1
|
Song L, Li K, Chen H, Xie L. Cell Cross-Talk in Alveolar Microenvironment: From Lung Injury to Fibrosis. Am J Respir Cell Mol Biol 2024; 71:30-42. [PMID: 38579159 PMCID: PMC11225874 DOI: 10.1165/rcmb.2023-0426tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024] Open
Abstract
Alveoli are complex microenvironments composed of various cell types, including epithelial, fibroblast, endothelial, and immune cells, which work together to maintain a delicate balance in the lung environment, ensuring proper growth, development, and an effective response to lung injuries. However, prolonged inflammation or aging can disrupt normal interactions among these cells, leading to impaired repair processes and a substantial decline in lung function. Therefore, it is essential to understand the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. We explored the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. These interactions occur through the secretion of signaling factors and play crucial roles in the response to injury, repair mechanisms, and the development of fibrosis in the lungs. Specifically, we focused on the regulation of alveolar type 2 cells by fibroblasts, endothelial cells, and macrophages. In addition, we explored the diverse phenotypes of fibroblasts at different stages of life and in response to lung injury, highlighting their impact on matrix production and immune functions. Furthermore, we summarize the various phenotypes of macrophages in lung injury and fibrosis as well as their intricate interplay with other cell types. This interplay can either contribute to the restoration of immune homeostasis in the alveoli or impede the repair process. Through a comprehensive exploration of these cell interactions, we aim to reveal new insights into the molecular mechanisms that drive lung injury toward fibrosis and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Licheng Song
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China; and
| | - Kuan Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China; and
| |
Collapse
|
2
|
Hassan D, Chen J. CEBPA restricts alveolar type 2 cell plasticity during development and injury-repair. Nat Commun 2024; 15:4148. [PMID: 38755149 PMCID: PMC11099190 DOI: 10.1038/s41467-024-48632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.
Collapse
Affiliation(s)
- Dalia Hassan
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
3
|
Warren R, Klinkhammer K, Lyu H, Yao C, Stripp B, De Langhe SP. Cell competition drives bronchiolization and pulmonary fibrosis. RESEARCH SQUARE 2024:rs.3.rs-4177351. [PMID: 38746309 PMCID: PMC11092845 DOI: 10.21203/rs.3.rs-4177351/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from the maladaptive differentiation of lung stem cells into bronchial epithelial cells rather than into alveolar type 1 (AT1) cells, which are responsible for gas exchange. Here, we report that healthy lungs maintain their stem cells through tonic Hippo and β-catenin signaling, which promote Yap/Taz degradation and allow for low level expression of the Wnt target gene Myc. Inactivation of upstream activators of the Hippo pathway in lung stem cells inhibits this tonic β-catenin signaling and Myc expression and promotes their Taz mediated differentiation into AT1 cells. Vice versa, increased Myc in collaboration with Yap promotes the differentiation of lung stem cells along the basal and myoepithelial like lineages allowing them to invade and bronchiolize the lung parenchyma in a process reminiscent of submucosal gland development. Our findings indicate that stem cells exhibiting the highest Myc levels become supercompetitors that drive remodeling, whereas loser cells with lower Myc levels terminally differentiate into AT1 cells.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Handeng Lyu
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Changfu Yao
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry Stripp
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stijn P. De Langhe
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Hutchison V, Lynch A, Gutierrez-Gamez AM, Chen J. Inducible tricolor reporter mouse for parallel imaging of lysosomes, mitochondria, and microtubules. J Cell Biol 2024; 223:e202305086. [PMID: 37917008 PMCID: PMC10621751 DOI: 10.1083/jcb.202305086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/06/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Cell type-specific use of the same DNA blueprint generates diverse cell types. Such diversity must also be executed via differential deployment of the same subcellular machinery. However, our understanding of the size, distribution, and dynamics of subcellular machinery in native tissues and their connection to cellular diversity remains limited. We generate and characterize an inducible tricolor reporter mouse, dubbed "Kaleidoscope," for simultaneous imaging of lysosomes, mitochondria, and microtubules in any cell type and at a single-cell resolution. The expected subcellular compartments are labeled in culture and in tissues with no impact on cellular and organismal viability. Quantitative and live imaging of the tricolor reporter captures cell type-specific organelle features and kinetics in the lung, as well as their changes after Sendai virus infection. Yap/Taz mutant lung epithelial cells undergo accelerated lamellar body maturation, a subcellular manifestation of their molecular defects. A comprehensive toolbox of reporters for all subcellular structures is expected to transform our understanding of cell biology in tissues.
Collapse
Affiliation(s)
- Vera Hutchison
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anne Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Hassan D, Chen J. CEBPA restricts alveolar type 2 cell plasticity during development and injury-repair. RESEARCH SQUARE 2023:rs.3.rs-3521387. [PMID: 38168395 PMCID: PMC10760240 DOI: 10.21203/rs.3.rs-3521387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.
Collapse
Affiliation(s)
- Dalia Hassan
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Han S, Budinger GS, Gottardi CJ. Alveolar epithelial regeneration in the aging lung. J Clin Invest 2023; 133:e170504. [PMID: 37843280 PMCID: PMC10575730 DOI: 10.1172/jci170504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Advancing age is the most important risk factor for the development of and mortality from acute and chronic lung diseases, including pneumonia, chronic obstructive pulmonary disease, and pulmonary fibrosis. This risk was manifest during the COVID-19 pandemic, when elderly people were disproportionately affected and died from SARS-CoV-2 pneumonia. However, the recent pandemic also provided lessons on lung resilience. An overwhelming majority of patients with SARS-CoV-2 pneumonia, even those with severe disease, recovered with near-complete restoration of lung architecture and function. These observations are inconsistent with historic views of the lung as a terminally differentiated organ incapable of regeneration. Here, we review emerging hypotheses that explain how the lung repairs itself after injury and why these mechanisms of lung repair fail in some individuals, particularly the elderly.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| | - Cara J. Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
8
|
Hassan D, Chen J. CEBPA restricts alveolar type 2 cell plasticity during development and injury-repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561625. [PMID: 37873326 PMCID: PMC10592726 DOI: 10.1101/2023.10.10.561625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.
Collapse
|
9
|
Hutchison V, Lynch A, Gamez AMG, Chen J. An inducible tricolor reporter mouse for simultaneous imaging of lysosomes, mitochondria and microtubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541817. [PMID: 37293075 PMCID: PMC10245888 DOI: 10.1101/2023.05.22.541817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-type-specific use of the same DNA blueprint generates diverse cell types. Such diversity must also be executed via differential deployment of the same subcellular machinery. However, our understanding of the size, distribution, and dynamics of subcellular machinery in native tissues, and their connection to cellular diversity, remain limited. We generate and characterize an inducible tricolor reporter mouse, dubbed "kaleidoscope", for simultaneous imaging of lysosomes, mitochondria and microtubules in any cell type and at a single cell resolution. The expected subcellular compartments are labeled in culture and in tissues with no impact on cellular and organismal viability. Quantitative and live imaging of the tricolor reporter captures cell-type-specific organelle features and kinetics in the lung, as well as their changes after Sendai virus infection. Yap/Taz mutant lung epithelial cells undergo accelerated lamellar body maturation, a subcellular manifestation of their molecular defects. A comprehensive toolbox of reporters for all subcellular structures is expected to transform our understanding of cell biology in tissues.
Collapse
Affiliation(s)
- Vera Hutchison
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Anne Lynch
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Dickey BF, Chen J, Peebles RS. Airway Mucus Dysfunction in COVID-19. Am J Respir Crit Care Med 2022; 206:1304-1306. [PMID: 35830305 PMCID: PMC9746853 DOI: 10.1164/rccm.202207-1306ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Burton F. Dickey
- Department of Pulmonary MedicineThe University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Jichao Chen
- Department of Pulmonary MedicineThe University of Texas MD Anderson Cancer CenterHouston, Texas
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashville, Tennessee
| |
Collapse
|
11
|
Sanches Santos Rizzo Zuttion M, Moore SKL, Chen P, Beppu AK, Hook JL. New Insights into the Alveolar Epithelium as a Driver of Acute Respiratory Distress Syndrome. Biomolecules 2022; 12:biom12091273. [PMID: 36139112 PMCID: PMC9496395 DOI: 10.3390/biom12091273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The alveolar epithelium serves as a barrier between the body and the external environment. To maintain efficient gas exchange, the alveolar epithelium has evolved to withstand and rapidly respond to an assortment of inhaled, injury-inducing stimuli. However, alveolar damage can lead to loss of alveolar fluid barrier function and exuberant, non-resolving inflammation that manifests clinically as acute respiratory distress syndrome (ARDS). This review discusses recent discoveries related to mechanisms of alveolar homeostasis, injury, repair, and regeneration, with a contemporary emphasis on virus-induced lung injury. In addition, we address new insights into how the alveolar epithelium coordinates injury-induced lung inflammation and review maladaptive lung responses to alveolar damage that drive ARDS and pathologic lung remodeling.
Collapse
Affiliation(s)
- Marilia Sanches Santos Rizzo Zuttion
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sarah Kathryn Littlehale Moore
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew Kota Beppu
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jaime Lynn Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|