1
|
Gbotosho OT, Li W, Joiner CH, Brown LAS, Hyacinth HI. The inflammatory profiles of pulmonary alveolar macrophages and alveolar type 2 cells in SCD. Exp Biol Med (Maywood) 2023; 248:1013-1023. [PMID: 37012678 PMCID: PMC10581160 DOI: 10.1177/15353702231157940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/15/2023] [Indexed: 04/05/2023] Open
Abstract
The lung microenvironment plays a crucial role in maintaining lung homeostasis as well as the initiation and resolution of both acute and chronic lung injury. Acute chest syndrome (ACS) is a complication of sickle cell disease (SCD) like acute lung injury. Both the endothelial cells and peripheral blood mononuclear cells are known to secrete proinflammatory cytokines elevated during ACS episodes. However, in SCD, the lung microenvironment that may favor excessive production of proinflammatory cytokines and the contribution of other lung resident cells, such as alveolar macrophages and alveolar type 2 epithelial (AT-2) cells, to ACS pathogenesis is not completely understood. Here, we sought to understand the pulmonary microenvironment and the proinflammatory profile of lung alveolar macrophages (LAMs) and AT-2 cells at steady state in Townes sickle cell (SS) mice compared to control mice (AA). In addition, we examined lung function and micromechanics molecules essential for pulmonary epithelial barrier function in these mice. Our results showed that bronchoalveolar lavage (BAL) fluid in SS mice had elevated protein levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-12 (p ⩽ 0.05) compared to AA controls. We showed for the first time, significantly increased protein levels of inflammatory mediators (Human antigen R (HuR), Toll-like receptor 4 (TLR4), MyD88, and PU.1) in AT-2 cells (1.4 to 2.2-fold) and LAM (17-21%) isolated from SS mice compared to AA control mice at steady state. There were also low levels of anti-inflammatory transcription factors (Nrf2 and PPARy) in SS mice compared to AA controls (p ⩽ 0.05). Finally, we found impaired lung function and a dysregulated composition of surfactant proteins (B and C). Our results demonstrate that SS mice at steady state had a compromised lung microenvironment with elevated expression of proinflammatory cytokines by AT-2 cells and LAM, as well as dysregulated expression of surfactant proteins necessary for maintaining the alveolar barrier integrity and lung function.
Collapse
Affiliation(s)
- Oluwabukola T Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Li
- Aflac Cancer & Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Clinton H Joiner
- Aflac Cancer & Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lou Ann S Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Yeligar SM, Harris FL, Brown LAS, Hart CM. Pharmacological reversal of post-transcriptional alterations implicated in alcohol-induced alveolar macrophage dysfunction. Alcohol 2023; 106:30-43. [PMID: 36328183 PMCID: PMC10080543 DOI: 10.1016/j.alcohol.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Alcohol use disorders (AUD) cause alveolar macrophage (AM) immune dysfunction and increase risk of lung infections. Excessive alcohol use causes AM oxidative stress, which impairs AM phagocytosis and pathogen clearance from the alveolar space. Alcohol induces expression of NADPH oxidases (Noxes), primary sources of oxidative stress in AM. In contrast, alcohol decreases AM peroxisome proliferator-activated receptor gamma (PPARγ), a critical regulator of AM immune function. To explore the underlying molecular mechanisms for these effects of alcohol, we hypothesized that ethanol promotes CCAAT/enhancer-binding protein beta (C/EBPβ)-mediated suppression of Nox-related microRNAs (miRs), in turn enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. We also hypothesized that PPARγ activation with pioglitazone (PIO) would reverse alcohol-induced C/EBPβ expression and attenuate AM oxidative stress and phagocytic dysfunction. Cells from the mouse AM cell line (MH-S) were exposed to ethanol in vitro or primary AM were isolated from mice fed ethanol in vivo. Ethanol enhanced C/EBPβ expression, decreased Nox 1-related miR-1264 and Nox 2-related miR-107 levels, and increased Nox1, Nox2, and Nox 4 expression in MH-S cells in vitro and mouse AM in vivo. These alcohol-induced AM derangements were abrogated by loss of C/EBPβ, overexpression of miRs-1264 or -107, or PIO treatment. These findings identify C/EBPβ and Nox-related miRs as novel therapeutic targets for PPARγ ligands, which could provide a translatable strategy to mitigate susceptibility to lung infections in people with a history of AUD. These studies further clarify the molecular underpinnings for a previous clinical trial using short-term PIO treatment to improve AM immunity in AUD individuals.
Collapse
Affiliation(s)
- Samantha M Yeligar
- Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, Georgia, United States; Atlanta Veterans Affairs Health Care System, Decatur, Georgia, United States.
| | - Frank L Harris
- Emory University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory + Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia, United States
| | - Lou Ann S Brown
- Emory University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory + Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia, United States
| | - C Michael Hart
- Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, Georgia, United States; Atlanta Veterans Affairs Health Care System, Decatur, Georgia, United States
| |
Collapse
|
3
|
Ertuglu LA, Elijovich F, Laffer CL, Kirabo A. Salt-Sensitivity of Blood Pressure and Insulin Resistance. Front Physiol 2021; 12:793924. [PMID: 34966295 PMCID: PMC8711096 DOI: 10.3389/fphys.2021.793924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation. Vascular dysfunction associated with insulin resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It manifests with increased blood pressure (BP) in salt sensitive murine models. Another common denominator in the pathogenesis of insulin resistance, hypertension, and salt sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor necrosis factor (TNF)-α, IL-1β, and IL-6. In the last decade, a new understanding of interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin protein adducts in antigen presenting cells (APCs), and that this response is implicated in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ results in severe insulin resistance and hypertension. These findings suggest that PPARγ plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps via effects on the immune system and vascular function. The goal of this review is to discuss those mechanisms that may play a role in both SSBP and in insulin resistance.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
PPARγ increases HUWE1 to attenuate NF-κB/p65 and sickle cell disease with pulmonary hypertension. Blood Adv 2021; 5:399-413. [PMID: 33496741 DOI: 10.1182/bloodadvances.2020002754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Sickle cell disease (SCD)-associated pulmonary hypertension (PH) causes significant morbidity and mortality. Here, we defined the role of endothelial specific peroxisome proliferator-activated receptor γ (PPARγ) function and novel PPARγ/HUWE1/miR-98 signaling pathways in the pathogenesis of SCD-PH. PH and right ventricular hypertrophy (RVH) were increased in chimeric Townes humanized sickle cell (SS) mice with endothelial-targeted PPARγ knockout (SSePPARγKO) compared with chimeric littermate control (SSLitCon). Lung levels of PPARγ, HUWE1, and miR-98 were reduced in SSePPARγKO mice compared with SSLitCon mice, whereas SSePPARγKO lungs were characterized by increased levels of p65, ET-1, and VCAM1. Collectively, these findings indicate that loss of endothelial PPARγ is sufficient to increase ET-1 and VCAM1 that contribute to endothelial dysfunction and SCD-PH pathogenesis. Levels of HUWE1 and miR-98 were decreased, and p65 levels were increased in the lungs of SS mice in vivo and in hemin-treated human pulmonary artery endothelial cells (HPAECs) in vitro. Although silencing of p65 does not regulate HUWE1 levels, the loss of HUWE1 increased p65 levels in HPAECs. Overexpression of PPARγ attenuated hemin-induced reductions of HUWE1 and miR-98 and increases in p65 and endothelial dysfunction. Similarly, PPARγ activation attenuated baseline PH and RVH and increased HUWE1 and miR-98 in SS lungs. In vitro, hemin treatment reduced PPARγ, HUWE1, and miR-98 levels and increased p65 expression, HPAEC monocyte adhesion, and proliferation. These derangements were attenuated by pharmacological PPARγ activation. Targeting these signaling pathways can favorably modulate a spectrum of pathobiological responses in SCD-PH pathogenesis, highlighting novel therapeutic targets in SCD pulmonary vascular dysfunction and PH.
Collapse
|
5
|
Yao D, He Q, Sun J, Cai L, Wei J, Cai G, Liu J, Lin Y, Wang L, Huang X. FGF21 attenuates hypoxia‑induced dysfunction and inflammation in HPAECs via the microRNA‑27b‑mediated PPARγ pathway. Int J Mol Med 2021; 47:116. [PMID: 33907846 PMCID: PMC8083827 DOI: 10.3892/ijmm.2021.4949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), is a chronic and progressive disorder characterized by pulmonary vascular remodeling, including endothelial cell dysfunction and inflammation. MicroRNAs (miRNAs or miRs) play an important role in the development of PAH. In addition, fibroblast growth factor 21 (FGF21) has been found to have marked anti-dysfunction and anti-inflammatory properties. Therefore, the present study aimed to investigate the latent effects of FGF21 against PAH through the miR-27b/peroxisome proliferator-activated receptor γ (PPARγ) axis. Human pulmonary arterial endothelial cells (HPAECs) subjected to hypoxia were used as PAH models. The results revealed that PPARγ expression was downregulated and miR-27b expression was upregulated in the HPAECs exposed to hypoxia. Luciferase assay suggested that PPARγ was a target gene of miR-27b. Furthermore, miR-27b inhibited the expression of the PPARγ gene, thereby aggravating hypoxia-induced HPAEC dysfunction. Moreover, miR-27b activated the nuclear factor-κB signaling pathway and the expression of inflammatory factors [interleukin (IL)-1β, IL-6 and tumor necrosis factor-α] by targeting PPARγ. In addition, the expression of miR-27b decreased following treatment of the hypoxia-exposed HPAECs with FGF21. Furthermore, FGF21 alleviated hypoxia-induced HPAEC dysfunction and inflammation by inhibiting miR-27b expression and thereby promoting PPARγ expression. On the whole, the findings of the present study suggest that FGF21 may serve as a therapeutic target for managing PAH through the miR-27b-mediated PPARγ pathway.
Collapse
Affiliation(s)
- Dan Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Qinlian He
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Junwei Sun
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Luqiong Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Jinqiu Wei
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Gexiang Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Jingjing Liu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Yinuo Lin
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
6
|
Chen H, Cai B, Liu K, Hua Q. miR‑27a‑3p regulates the inhibitory influence of endothelin 3 on the tumorigenesis of papillary thyroid cancer cells. Mol Med Rep 2021; 23:243. [PMID: 33537832 PMCID: PMC7893708 DOI: 10.3892/mmr.2021.11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022] Open
Abstract
Several studies on papillary thyroid cancer (PTC) have been performed. However, the effects of endothelin 3 (EDN3) and microRNA (miR)-27a-3p on PTC cells has yet to be investigated, to the best of the authors' knowledge. The present study aimed to explore the biological functions of EDN3 and miR-27a-3p in PTC cells. Bioinformatics analysis was conducted to identify possible key genes and miRs involved in PTC progression. Western blot analysis and reverse transcription-quantitative (RT-q) PCR were employed to confirm the key genes or miRs expressed in PTC cells. Cytological methods were used to detect cell viability, proliferation, apoptosis and migration and luciferase reporter assay was performed to confirm the relationship between END3 and miR-27a-3p. After analyzing the results of gene microarray analyses and RT-qPCR, EDN3 with low expression was identified as the key gene associated with PTC progression. It was also found that EDN3 overexpression in PTC cells impaired cell viability, proliferation and migration but promoted cell apoptosis. In addition, the findings revealed that miR-27a-3p could relieve the inhibitory influence of EDN3 on PTC cells by binding to EDN3 mRNA 3′ untranslated region (UTR), thereby suppressing EDN3 expression. Overall, the results of the present study demonstrated that by binding to EDN3 mRNA 3′UTR, miR-27a-3p could attenuate the inhibitory function of EDN3 in the tumorigenesis of PTC cells.
Collapse
Affiliation(s)
- Hongxin Chen
- Department of Otorhinolaryngology‑Head and Neck Surgery, Wuhan Puren Hospital, Wuhan, Hubei 430081, P.R. China
| | - Binlin Cai
- Department of Otorhinolaryngology‑Head and Neck Surgery, Wuhan Puren Hospital, Wuhan, Hubei 430081, P.R. China
| | - Kun Liu
- Department of Otorhinolaryngology‑Head and Neck Surgery, Wuhan Puren Hospital, Wuhan, Hubei 430081, P.R. China
| | - Qingquan Hua
- Department of Otorhinolaryngology‑Head and Neck Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Wongtrakool C, Ko J, Jang AJ, Grooms K, Chang S, Sylber C, Kosmider B, Bahmed K, Blackburn MR, Sutliff RL, Hart CM, Park C, Nyunoya T, Passineau MJ, Lu Q, Kang BY. MicroRNA-98 reduces nerve growth factor expression in nicotine-induced airway remodeling. J Biol Chem 2020; 295:18051-18064. [PMID: 33082140 DOI: 10.1074/jbc.ra119.012019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 09/27/2020] [Indexed: 11/06/2022] Open
Abstract
Evolving evidence suggests that nicotine may contribute to impaired asthma control by stimulating expression of nerve growth factor (NGF), a neurotrophin associated with airway remodeling and airway hyperresponsiveness. We explored the hypothesis that nicotine increases NGF by reducing lung fibroblast (LF) microRNA-98 (miR-98) and PPARγ levels, thus promoting airway remodeling. Levels of NGF, miR-98, PPARγ, fibronectin 1 (FN1), endothelin-1 (EDN1, herein referred to as ET-1), and collagen (COL1A1 and COL3A1) were measured in human LFs isolated from smoking donors, in mouse primary LFs exposed to nicotine (50 μg/ml), and in whole lung homogenates from mice chronically exposed to nicotine (100 μg/ml) in the drinking water. In selected studies, these pathways were manipulated in LFs with miR-98 inhibitor (anti-miR-98), miR-98 overexpression (miR-98 mimic), or the PPARγ agonist rosiglitazone. Compared with unexposed controls, nicotine increased NGF, FN1, ET-1, COL1A1, and COL3A1 expression in human and mouse LFs and mouse lung homogenates. In contrast, nicotine reduced miR-98 levels in LFs in vitro and in lung homogenates in vivo Treatment with anti-miR-98 alone was sufficient to recapitulate increases in NGF, FN1, and ET-1, whereas treatment with a miR-98 mimic significantly suppressed luciferase expression in cells transfected with a luciferase reporter linked to the putative seed sequence in the NGF 3'UTR and also abrogated nicotine-induced increases in NGF, FN1, and ET-1 in LFs. Similarly, rosiglitazone increased miR-98 and reversed nicotine-induced increases in NGF, FN1, and ET-1. Taken together, these findings demonstrate that nicotine-induced increases in NGF and other markers of airway remodeling are negatively regulated by miR-98.
Collapse
Affiliation(s)
- Cherry Wongtrakool
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, USA
| | - Andrew J Jang
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Kora Grooms
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah Chang
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cory Sylber
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Beata Kosmider
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karim Bahmed
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, USA
| | - Roy L Sutliff
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - C Michael Hart
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Changwon Park
- Department of Cellular and Molecular Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Passineau
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center/Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bum-Yong Kang
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Younes N, Zhou L, Amatullah H, Mei SHJ, Herrero R, Lorente JA, Stewart DJ, Marsden P, Liles WC, Hu P, Dos Santos CC. Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice. Thorax 2020; 75:556-567. [PMID: 32546573 PMCID: PMC7361025 DOI: 10.1136/thoraxjnl-2019-213561] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 01/11/2023]
Abstract
Introduction Mesenchymal stromal cell (MSC) therapy mitigates lung injury and improves survival in murine models of sepsis. Precise mechanisms of therapeutic benefit remain poorly understood. Objectives To identify host-derived regulatory elements that may contribute to the therapeutic effects of MSCs, we profiled the microRNAome (miRNAome) and transcriptome of lungs from mice randomised to experimental polymicrobial sepsis-induced lung injury treated with either placebo or MSCs. Methods and results A total of 11 997 genes and 357 microRNAs (miRNAs) expressed in lungs were used to generate a statistical estimate of association between miRNAs and their putative mRNA targets; 1395 miRNA:mRNA significant association pairs were found to be differentially expressed (false discovery rate ≤0.05). MSC administration resulted in the downregulation of miR-27a-5p and upregulation of its putative target gene VAV3 (adjusted p=1.272E-161) in septic lungs. In human pulmonary microvascular endothelial cells, miR-27a-5p expression levels were increased while VAV3 was decreased following lipopolysaccharide (LPS) or tumour necrosis factor (TNF) stimulation. Transfection of miR-27a-5p mimic or inhibitor resulted in increased or decreased VAV3 message, respectively. Luciferase reporter assay demonstrated specific binding of miR-27a-5p to the 3′UTR of VAV3. miR27a-5p inhibition mitigated TNF-induced (1) delayed wound closure, increased (2) adhesion and (3) transendothelial migration but did not alter permeability. In vivo, cell infiltration was attenuated by intratracheal coinstillation of the miR-27a-5p inhibitor, but this did not protect against endotoxin-induced oedema formation. Conclusions Our data support involvement of miR-27a-5p and VAV3 in cellular adhesion and infiltration during acute lung injury and a potential role for miR-27a-based therapeutics for acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nadim Younes
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada
| | - Louis Zhou
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hajera Amatullah
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shirley H J Mei
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Raquel Herrero
- Critical Care Service, Hospital Universitario de Getafe-CIBER de Enfermedades Respiratorias (CIBERES), Getafe, Spain
| | - Jose Angel Lorente
- Critical Care Service, Hospital Universitario de Getafe-CIBER de Enfermedades Respiratorias (CIBERES), Getafe, Spain
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Philip Marsden
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudia C Dos Santos
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada .,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Wood KC, Durgin BG, Schmidt HM, Hahn SA, Baust JJ, Bachman T, Vitturi DA, Ghosh S, Ofori-Acquah SF, Mora AL, Gladwin MT, Straub AC. Smooth muscle cytochrome b5 reductase 3 deficiency accelerates pulmonary hypertension development in sickle cell mice. Blood Adv 2019; 3:4104-4116. [PMID: 31821458 PMCID: PMC6963246 DOI: 10.1182/bloodadvances.2019000621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/29/2019] [Indexed: 01/26/2023] Open
Abstract
Pulmonary and systemic vasculopathies are significant risk factors for early morbidity and death in patients with sickle cell disease (SCD). An underlying mechanism of SCD vasculopathy is vascular smooth muscle (VSM) nitric oxide (NO) resistance, which is mediated by NO scavenging reactions with plasma hemoglobin (Hb) and reactive oxygen species that can oxidize soluble guanylyl cyclase (sGC), the NO receptor. Prior studies show that cytochrome b5 reductase 3 (CYB5R3), known as methemoglobin reductase in erythrocytes, functions in VSM as an sGC heme iron reductase critical for reducing and sensitizing sGC to NO and generating cyclic guanosine monophosphate for vasodilation. Therefore, we hypothesized that VSM CYB5R3 deficiency accelerates development of pulmonary hypertension (PH) in SCD. Bone marrow transplant was used to create SCD chimeric mice with background smooth muscle cell (SMC)-specific tamoxifen-inducible Cyb5r3 knockout (SMC R3 KO) and wild-type (WT) control. Three weeks after completing tamoxifen treatment, we observed 60% knockdown of pulmonary arterial SMC CYB5R3, 5 to 6 mm Hg elevated right-ventricular (RV) maximum systolic pressure (RVmaxSP) and biventricular hypertrophy in SS chimeras with SMC R3 KO (SS/R3KD) relative to WT (SS/R3WT). RV contractility, heart rate, hematological parameters, and cell-free Hb were similar between groups. When identically generated SS/R3 chimeras were studied 12 weeks after completing tamoxifen treatment, RVmaxSP in SS/R3KD had not increased further, but RV hypertrophy relative to SS/R3WT persisted. These are the first studies to establish involvement of SMC CYB5R3 in SCD-associated development of PH, which can exist in mice by 5 weeks of SMC CYB5R3 protein deficiency.
Collapse
Affiliation(s)
- Katherine C Wood
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
| | - Brittany G Durgin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
| | - Heidi M Schmidt
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
- Department of Pharmacology and Chemical Biology
| | - Scott A Hahn
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
| | - Jeffrey J Baust
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
| | - Tim Bachman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
| | - Dario A Vitturi
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
- Department of Pharmacology and Chemical Biology
| | - Samit Ghosh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
| | - Solomon F Ofori-Acquah
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
- Division of Hematology and Oncology, Department of Medicine, and
| | - Ana L Mora
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Adam C Straub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine
- Department of Pharmacology and Chemical Biology
| |
Collapse
|
10
|
Wood KC, Gladwin MT, Straub AC. Sickle cell disease: at the crossroads of pulmonary hypertension and diastolic heart failure. Heart 2019; 106:562-568. [DOI: 10.1136/heartjnl-2019-314810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Sickle cell disease (SCD) is caused by a single point mutation in the gene that codes for beta globin synthesis, causing haemoglobin polymerisation, red blood cell stiffening and haemolysis under low oxygen and pH conditions. Downstream effects include widespread vasculopathy due to recurring vaso-occlusive events and haemolytic anaemia, affecting all organ systems. Cardiopulmonary complications are the leading cause of death in patients with SCD, primarily resulting from diastolic heart failure (HF) and/or pulmonary hypertension (PH). HF in SCD often features biventricular cardiac hypertrophy and left ventricular (LV) diastolic dysfunction. Among HF cases in the general population, approximately half occur with preserved ejection fraction (HFpEF). The insidious evolution of HFpEF differs from the relatively acute evolution of HF with reduced ejection fraction. The PH of SCD has diverse origins, which can be pulmonary arterial (precapillary), pulmonary venous (postcapillary) or pulmonary thromboembolic. It is also appreciated that patients with SCD can develop both precapillary and postcapillary PH, with elevations in LV diastolic pressures, as well as elevations in transpulmonary pressure gradient and pulmonary vascular resistance. Regardless of the cause of PH in SCD, its presence significantly reduces functional capacity and increases mortality. PH that occurs in the presence of HFpEF is usually of postcapillary origin. This review aims to assemble what has been learnt from clinical and animal studies about the manifestation of PH-HFpEF in SCD, specifically the contributions of LV diastolic dysfunction and myocardial fibrosis, in an attempt to gain an understanding of its evolution.
Collapse
|
11
|
Tseng V, Sutliff RL, Hart CM. Redox Biology of Peroxisome Proliferator-Activated Receptor-γ in Pulmonary Hypertension. Antioxid Redox Signal 2019; 31:874-897. [PMID: 30582337 PMCID: PMC6751396 DOI: 10.1089/ars.2018.7695] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Peroxisome proliferator-activated receptor-gamma (PPARγ) maintains pulmonary vascular health through coordination of antioxidant defense systems, inflammation, and cellular metabolism. Insufficient PPARγ contributes to pulmonary hypertension (PH) pathogenesis, whereas therapeutic restoration of PPARγ activity attenuates PH in preclinical models. Recent Advances: Numerous studies in the past decade have elucidated the complex mechanisms by which PPARγ in the pulmonary vasculature and right ventricle (RV) protects against PH. The scope of PPARγ-interconnected pathways continues to expand and includes induction of antioxidant genes, transrepression of inflammatory signaling, regulation of mitochondrial biogenesis and bioenergetic integrity, control of cell cycle and proliferation, and regulation of vascular tone through interactions with nitric oxide and endogenous vasoactive molecules. Furthermore, PPARγ interacts with an extensive regulatory network of transcription factors and microRNAs leading to broad impact on cell signaling. Critical Issues: Abundant evidence suggests that targeting PPARγ exerts diverse salutary effects in PH and represents a novel and potentially translatable therapeutic strategy. However, progress has been slowed by an incomplete understanding of how specific PPARγ pathways are critically disrupted across PH disease subtypes and lack of optimal pharmacological ligands. Future Directions: Recent studies indicate that ligand-induced post-translational modifications of the PPARγ receptor differentially induce therapeutic benefits versus adverse side effects of PPARγ receptor activation. Strategies to selectively target PPARγ activity in diseased cells of pulmonary circulation and RV, coupled with development of ligands designed to specifically regulate post-translational PPARγ modifications, may unlock the full therapeutic potential of this versatile master transcriptional and metabolic regulator in PH.
Collapse
Affiliation(s)
- Victor Tseng
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Roy L Sutliff
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - C Michael Hart
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
12
|
Liu T, Zou XZ, Huang N, Ge XY, Yao MZ, Liu H, Zhang Z, Hu CP. miR-27a promotes endothelial-mesenchymal transition in hypoxia-induced pulmonary arterial hypertension by suppressing BMP signaling. Life Sci 2019; 227:64-73. [PMID: 31004656 DOI: 10.1016/j.lfs.2019.04.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
Abstract
AIM Growing evidence suggests that endothelial-mesenchymal transition (EndMT) play key roles in pulmonary arterial remodeling during pulmonary arterial hypertension (PAH), but the underlying mechanisms have yet to be fully understood. miR-27a has been shown to promote proliferation of pulmonary arterial cells during PAH, but its role in EndMT remains unexplored. This study was designed to investigate the role and underlying mechanism of miR-27a in EndMT during PAH. MAIN METHODS Rats were exposed in hypoxia (10% O2) for 3 weeks to induce PAH, and human pulmonary artery endothelial cells (HPAECs) were exposed in hypoxia (1% O2) for 48 h to induce EndMT. Immunohistochemistry, in situ hybridization, immunofluorescence, real-time PCR and Western blot were conducted to detect the expressions of RNAs and proteins, and luciferase assay was used to verify the putative binding site of miR-27a. KEY FINDINGS We found that hypoxia up-regulated miR-27a in the tunica intima of rat pulmonary arteries and HPAECs, and that inhibition of miR-27a suppressed hypoxia-induced EndMT. Furthermore, elevated expression of miR-27a suppressed bone morphogenetic protein (BMP) signaling by targeting Smad5, thereby lessening Id2-mediated repression of the 2 critical mediators of EndMT (Snail and Twist). SIGNIFICANCE Our data unveiled a novel role of miR-27a in EndMT during hypoxia-induced PAH. Thus, targeting of miR-27a-related pathway may be therapeutically harnessed to treat PAH.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Zhou Zou
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Ning Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Yue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Mao-Zhong Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Hong Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
13
|
Sharma H, Chinnappan M, Agarwal S, Dalvi P, Gunewardena S, O'Brien-Ladner A, Dhillon NK. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse. FASEB J 2018; 32:5174-5185. [PMID: 29672222 PMCID: PMC6103174 DOI: 10.1096/fj.201701558r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our previous studies consistently demonstrate enhanced pulmonary vascular remodeling in HIV–infected intravenous drug users, and in simian immunodeficiency virus–infected macaques or HIV-transgenic rats exposed to opioids or cocaine. Although we reported an associated increase in perivascular inflammation, the exact role of inflammatory cells in the development of pulmonary vascular remodeling remains unknown. In this study, HIV–infected and cocaine (H+C)–treated human monocyte derived macrophages released a higher number of extracellular vesicles (EVs), compared to HIV-infected or uninfected cocaine-treated macrophages, with a significant increase in the particle size range to 100–150 nm. Treatment of primary human pulmonary arterial smooth muscle cells (HPASMCs) with these EVs resulted in a significant increase in smooth muscle proliferation. We also observed a significant increase in the miRNA-130a level in the EVs derived from H+C-treated macrophages that corresponded with the decrease in the expression of phosphatase and tensin homolog and tuberous sclerosis 1 and 2 and activation of PI3K/protein kinase B signaling in HPASMCs on addition of these EVs. Transfection of HPASMCs with antagomir-130a–ameliorated the EV-induced effect. Thus, we conclude that EVs derived from H+C-treated macrophages promote pulmonary smooth muscle proliferation by delivery of its prosurvival miRNA cargo, which may play a crucial role in the development of PAH.—Sharma, H., Chinnappan, M., Agarwal, S., Dalvi, P., Gunewardena, S., O’Brien-Ladner, A., Dhillon, N. K. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse.
Collapse
Affiliation(s)
- Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amy O'Brien-Ladner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
14
|
Xu Y, Gu Q, Liu N, Yan Y, Yang X, Hao Y, Qu C. PPARγ Alleviates Right Ventricular Failure Secondary to Pulmonary Arterial Hypertension in Rats. Int Heart J 2017; 58:948-956. [PMID: 29151490 DOI: 10.1536/ihj.16-591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling leading to right ventricular hypertrophy (RVH) and failure. Peroxisome proliferator-activated receptor γ (PPARγ), a member of nuclear receptors, has been proved to ameliorate PAH. However, its effect on PAH-induced right ventricular failure (RVF) remains unknown. Therefore, we investigated the therapeutic potential of PPARγ in preventing monocrotaline (MCT)-induced RV dysfunction. The PAH model was induced by MCT administration. Male rats were administered with MCT to develop PAH and RVF formed by approximately day 30. Significant increase in RV area, RVAW resulted in an ascending RV index. However, the LV function including EF, FS, and LVID did not change significantly. PPARγ agonist prevented PAH-induced RVF by preserving RV index and preventing RVH. PPARγ's beneficial effects seem to result from various factors, including anti-apoptosis, preservation RV index, reversal of inflammation, improvement of glucolipid metabolism, reduction of ROS. In a word, PPARγ agonist prevents the development of RVF.
Collapse
Affiliation(s)
- Ying Xu
- Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University
| | - Qin Gu
- Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University
| | - Ning Liu
- Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University
| | - Yan Yan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University
| | - Xilan Yang
- Department of Geriatric Medicine, The Second Affiliated Hospital of Nanjing Medical University
| | - Yingying Hao
- Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University
| | - Chen Qu
- Department of Geriatric Medicine, The Second Affiliated Hospital of Nanjing Medical University
| |
Collapse
|