization of Surfactant in Spontaneously Breathing Lambs Receiving Continuous Positive Airway Pressure. Pediatr Crit Care Med 2017; 18:e428-e434. [PMID: 28742723 DOI: 10.1097/pcc.0000000000001267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine the short-term tolerance, efficacy, and lung deposition of supraglottic atomized surfactant in spontaneously breathing lambs receiving continuous positive airway pressure. DESIGN Prospective, randomized animal study. SETTING Animal research laboratory. SUBJECTS Twenty-two preterm lambs on continuous positive airway pressure (132 ± 1 d gestational age). INTERVENTIONS Animals receiving continuous positive airway pressure via binasal prongs at 8 cm H2O were randomized to receive atomized surfactant at approximately 60-minute of life (atom; n = 15) or not (control; n = 7). The atom group received 200 mg/kg of poractant alfa (Curosurf; Chiesi Farmaceutici SpA, Parma, Italy) over 45 minutes via a novel atomizer located in the upper pharynx that synchronized surfactant delivery with the inspiratory phase. MEASUREMENTS AND MAIN RESULTS Arterial blood gas, regional distribution of tidal ventilation (electrical impedance tomography), and carotid blood flow were recorded every 15 minutes until 90 minutes after stabilizing on continuous positive airway pressure. Gas exchange, respiratory rate, and hemodynamic variables, including carotid blood flow, remained stable during surfactant treatment. There was a significant improvement in arterial alveolar ratio after surfactant delivery in the atom group (p < 0.05; Sidak posttests), while there was no difference in PaCO2. Electrical impedance tomography data showed a more uniform pattern of ventilation in the atom group. In the atom group, the median (interquartile range) deposition of surfactant in the lung was 32% (22-43%) of the delivered dose, with an even distribution between the right and the left lungs. CONCLUSIONS In our model of spontaneously breathing lambs receiving CPAP, supraglottic atomization of Curosurf via a novel device was safe, improved oxygenation and ventilation homogeneity compared with CPAP only, and provided a relatively large lung deposition suggesting clinical utility.
Collapse
|
35
|
Tingay DG, Rajapaksa A, Zannin E, Pereira-Fantini PM, Dellaca RL, Perkins EJ, Zonneveld CEE, Adler A, Black D, Frerichs I, Lavizzari A, Sourial M, Grychtol B, Mosca F, Davis PG. Effectiveness of individualized lung recruitment strategies at birth: an experimental study in preterm lambs. Am J Physiol Lung Cell Mol Physiol 2016; 312:L32-L41. [PMID: 27881405 DOI: 10.1152/ajplung.00416.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/20/2016] [Indexed: 02/02/2023] Open
Abstract
Respiratory transition at birth involves rapidly clearing fetal lung liquid and preventing efflux back into the lung while aeration is established. We have developed a sustained inflation (SIOPT) individualized to volume response and a dynamic tidal positive end-expiratory pressure (PEEP) (open lung volume, OLV) strategy that both enhance this process. We aimed to compare the effect of each with a group managed with PEEP of 8 cmH2O and no recruitment maneuver (No-RM), on gas exchange, lung mechanics, spatiotemporal aeration, and lung injury in 127 ± 1 day preterm lambs. Forty-eight fetal-instrumented lambs exposed to antenatal steroids were ventilated for 60 min after application of the allocated strategy. Spatiotemporal aeration and lung mechanics were measured with electrical impedance tomography and forced-oscillation, respectively. At study completion, molecular and histological markers of lung injury were analyzed. Mean (SD) aeration at the end of the SIOPT and OLV groups was 32 (22) and 38 (15) ml/kg, compared with 17 (10) ml/kg (180 s) in the No-RM (P = 0.024, 1-way ANOVA). This translated into better oxygenation at 60 min (P = 0.047; 2-way ANOVA) resulting from better distal lung tissue aeration in SIOPT and OLV. There was no difference in lung injury. Neither SIOPT nor OLV achieved homogeneous aeration. Histological injury and mRNA biomarker upregulation were more likely in the regions with better initial aeration, suggesting volutrauma. Tidal ventilation or an SI achieves similar aeration if optimized, suggesting that preventing fluid efflux after lung liquid clearance is at least as important as fluid clearance during the initial inflation at birth.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia; .,Neonatology, The Royal Children's Hospital, Parkville, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Anushi Rajapaksa
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Emanuela Zannin
- TBM Laboratory, Dipartimento di Elettronica, Informazione e Ingegneria Biomedica-DEIB, Politecnico di Milano University, Milano, Italy
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Raffaele L Dellaca
- TBM Laboratory, Dipartimento di Elettronica, Informazione e Ingegneria Biomedica-DEIB, Politecnico di Milano University, Milano, Italy
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,Neonatology, The Royal Children's Hospital, Parkville, Australia
| | | | - Andy Adler
- Systems and Computer Engineering, Carleton University, Ottawa, Canada
| | - Don Black
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anna Lavizzari
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano, Milano, Italy
| | - Magdy Sourial
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia
| | - Bartłomiej Grychtol
- Fraunhofer Project Group for Automation in Medicine and Biotechnology, Mannheim, Germany; and
| | - Fabio Mosca
- NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano, Milano, Italy
| | - Peter G Davis
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
36
|
Petersen RY, Royse E, Kemp MW, Miura Y, Noe A, Jobe AH, Hillman NH. Distending Pressure Did Not Activate Acute Phase or Inflammatory Responses in the Airways and Lungs of Fetal, Preterm Lambs. PLoS One 2016; 11:e0159754. [PMID: 27463520 PMCID: PMC4962990 DOI: 10.1371/journal.pone.0159754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Background Mechanical ventilation at birth causes airway injury and lung inflammation in preterm sheep. Continuous positive airway pressure (CPAP) is being increasingly used clinically to transition preterm infants at birth. Objective To test if distending pressures will activate acute phase reactants and inflammatory changes in the airways of fetal, preterm lambs. Methods The head and chest of fetal lambs at 128±1 day GA were surgically exteriorized. With placental circulation intact, fetal lambs were then randomized to one of five 15 minute interventions: PEEP of 0, 4, 8, 12, or 16 cmH2O. Recruitment volumes were recorded. Fetal lambs remained on placental support for 30 min after the intervention. The twins of each 0 cmH2O animal served as controls. Fetal lung fluid (FLF), bronchoalveolar lavage fluid (BAL), right mainstem bronchi and peripheral lung tissue were evaluated for inflammation. Results Recruitment volume increased from 0.4±0.04 mL/kg at 4 cmH2O to 2.4±0.3 mL/kg at 16 cmH2O. The lambs were surfactant deficient, and all pressures were below the opening inflection pressure on pressure-volume curve. mRNA expression of early response genes and pro-inflammatory cytokines did not increase in airway tissue or lung tissue at any pressure compared to controls. FLF and BAL also did not have increases in early response proteins. No histologic changes or Egr-1 activation was present at the pressures used. Conclusion Distending pressures as high as 16 cmH2O did not recruit lung volume at birth and did not increase markers of injury in the lung or airways in non-breathing preterm fetal sheep.
Collapse
Affiliation(s)
- Rebecca Y. Petersen
- Division of Neonatology, Cardinal Glennon Children’s Hospital, Saint Louis University, Saint Louis, MO, 63104, United States of America
| | - Emily Royse
- Division of Neonatology, Cardinal Glennon Children’s Hospital, Saint Louis University, Saint Louis, MO, 63104, United States of America
| | - Matthew W. Kemp
- School of Women and Infants’ Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Yuichiro Miura
- School of Women and Infants’ Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Andres Noe
- School of Women and Infants’ Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Alan H. Jobe
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, United States of America
- School of Women and Infants’ Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Noah H. Hillman
- Division of Neonatology, Cardinal Glennon Children’s Hospital, Saint Louis University, Saint Louis, MO, 63104, United States of America
- * E-mail:
| |
Collapse
|
37
|
Tingay DG, Rajapaksa A, McCall K, Zonneveld CEE, Black D, Perkins E, Sourial M, Lavizzari A, Davis PG. The interrelationship of recruitment maneuver at birth, antenatal steroids, and exogenous surfactant on compliance and oxygenation in preterm lambs. Pediatr Res 2016; 79:916-21. [PMID: 26866905 DOI: 10.1038/pr.2016.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND To describe the interrelationship between antenatal steroids, exogenous surfactant, and two approaches to lung recruitment at birth on oxygenation and respiratory system compliance (Cdyn) in preterm lambs. METHODS Lambs (n = 63; gestational age 127 ± 1 d) received either surfactant at 10-min life (Surfactant), antenatal corticosteroids (Steroid), or neither (Control). Within each epoch lambs were randomly assigned to a 30-s 40 cmH2O sustained inflation (SI) or an initial stepwise positive end-expiratory pressure (PEEP) open lung ventilation (OLV) maneuver at birth. All lambs then received the same management for 60-min with alveolar-arterial oxygen difference (AaDO2) and Cdyn measured at regular time points. RESULTS Overall, the OLV strategy improved Cdyn and AaDO2 (all epochs except Surfactant) compared to SI (all P < 0.05; two-way ANOVA). Irrespective of strategy, Cdyn was better in the Steroid group in the first 10 min (all P < 0.05). Thereafter, Cdyn was similar to Steroid epoch in the OLV + Surfactant, but not SI + Surfactant group. OLV influenced the effect of steroid and surfactant (P = 0.005) on AaDO2 more than SI (P = 0.235). CONCLUSIONS The antenatal state of the lung influences the type and impact of a recruitment maneuver at birth. The effectiveness of surfactant maybe enhanced using PEEP-based time-dependent recruitment strategies rather than approaches solely aimed at initial lung liquid clearance.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Neonatal Research Group, The Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Anushi Rajapaksa
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Karen McCall
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Cornelis E E Zonneveld
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Don Black
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Elizabeth Perkins
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Magdy Sourial
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anna Lavizzari
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano, Milano, Italy
| | - Peter G Davis
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Neonatal Research Group, The Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Pereira-Fantini PM, Rajapaksa AE, Oakley R, Tingay DG. Selection of Reference Genes for Gene Expression Studies related to lung injury in a preterm lamb model. Sci Rep 2016; 6:26476. [PMID: 27210246 PMCID: PMC4876477 DOI: 10.1038/srep26476] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Preterm newborns often require invasive support, however even brief periods of supported ventilation applied inappropriately to the lung can cause injury. Real-time quantitative reverse transcriptase-PCR (qPCR) has been extensively employed in studies of ventilation-induced lung injury with the reference gene 18S ribosomal RNA (18S RNA) most commonly employed as the internal control reference gene. Whilst the results of these studies depend on the stability of the reference gene employed, the use of 18S RNA has not been validated. In this study the expression profile of five candidate reference genes (18S RNA, ACTB, GAPDH, TOP1 and RPS29) in two geographical locations, was evaluated by dedicated algorithms, including geNorm, Normfinder, Bestkeeper and ΔCt method and the overall stability of these candidate genes determined (RefFinder). Secondary studies examined the influence of reference gene choice on the relative expression of two well-validated lung injury markers; EGR1 and IL1B. In the setting of the preterm lamb model of lung injury, RPS29 reference gene expression was influenced by tissue location; however we determined that individual ventilation strategies influence reference gene stability. Whilst 18S RNA is the most commonly employed reference gene in preterm lamb lung studies, our results suggest that GAPDH is a more suitable candidate.
Collapse
Affiliation(s)
| | - Anushi E Rajapaksa
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Regina Oakley
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia
| | - David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Neonatology, Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| |
Collapse
|
39
|
Vogt B, Mendes L, Chouvarda I, Perantoni E, Kaimakamis E, Becher T, Weiler N, Tsara V, Paiva RP, Maglaveras N, Frerichs I. Influence of torso and arm positions on chest examinations by electrical impedance tomography. Physiol Meas 2016; 37:904-21. [PMID: 27200486 DOI: 10.1088/0967-3334/37/6/904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrical impedance tomography (EIT) is increasingly used in patients suffering from respiratory disorders during pulmonary function testing (PFT). The EIT chest examinations often take place simultaneously to conventional PFT during which the patients involuntarily move in order to facilitate their breathing. Since the influence of torso and arm movements on EIT chest examinations is unknown, we studied this effect in 13 healthy subjects (37 ± 4 years, mean age ± SD) and 15 patients with obstructive lung diseases (72 ± 8 years) during stable tidal breathing. We carried out the examinations in an upright sitting position with both arms adducted, in a leaning forward position and in an upright sitting position with consecutive right and left arm elevations. We analysed the differences in EIT-derived regional end-expiratory impedance values, tidal impedance variations and their spatial distributions during all successive study phases. Both the torso and the arm movements had a highly significant influence on the end-expiratory impedance values in the healthy subjects (p = 0.0054 and p < 0.0001, respectively) and the patients (p < 0.0001 in both cases). The global tidal impedance variation was affected by the torso, but not the arm movements in both study groups (p = 0.0447 and p = 0.0418, respectively). The spatial heterogeneity of the tidal ventilation distribution was slightly influenced by the alteration of the torso position only in the patients (p = 0.0391). The arm movements did not impact the ventilation distribution in either study group. In summary, the forward torso movement and the arms' abduction exert significant effects on the EIT waveforms during tidal breathing. We recommend strict adherence to the upright sitting position during PFT when EIT is used.
Collapse
Affiliation(s)
- B Vogt
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|