1
|
Enhanced Immunogenicity of Adjuvanted Microparticulate HPV16 Vaccines Administered via the Transdermal Route. Pharmaceuticals (Basel) 2022; 15:ph15091128. [PMID: 36145349 PMCID: PMC9503878 DOI: 10.3390/ph15091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Human papillomavirus (HPV) causes cervical cancer among women and is associated with other anogenital cancers in men and women. Prophylactic particulate vaccines that are affordable, self-administered and efficacious could improve uptake of HPV vaccines world-wide. The goal of this research is to develop a microparticulate HPV16 vaccine for transdermal administration using AdminPatch® and assess its immunogenicity in a pre-clinical mouse model. HPV16 microparticles were prepared using a biocompatible polymer and characterized in terms of size, zeta potential, encapsulation efficiency and microparticle yield. Scanning and transmission electron microscopy were conducted to confirm particle image and to visualize the conformation of HPV16 vaccine particles released from microparticle formulation. In vivo studies performed to evaluate the potential of the microparticulate vaccine initiated a robust and sustained immune response. HPV16 IgG antibodies were significantly elevated in the microparticle group compared to antigen solutions administered by the transdermal route. Results show significant expansion of CD4+, CD45R, CD27 and CD62L cell populations in the vaccinated mice group, indicating the high efficacy of the microparticulate vaccine when administered via transdermal route. The findings of this study call attention to the use of minimally invasive, pain-free routes to deliver vaccine.
Collapse
|
2
|
Nabeela S, Date A, Ibrahim AS, Uppuluri P. Antifungal activity of alexidine dihydrochloride in a novel diabetic mouse model of dermatophytosis. Front Cell Infect Microbiol 2022; 12:958497. [PMID: 36118019 PMCID: PMC9478942 DOI: 10.3389/fcimb.2022.958497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Dermatophytosis is one of the most prevalent fungal infections and a major public health problem worldwide. Recent years have seen a change in the epidemiological patterns of infecting fungi, corresponding to an alarming rise in the prevalence of drug-recalcitrant dermatophyte infections. In patients with diabetes mellitus, dermatophytosis is more severe and recurrent. The potency of promising new antifungal drugs in the pipeline must be expanded to include dermatophytosis. To facilitate this effort, we established a clinically pertinent mouse model of dermatophyte infections, in which diabetic mice were infected with Trichophyton mentagrophytes on abraded skin. The diabetic mouse model was optimized as a simple and robust system for simulating dermatophytoses in diabetic patients. The outcome of infection was measured using clinical and mycological parameters. Infected mice with fungal lesions were treated with oral and topical formulations of terbinafine or topical administration of the FDA-approved and repurposed pan-antifungal drug alexidine dihydrochloride (AXD). In this model, AXD was found to be highly effective, with outcomes comparable to those of the standard of care drug terbinafine.
Collapse
Affiliation(s)
- Sunna Nabeela
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Abhijit Date
- Department of Pharmacology and Toxicology, R. Ken (R. K.) Coit College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Priya Uppuluri
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
3
|
Sutar Y, Nabeela S, Singh S, Alqarihi A, Solis N, Ghebremariam T, Filler S, Ibrahim AS, Date A, Uppuluri P. Niclosamide-loaded nanoparticles disrupt Candida biofilms and protect mice from mucosal candidiasis. PLoS Biol 2022; 20:e3001762. [PMID: 35976859 PMCID: PMC9385045 DOI: 10.1371/journal.pbio.3001762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Candida albicans biofilms are a complex multilayer community of cells that are resistant to almost all classes of antifungal drugs. The bottommost layers of biofilms experience nutrient limitation where C. albicans cells are required to respire. We previously reported that a protein Ndu1 is essential for Candida mitochondrial respiration; loss of NDU1 causes inability of C. albicans to grow on alternative carbon sources and triggers early biofilm detachment. Here, we screened a repurposed library of FDA-approved small molecule inhibitors to identify those that prevent NDU1-associated functions. We identified an antihelminthic drug, Niclosamide (NCL), which not only prevented growth on acetate, C. albicans hyphenation and early biofilm growth, but also completely disengaged fully grown biofilms of drug-resistant C. albicans and Candida auris from their growth surface. To overcome the suboptimal solubility and permeability of NCL that is well known to affect its in vivo efficacy, we developed NCL-encapsulated Eudragit EPO (an FDA-approved polymer) nanoparticles (NCL-EPO-NPs) with high niclosamide loading, which also provided long-term stability. The developed NCL-EPO-NPs completely penetrated mature biofilms and attained anti-biofilm activity at low microgram concentrations. NCL-EPO-NPs induced ROS activity in C. albicans and drastically reduced oxygen consumption rate in the fungus, similar to that seen in an NDU1 mutant. NCL-EPO-NPs also significantly abrogated mucocutaneous candidiasis by fluconazole-resistant strains of C. albicans, in mice models of oropharyngeal and vulvovaginal candidiasis. To our knowledge, this is the first study that targets biofilm detachment as a target to get rid of drug-resistant Candida biofilms and uses NPs of an FDA-approved nontoxic drug to improve biofilm penetrability and microbial killing.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, Hawaii, United States of America
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Sunna Nabeela
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Shakti Singh
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Abdullah Alqarihi
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Norma Solis
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Teklegiorgis Ghebremariam
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Scott Filler
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Ashraf S. Ibrahim
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, California, United States of America
| | - Abhijit Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, Hawaii, United States of America
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Priya Uppuluri
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, California, United States of America
| |
Collapse
|
4
|
Kotta S, Wadood Kha A, H. Ansari S, Kumar Shar R, Kamal Y, Mubarak Al H, Abdulhafiz N, Baboota S, Ali J. Efavirenz nanoemulsion: Formulation Optimization by Box-Behnken Design, in vivo Pharmacokinetic Evaluation and Stability Assessment. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.732.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Wang X, Wang M, Wang Q, Yuan Y, Hao Q, Bi Y, He Y, Zhao J, Hao J. Fabrication and in vitro/in vivo characterization of Eudragit enteric nanoparticles loaded with indomethacin. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Ekama SO, Ilomuanya MO, Azubuike CP, Ayorinde JB, Ezechi OC, Igwilo CI, Salako BL. Enzyme Responsive Vaginal Microbicide Gels Containing Maraviroc and Tenofovir Microspheres Designed for Acid Phosphatase-Triggered Release for Pre-Exposure Prophylaxis of HIV-1: A Comparative Analysis of a Bigel and Thermosensitive Gel. Gels 2021; 8:gels8010015. [PMID: 35049550 PMCID: PMC8774413 DOI: 10.3390/gels8010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
The challenges encountered with conventional microbicide gels has necessitated the quest for alternative options. This study aimed to formulate and evaluate a bigel and thermosensitive gel, designed to combat the challenges of leakage and short-residence time in the vagina. Ionic-gelation technique was used to formulate maraviroc and tenofovir microspheres. The microspheres were incorporated into a thermosensitive gel and bigel, then evaluated. Enzyme degradation assay was used to assess the effect of the acid phosphatase enzyme on the release profile of maraviroc and tenofovir microspheres. HIV efficacy and cytotoxicity of the microspheres were assessed using HIV-1-BaL virus strain and HeLa cell lines, respectively. Maraviroc and tenofovir release kinetics followed zero-order and Higuchi model kinetics. However, under the influence of the enzyme, maraviroc release was governed by first-order model, while tenofovir followed a super case II transport-mechanism. The altered mode of release and drug transport mechanism suggests a triggered release. The assay of the microspheres suspension on the HeLa cells did not show signs of cytotoxicity. The thermosensitive gel and bigel elicited a progressive decline in HIV infectivity, until at concentrations of 1 μg/mL and 0.1 μg/mL, respectively. The candidate vaginal gels have the potential for a triggered release by the acid phosphatase enzyme present in the seminal fluid, thus, serving as a strategic point to prevent HIV transmission.
Collapse
Affiliation(s)
- Sabdat Ozichu Ekama
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Surulere, Lagos P.M.B 12003, Nigeria; (M.O.I.); (C.P.A.); (C.I.I.)
- Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba, Lagos P.M.B 12003, Nigeria; (J.B.A.); (O.C.E.); (B.L.S.)
- Correspondence: ; Tel.: +234-81-3476-1356
| | - Margaret O. Ilomuanya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Surulere, Lagos P.M.B 12003, Nigeria; (M.O.I.); (C.P.A.); (C.I.I.)
| | - Chukwuemeka Paul Azubuike
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Surulere, Lagos P.M.B 12003, Nigeria; (M.O.I.); (C.P.A.); (C.I.I.)
| | - James Babatunde Ayorinde
- Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba, Lagos P.M.B 12003, Nigeria; (J.B.A.); (O.C.E.); (B.L.S.)
| | - Oliver Chukwujekwu Ezechi
- Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba, Lagos P.M.B 12003, Nigeria; (J.B.A.); (O.C.E.); (B.L.S.)
| | - Cecilia Ihuoma Igwilo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Surulere, Lagos P.M.B 12003, Nigeria; (M.O.I.); (C.P.A.); (C.I.I.)
| | - Babatunde Lawal Salako
- Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba, Lagos P.M.B 12003, Nigeria; (J.B.A.); (O.C.E.); (B.L.S.)
| |
Collapse
|
7
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
8
|
Cunha RF, Simões S, Carvalheiro M, Pereira JMA, Costa Q, Ascenso A. Novel Antiretroviral Therapeutic Strategies for HIV. Molecules 2021; 26:molecules26175305. [PMID: 34500737 PMCID: PMC8434305 DOI: 10.3390/molecules26175305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/18/2023] Open
Abstract
When the first cases of HIV infection appeared in the 1980s, AIDS was a deadly disease without any therapeutic alternatives. Currently, there is still no cure for most cases mainly due to the multiple tissues that act as a reservoir for this virus besides the high viral mutagenesis that leads to an antiretroviral drug resistance. Throughout the years, multiple drugs with specific mechanisms of action on distinct targets have been approved. In this review, the most recent phase III clinical studies and other research therapies as advanced antiretroviral nanodelivery systems will be here discussed. Although the combined antiretroviral therapy is effective in reducing viral loading to undetectable levels, it also presents some disadvantages, such as usual side effects, high frequency of administration, and the possibility of drug resistance. Therefore, several new drugs, delivery systems, and vaccines have been tested in pre-clinical and clinical trials. Regarding drug delivery, an attempt to change the route of administration of some conventional antiretrovirals has proven to be successful and surpassed some issues related to patient compliance. Nanotechnology has brought a new approach to overcoming certain obstacles of formulation design including drug solubility and biodistribution. Overall, the encapsulation of antiretroviral drugs into nanosystems has shown improved drug release and pharmacokinetic profile.
Collapse
Affiliation(s)
- Rita F. Cunha
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
| | - Sandra Simões
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
| | - Manuela Carvalheiro
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
| | - José M. Azevedo Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.M.A.P.); (Q.C.)
| | - Quirina Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.M.A.P.); (Q.C.)
| | - Andreia Ascenso
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
- Correspondence:
| |
Collapse
|
9
|
Akilesh M S, Wadhwani A. Novel Applications of Nanotechnology in Controlling HIV and HSV Infections. Curr Drug Res Rev 2020; 13:120-129. [PMID: 33238862 DOI: 10.2174/2589977512999201124121931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
Infectious diseases have been prevalent since many decades and viral pathogens have caused global health crisis and economic meltdown on a devastating scale. High occurrence of newer viral infections in the recent years, in spite of the progress achieved in the field of pharmaceutical sciences defines the critical need for newer and more effective antiviral therapies and diagnostics. The incidence of multi-drug resistance and adverse effects due to the prolonged use of anti-viral therapy is also a major concern. Nanotechnology offers a cutting edge platform for the development of novel compounds and formulations for biomedical applications. The unique properties of nano-based materials can be attributed to the multi-fold increase in the surface to volume ratio at the nano-scale, tunable surface properties of charge and chemical moieties. Idealistic pharmaceutical properties such as increased bioavailability and retention times, lower toxicity profiles, sustained release formulations, lower dosage forms and most importantly, targeted drug delivery can be achieved through the approach of nanotechnology. The extensively researched nano-based materials are metal and polymeric nanoparticles, dendrimers and micelles, nano-drug delivery vesicles, liposomes and lipid based nanoparticles. In this review article, the impact of nanotechnology on the treatment of Human Immunodeficiency Virus (HIV) and Herpes Simplex Virus (HSV) viral infections during the last decade are outlined.
Collapse
Affiliation(s)
- Sai Akilesh M
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty - 643001, The Nilgiris, Tamil Nadu. India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty - 643001, The Nilgiris, Tamil Nadu. India
| |
Collapse
|
10
|
Yadavalli T, Mallick S, Patel P, Koganti R, Shukla D, Date AA. Pharmaceutically Acceptable Carboxylic Acid-Terminated Polymers Show Activity and Selectivity against HSV-1 and HSV-2 and Synergy with Antiviral Drugs. ACS Infect Dis 2020; 6:2926-2937. [PMID: 33078609 DOI: 10.1021/acsinfecdis.0c00368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polyanionic macromolecules including carboxylate-terminated polymers (polycarboxylates) are capable of inhibiting sexually transmitted viruses such as human immunodeficiency virus (HIV) and herpes simplex virus (HSV). Cellulose acetate phthalate (CAP), a pharmaceutically acceptable pH-sensitive polycarboxylate polymer, showed promising prophylactic activity against HIV and HSV, but the instability of CAP in an aqueous environment prevented its clinical development. Interestingly, several pharmaceutically acceptable polycarboxylates have features similar to CAP with an aqueous stability significantly higher than that of CAP. However, their activity against sexually transmitted viruses remains unexplored. Here, we evaluate the activity of various polycarboxylates such as polyvinyl acetate phthalate (PVAP), various grades of hydroxypropyl methylcellulose phthalate (HPMCP-50, HPMCP-55, and HPMCP-55S), and various grades of methacrylic acid copolymers (Eudragit L100-55, Eudragit L100, Eudragit S100, and Kollicoat MAE 100P) against HSV. We, for the first time, demonstrate that PVAP, HPMCP-55S, and Eudragit S100 have activity and selectivity against HSV-1 and HSV-2. Further, we report that polycarboxylates can be easily transformed into nanoparticles (NPs) and in the nanoparticulate form, they show similar or enhanced activity against HSV. Finally, using PVAP NPs, as a model, we demonstrate using in vitro HSV therapy studies that polycarboxylate NPs are capable of synergizing with antiviral drugs such as acyclovir (ACV), tenofovir, and tenofovir disoproxil fumarate. Thus, pharmaceutically acceptable carboxylic acid-terminated polymers and their NPs have the potential to be developed into topical formulations for the prevention and treatment of HSV infection.
Collapse
Affiliation(s)
- Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, Hawaii 96720, United States
| | - Pratikkumar Patel
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, Hawaii 96720, United States
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Abhijit A. Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, Hawaii 96720, United States
| |
Collapse
|
11
|
Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater 2020; 108:1-21. [PMID: 32268235 PMCID: PMC7163188 DOI: 10.1016/j.actbio.2020.03.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Vaccines activate suitable immune responses to fight against diseases but can possess limitations such as compromised efficacy and immunogenic responses, poor stability, and requirement of adherence to multiple doses. ‘Nanovaccines’ have been explored to elicit a strong immune response with the advantages of nano-sized range, high antigen loading, enhanced immunogenicity, controlled antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Various types of nanoparticles with diverse pathogenic or foreign antigens can help to overcome immunotolerance and alleviate the need of booster doses as required with conventional vaccines. Nanovaccines have the potential to induce both cell-mediated and antibody-mediated immunity and can render long-lasting immunogenic memory. With such properties, nanovaccines have shown high potential for the prevention of infectious diseases such as acquired immunodeficiency syndrome (AIDS), malaria, tuberculosis, influenza, and cancer. Their therapeutic potential has also been explored in the treatment of cancer. The various kinds of nanomaterials used for vaccine development and their effects on immune system activation have been discussed with special relevance to their implications in various pathological conditions. Statement of Significance Interaction of nanoparticles with the immune system has opened multiple avenues to combat a variety of infectious and non-infectious pathological conditions. Limitations of conventional vaccines have paved the path for nanomedicine associated benefits with a hope of producing effective nanovaccines. This review highlights the role of different types of nanovaccines and the role of nanoparticles in modulating the immune response of vaccines. The applications of nanovaccines in infectious and non-infectious diseases like malaria, tuberculosis, AIDS, influenza, and cancers have been discussed. It will help the readers develop an understanding of mechanisms of immune activation by nanovaccines and design appropriate strategies for novel nanovaccines.
Collapse
|
12
|
Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020; 20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Polysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives. This facile process is easy to perform and offers a broad structural diversity in terms of the PS backbone and the additional functionalities that can be introduced. Fundamental principles of different NP preparation techniques along with useful characterization methods are presented in this work. A comprehensive summary of PS-NP prepared by different techniques and with various PS backbones and types/amounts of hydrophobic substituents is given. The intention is to demonstrate how different parameters determine the size, size distribution, and zeta-potential of the particles. Moreover, application trends in biomedical areas are highlighted in which tailored functional PS-NP are evaluated and constantly developed further.
Collapse
Affiliation(s)
- Martin Gericke
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Peter Schulze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
13
|
Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv Drug Deliv Rev 2019; 151-152:94-129. [PMID: 31513827 DOI: 10.1016/j.addr.2019.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Many deadly infections are produced by microorganisms capable of sustained survival in macrophages. This reduces exposure to chemadrotherapy, prevents immune detection, and is akin to criminals hiding in police stations. Therefore, the use of glyco-nanoparticles (GNPs) as carriers of therapeutic agents is a burgeoning field. Such an approach can enhance the penetration of drugs into macrophages with specific carbohydrate targeting molecules on the nanocarrier to interact with macrophage lectins. Carbohydrates are natural biological molecules and the key constituents in a large variety of biological events such as cellular communication, infection, inflammation, enzyme trafficking, cellular migration, cancer metastasis and immune functions. The prominent characteristics of carbohydrates including biodegradability, biocompatibility, hydrophilicity and the highly specific interaction of targeting cell-surface receptors support their potential application to drug delivery systems (DDS). This review presents the 21st century development of carbohydrate-based nanocarriers for drug targeting of therapeutic agents for diseases localized in macrophages. The significance of natural carbohydrate-derived nanoparticles (GNPs) as anti-microbial drug carriers is highlighted in several areas of treatment including tuberculosis, salmonellosis, leishmaniasis, candidiasis, and HIV/AIDS.
Collapse
Affiliation(s)
- Tamim Mosaiab
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Dylan C Farr
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Milton J Kiefel
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | - Todd A Houston
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| |
Collapse
|
14
|
Topical Inserts: A Versatile Delivery Form for HIV Prevention. Pharmaceutics 2019; 11:pharmaceutics11080374. [PMID: 31374941 PMCID: PMC6723036 DOI: 10.3390/pharmaceutics11080374] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022] Open
Abstract
The development of topical inserts for the prevention of sexually transmitted infections (STIs), particularly human immunodeficiency virus (HIV), represents a promising alternative to oral and parenteral pre-exposure prophylaxis (PrEP) dosage forms. They may be used for vaginal and/or rectal administration of a variety of agents with antiviral activity. Topical inserts deliver drugs to the portal of viral entry, i.e., the genital or rectal mucosa, with low systemic exposure, and therefore are safer and have fewer side effects than systemic PrEP agents. They may dissolve fast, releasing the active drugs within minutes of insertion, or slowly for long-acting drug delivery. Furthermore, they are user-friendly being easy to administer, discreet and highly portable. They are also economical and easy to manufacture at scale and to distribute, with excellent stability and shelf-life. Altogether, topical inserts represent a particularly promising form of drug delivery for HIV and STI prevention. Highlighted within this review are end-user acceptability research dedicated to understanding preferred attributes for this form of drug delivery, advantages and disadvantages of the formulation platform options, considerations for their development, clinical assessment of select placebo prototypes, future directions, and the potential impact of this dosage form on the HIV prevention landscape.
Collapse
|
15
|
Gong Y, Chowdhury P, Nagesh PKB, Cory TJ, Dezfuli C, Kodidela S, Singh A, Yallapu MM, Kumar S. Nanotechnology approaches for delivery of cytochrome P450 substrates in HIV treatment. Expert Opin Drug Deliv 2019; 16:869-882. [PMID: 31328582 DOI: 10.1080/17425247.2019.1646725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Antiretroviral therapy (ART) has led to a significant reduction in HIV-1 morbidity and mortality. Many antiretroviral drugs (ARVs) are metabolized by cytochrome P450 (CYP) pathway, and the majority of these drugs are also either CYP inhibitors or inducers and few possess both activities. These CYP substrates, when used for HIV treatment in the conventional dosage form, have limitations such as low systemic bioavailability, potential drug-drug interactions, and short half-lives. Thus, an alternative mode of delivery is needed in contrast to conventional ARVs. Areas covered: In this review, we summarized the limitations of conventional ARVs in HIV treatment, especially for ARVs which are CYP substrates. We also discussed the preclinical and clinical studies using the nanotechnology strategy to overcome the limitations of these CYP substrates. The preclinical studies and clinical studies published from 2000 to February 2019 were discussed. Expert opinion: Since preclinical and clinical studies for prevention and treatment of HIV using nanotechnology approaches have shown considerable promise in recent years, nanotechnology could become an alternative strategy for daily oral therapy as a future treatment.
Collapse
Affiliation(s)
- Yuqing Gong
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Pallabita Chowdhury
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Prashanth K B Nagesh
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Theodore J Cory
- b Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Chelsea Dezfuli
- b Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sunitha Kodidela
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ajay Singh
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Murali M Yallapu
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Santosh Kumar
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
16
|
Grande F, Ioele G, Occhiuzzi MA, De Luca M, Mazzotta E, Ragno G, Garofalo A, Muzzalupo R. Reverse Transcriptase Inhibitors Nanosystems Designed for Drug Stability and Controlled Delivery. Pharmaceutics 2019; 11:E197. [PMID: 31035595 PMCID: PMC6572254 DOI: 10.3390/pharmaceutics11050197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
An in-depth analysis of nanotechnology applications for the improvement of solubility, distribution, bioavailability and stability of reverse transcriptase inhibitors is reported. Current clinically used nucleoside and non-nucleoside agents, included in combination therapies, were examined in the present survey, as drugs belonging to these classes are the major component of highly active antiretroviral treatments. The inclusion of such agents into supramolecular vesicular systems, such as liposomes, niosomes and lipid solid NPs, overcomes several drawbacks related to the action of these drugs, including drug instability and unfavorable pharmacokinetics. Overall results reported in the literature show that the performances of these drugs could be significantly improved by inclusion into nanosystems.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| |
Collapse
|
17
|
Mesquita L, Galante J, Nunes R, Sarmento B, das Neves J. Pharmaceutical Vehicles for Vaginal and Rectal Administration of Anti-HIV Microbicide Nanosystems. Pharmaceutics 2019; 11:pharmaceutics11030145. [PMID: 30917532 PMCID: PMC6472048 DOI: 10.3390/pharmaceutics11030145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Prevention strategies play a key role in the fight against HIV/AIDS. Vaginal and rectal microbicides hold great promise in tackling sexual transmission of HIV-1, but effective and safe products are yet to be approved and made available to those in need. While most efforts have been placed in finding and testing suitable active drug candidates to be used in microbicide development, the last decade also saw considerable advances in the design of adequate carrier systems and formulations that could lead to products presenting enhanced performance in protecting from infection. One strategy demonstrating great potential encompasses the use of nanosystems, either with intrinsic antiviral activity or acting as carriers for promising microbicide drug candidates. Polymeric nanoparticles, in particular, have been shown to be able to enhance mucosal distribution and retention of promising antiretroviral compounds. One important aspect in the development of nanotechnology-based microbicides relates to the design of pharmaceutical vehicles that allow not only convenient vaginal and/or rectal administration, but also preserve or even enhance the performance of nanosystems. In this manuscript, we revise relevant work concerning the selection of vaginal/rectal dosage forms and vehicle formulation development for the administration of microbicide nanosystems. We also pinpoint major gaps in the field and provide pertinent hints for future work.
Collapse
Affiliation(s)
- Letícia Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Joana Galante
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal.
| | - José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal.
| |
Collapse
|
18
|
pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release 2019; 295:214-222. [DOI: 10.1016/j.jconrel.2018.12.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
|
19
|
|
20
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
21
|
Abstract
Sexual intercourse (vaginal and anal) is the predominant mode of human immunodeficiency virus (HIV) transmission. Topical microbicides used in an on-demand format (i.e., immediately before or after sex) can be part of an effective tool kit utilized to prevent sexual transmission of HIV. The effectiveness of prevention products is positively correlated with adherence, which is likely to depend on user acceptability of the product. The development of an efficacious and acceptable product is therefore paramount for the success of an on-demand product. Acceptability of on-demand products (e.g., gels, films, and tablets) and their attributes is influenced by a multitude of user-specific factors that span behavioral, lifestyle, socio-economic, and cultural aspects. In addition, physicochemical properties of the drug, anatomical and physiological aspects of anorectal and vaginal compartments, issues relating to large-scale production, and cost can impact product development. These factors together with user preferences determine the design space of an effective, acceptable, and feasible on-demand product. In this review, we summarize the interacting factors that together determine product choice and its target product profile.
Collapse
Affiliation(s)
- Sravan Kumar Patel
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Lisa Cencia Rohan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
Wu TJ, Chiu HY, Yu J, Cautela MP, Sarmento B, das Neves J, Catala C, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA, Vranješ-Đurić S, Ignjatović NL. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018. [PMCID: PMC7156018 DOI: 10.1016/b978-0-323-48063-5.00001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology is an enabling technology with great potential for applications in stem cell research and regenerative medicine. Fluorescent nanodiamond (FND), an inherently biocompatible and nontoxic nanoparticle, is well suited for such applications. We had developed a prospective isolation method using CD157, CD45, and CD54 to obtain lung stem cells. Labeling of CD45−CD54+CD157+ cells with FNDs did not eliminate their abilities for self-renewal and differentiation. The FND labeling in combination with cell sorting, fluorescence lifetime imaging microscopy, and immunostaining identified transplanted stem cells allowed tracking of their engraftment and regenerative capabilities with single-cell resolution. Time-gated fluorescence (TGF) imaging in mouse tissue sections indicated that they reside preferentially at the bronchoalveolar junctions of lungs, especially in naphthalene-injured mice. Our results presented in Subchapter 1.1 demonstrate not only the remarkable homing capacity and regenerative potential of the isolated stem cells, but also the ability of finding rare lung stem cells in vivo using FNDs. The topical use of antiretroviral-based microbicides, namely of a dapivirine ring, has been recently shown to partially prevent transmission of HIV through the vaginal route. Among different formulation approaches, nanotechnology tools and principles have been used for the development of tentative vaginal and rectal microbicide products. Subchapter 1.2 provides an overview of antiretroviral drug nanocarriers as novel microbicide candidates and discusses recent and relevant research on the topic. Furthermore, advances in developing vaginal delivery platforms for the administration of promising antiretroviral drug nanocarriers are reviewed. Although mostly dedicated to the discussion of nanosystems for vaginal use, the development of rectal nanomicrobicides is also addressed. Infectious diseases are currently responsible for over 8 million deaths per year. Efficient treatments require accurate recognition of pathogens at low concentrations, which in the case of blood infection (septicemia) can go as low as 1 mL–1. Detecting and quantifying bacteria at such low concentrations is challenging and typically demands cultures of large samples of blood (∼1 mL) extending over 24–72 h. This delay seriously compromises the health of patients and is largely responsible for the death toll of bacterial infections. Recent advances in nanoscience, spectroscopy, plasmonics, and microfluidics allow for the development of optical devices capable of monitoring minute amounts of analytes in liquid samples. In Subchapter 1.3 we critically discuss these recent developments that will, in the future, enable the multiplex identification and quantification of microorganisms directly on their biological matrix with unprecedented speed, low cost, and sensitivity. Radiolabeled nanoparticles (NPs) are finding an increasing interest in a broad range of biomedical applications. They may be used to detect and characterize diseases, to deliver relevant therapeutics, and to study the pharmacokinetic/pharmacodynamic parameters of nanomaterials. The use of radiotracer techniques in the research of novel NPs offers many advantages, but there are still some limitations. The binding of radionuclides to NPs has to be irreversible to prevent their escape to other tissues or organs. Due to the short half-lives of radionuclides, the manufacturing process is time limited and difficult, and there is also a risk of contamination. Subchapter 1.4 presents the main selection criteria for radionuclides and applicable radiolabeling procedures used for the radiolabeling of various NPs. Also, an overview of different types of NPs that have so far been labeled with radionuclides is presented.
Collapse
Affiliation(s)
- Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan
| | - Hsiao-Yu Chiu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,Institute of Cellular and Organismic Biology, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mandal S, Khandalavala K, Pham R, Bruck P, Varghese M, Kochvar A, Monaco A, Prathipati PK, Destache C, Shibata A. Cellulose Acetate Phthalate and Antiretroviral Nanoparticle Fabrications for HIV Pre-Exposure Prophylaxis. Polymers (Basel) 2017; 9. [PMID: 30450244 PMCID: PMC6239201 DOI: 10.3390/polym9090423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To adequately reduce new HIV infections, development of highly effective pre-exposure prophylaxis (PrEP) against HIV infection in women is necessary. Cellulose acetate phthalate (CAP) is a pH sensitive polymer with HIV-1 entry inhibitory properties. Dolutegravir (DTG) is an integrase strand transfer inhibitor with potent antiretroviral activity. DTG delivered in combination with CAP may significantly improve current PrEP against HIV. In the present study, the development of DTG-loaded CAP nanoparticles incorporated in thermosensitive (TMS) gel at vaginal pH 4.2 and seminal fluid pH 7.4 is presented as proof-of-concept for improved PrEP. Water–oil–in–water homogenization was used to fabricate DTG-loaded CAP nanoparticles (DTG–CAP–NPs). Size, polydispersity, and morphological analyses illustrate that DTG–CAP–NPs were smooth and spherical, ≤200 nm in size, and monodispersed with a polydispersity index PDI ≤ 0.2. The drug encapsulation (EE%) and release profile of DTG–CAP–NPs was determined by HPLC analysis. The EE% of DTG in DTG–CAP–NPs was evaluated to be ~70%. The thermal sensitivity of the TMS gel was optimized and the pH dependency was evaluated by rheological analysis. DTG release studies in TMS gel revealed that DTG–CAP–NPs were stable in TMS gel at pH 4.2 while DTG–CAP–NPs in TMS gel at pH 7.4 rapidly release DTG (≥80% release within 1 h). Cytotoxicity studies using vaginal cell lines revealed that DTG–CAP–NPs were relatively non-cytotoxic at concentration <1 µg/mL. Confocal microscopic studies illustrate that ≥98% cells retained DTG–CAP–NPs intracellularly over seven days. Antiretroviral drug loaded nanocellulose fabrications in TMS gel delivered intravaginally may enhance both microbicidal and antiretroviral drug efficacy and may present a novel option for female PrEP against HIV.
Collapse
Affiliation(s)
- Subhra Mandal
- School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (S.M.); (P.K.P.); (C.D.)
| | - Karl Khandalavala
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Rachel Pham
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Patrick Bruck
- Dana-Farber Cancer Institute, Harvard University, Boston, MA 02215, USA;
| | - Marisa Varghese
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Andrew Kochvar
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Ashley Monaco
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Pavan Kumar Prathipati
- School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (S.M.); (P.K.P.); (C.D.)
| | - Christopher Destache
- School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (S.M.); (P.K.P.); (C.D.)
| | - Annemarie Shibata
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
- Correspondence: ; Tel.: +1-402-280-3588
| |
Collapse
|
24
|
Khandalavala K, Mandal S, Pham R, Destache CJ, Shibata A. Nanoparticle Encapsulation for Antiretroviral Pre-Exposure Prophylaxis. JOURNAL OF NANOTECHNOLOGY AND MATERIALS SCIENCE 2017; 4:53-61. [PMID: 29881781 PMCID: PMC5987555 DOI: 10.15436/2377-1372.17.1583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV continues to be one of the greatest challenges facing the global health community. More than 36 million people currently live with HIV and, in 2015 2.1 million new infections were reported globally. Pre-Exposure Prophylaxis (PrEP) prevents HIV infection by inhibiting viral entry, replication, or integration at the primary site of pathogenic contraction. Failures of large antiretroviral drug (ARV) PrEP clinical trials indicate the current insufficiencies of PrEP for women in high-risk areas, such as sub-Saharan Africa. A combination of social, adherence, and drug barriers create these insufficiencies and limit the efficacy of ARV. Nanotechnology offers the promise of extended drug release and enhances bioavailability of ARVs when encapsulated in polymeric nano-particles. Nanoparticle encapsulation has been evaluated in vitro in comparative studies to drug solutions and exhibit higher efficacy and lower cytotoxicity profiles. Delivery systems for nanoparticle PrEP facilitate administration of nano-encapsulated ARVs to high-risk tissues. In this mini-review, we summarize the comparative nanoparticle and drug solution studies and the potential of two delivery methods: thermosensitive gels and polymeric nanoparticle films for direct prophylactic applications.
Collapse
Affiliation(s)
| | - Subhra Mandal
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, 68178, USA
| | - Rachel Pham
- Department of Biology, Creighton University, Omaha, NE, 68178, USA
| | | | | |
Collapse
|
25
|
Tenofovir alafenamide and elvitegravir loaded nanoparticles for long-acting prevention of HIV-1 vaginal transmission. AIDS 2017; 31:469-476. [PMID: 28121666 DOI: 10.1097/qad.0000000000001349] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This report presents tenofovir (TFV) alafenamide (TAF) and elvitegravir (EVG) fabricated into nanoparticles for subcutaneous delivery as prevention strategy. DESIGN Prospective prevention study in humanized bone marrow-liver-thymus (hu-BLT) mice. METHODS Using an oil-in-water emulsion solvent evaporation technique, TAF + EVG drugs were entrapped together into nanoparticles containing poly(lactic-co-glycolic acid). In-vitro prophylaxis studies (90% inhibition concentration) compared nanoparticles with drugs in solution. Hu-BLT (n = 5/group) mice were given 200 mg/kg subcutaneous, and vaginally challenged with HIV-1 [5 × 10 tissue culture infectious dose for 50% of cells cultures (TCID50)] 4 and 14 days post-nanoparticle administration (post-nanoparticle injection). Control mice (n = 5) were challenged at 4 days. Weekly plasma viral load was performed using RT-PCR. Hu-BLT mice were sacrificed and lymph nodes were harvested for HIV-1 viral RNA detection by in-situ hybridization. In parallel, CD34 humanized mice (3/time point) compared TFV and EVG drug levels in vaginal tissues from nanoparticles and solution. TFV and EVG were analyzed from tissue using liquid chromatograph-tandem mass spectrometry (LC-MS/MS). RESULTS TAF + EVG nanoparticles were less than 200 nm in size. In-vitro prophylaxis indicates TAF + EVG nanoparticles 90% inhibition concentration was 0.002 μg/ml and TAF + EVG solution was 0.78 μg/ml. TAF + EVG nanoparticles demonstrated detectable drugs for 14 days and 72 h for solution, respectively. All hu-BLT control mice became infected within 14 days after HIV-1 challenge. In contrast, hu-BLT mice that received nanoparticles and challenged at 4 days post-nanoparticle injection, 100% were uninfected, and 60% challenged at 14 days post-nanoparticle injection were uninfected (P = 0.007; Mantel-Cox test). In-situ hybridization confirmed these results. CONCLUSION This proof-of-concept study demonstrated sustained protection for TAF + EVG nanoparticles in a hu-BLT mouse model of HIV vaginal transmission.
Collapse
|
26
|
Sahle FF, Gerecke C, Kleuser B, Bodmeier R. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int J Pharm 2016; 516:21-31. [PMID: 27845215 DOI: 10.1016/j.ijpharm.2016.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/18/2023]
Abstract
pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit® L 100, Eudragit® L 100-55, Eudragit® S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10mM pH 7.5 buffer and released>80% of the drug within 7h. The acrylate nanoparticles dissolved in 40mM pH 7.5 buffer and released 65-70% of the drug within 7h. The nanoparticles remained intact in 10 and 40mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, D-12169, Berlin, Germany
| | - Christian Gerecke
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Potsdam, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Potsdam, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, D-12169, Berlin, Germany.
| |
Collapse
|
27
|
Machado A, Cunha-Reis C, Araújo F, Nunes R, Seabra V, Ferreira D, das Neves J, Sarmento B. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomater 2016; 44:332-40. [PMID: 27544812 DOI: 10.1016/j.actbio.2016.08.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/18/2016] [Accepted: 08/16/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Topical pre-exposure prophylaxis (PrEP) with antiretroviral drugs holds promise in preventing vaginal transmission of HIV. However, significant biomedical and social issues found in multiple past clinical trials still need to be addressed in order to optimize protection and users' adherence. One approach may be the development of improved microbicide products. A novel delivery platform comprising drug-loaded nanoparticles (NPs) incorporated into a thin polymeric film base (NPs-in-film) was developed in order to allow the vaginal administration of the microbicide drug candidate tenofovir. The system was optimized for relevant physicochemical features and characterized for biological properties, namely cytotoxicity and safety in a mouse model. Tenofovir-loaded poly(lactic-co-glycolic acid) (PLGA)/stearylamine (SA) composite NPs with mean diameter of 127nm were obtained with drug association efficiency above 50%, and further incorporated into an approximately 115μm thick, hydroxypropyl methylcellulose/poly(vinyl alcohol)-based film. The system was shown to possess suitable mechanical properties for vaginal administration and to quickly disintegrate in approximately 9min upon contact with a simulated vaginal fluid (SVF). The original osmolarity and pH of SVF was not affected by the film. Tenofovir was also released in a biphasic fashion (around 30% of the drug in 15min, followed by sustained release up to 24h). The incorporation of NPs further improved the adhesive potential of the film to ex vivo pig vaginal mucosa. Cytotoxicity of NPs and film was significantly increased by the incorporation of SA, but remained at levels considered tolerable for vaginal delivery of tenofovir. Moreover, histological analysis of genital tissues and cytokine/chemokine levels in vaginal lavages upon 14days of daily vaginal administration to mice confirmed that tenofovir-loaded NPs-in-film was safe and did not induce any apparent histological changes or pro-inflammatory response. Overall, obtained data support that the proposed delivery system combining the use of polymeric NPs and a film base may constitute an exciting alternative for the vaginal administration of microbicide drugs in the context of topical PrEP. STATEMENT OF SIGNIFICANCE The development of nanotechnology-based microbicides is a recent but promising research field seeking for new strategies to circumvent HIV sexual transmission. Different reports detail on the multiple potential advantages of using drug nanocarriers for such purpose. However, one important issue being frequently neglected regards the development of vehicles for the administration of microbicide nanosystems. In this study, we propose and detail on the development of a nanoparticle-in-film system for the vaginal delivery of the microbicide drug candidate tenofovir. This is an innovative approach that, to our best knowledge, had never been tested for tenofovir. Results, including those from in vivo testing, sustain that the proposed system is safe and holds potential for further development as a vaginal microbicide product.
Collapse
|
28
|
Clinical challenges in HIV/AIDS: Hints for advancing prevention and patient management strategies. Adv Drug Deliv Rev 2016; 103:5-19. [PMID: 27117711 DOI: 10.1016/j.addr.2016.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023]
Abstract
Acquired immune deficiency syndrome has been one of the most devastating epidemics of the last century. The current estimate for people living with the HIV is 36.9 million. Today, despite availability of potent and safe drugs for effective treatment, lifelong therapy is required for preventing HIV re-emergence from a pool of latently infected cells. However, recent evidence show the importance to expand HIV testing, to offer antiretroviral treatment to all infected individuals, and to ensure retention through all the cascade of care. In addition, circumcision, pre-exposure prophylaxis, and other biomedical tools are now available for included in a comprehensive preventive package. Use of all the available tools might allow cutting the HIV transmission in 2030. In this article, we review the status of the epidemic, the latest advances in prevention and treatment, the concept of treatment as prevention and the challenges and opportunities for the HIV cure agenda.
Collapse
|
29
|
das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev 2016; 103:57-75. [PMID: 26829288 DOI: 10.1016/j.addr.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
Prevention plays an invaluable role in the fight against HIV/AIDS. The use of microbicides is considered an interesting potential approach for topical pre-exposure prophylaxis of HIV sexual transmission. The prospects of having an effective product available are expected to be fulfilled in the near future as driven by recent and forthcoming results of clinical trials. Different dosage forms and delivery strategies have been proposed and tested for multiple microbicide drug candidates presently at different stages of the development pipeline. One particularly interesting approach comprises the application of nanomedicine principles to the development of novel anti-HIV microbicides, but its implications to efficacy and safety are not yet fully understood. Nanotechnology-based systems, either presenting inherent anti-HIV activity or acting as drug nanocarriers, may significantly influence features such as drug solubility, stability of active payloads, drug release, interactions between active moieties and virus/cells, intracellular drug delivery, drug targeting, safety, antiviral activity, mucoadhesive behavior, drug distribution and tissue penetration, and pharmacokinetics. The present manuscript provides a comprehensive and holistic overview of these topics as relevant to the development of vaginal and rectal microbicides. In particular, recent advances pertaining inherently active microbicide nanosystems and microbicide drug nanocarriers are discussed.
Collapse
Affiliation(s)
- José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
30
|
Topical Tenofovir Disoproxil Fumarate Nanoparticles Prevent HIV-1 Vaginal Transmission in a Humanized Mouse Model. Antimicrob Agents Chemother 2016; 60:3633-9. [PMID: 27044548 DOI: 10.1128/aac.00450-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/26/2016] [Indexed: 01/12/2023] Open
Abstract
Preexposure prophylaxis (PrEP) with 1% tenofovir (TFV) vaginal gel has failed in clinical trials. To improve TFV efficacy in vaginal gel, we formulated tenofovir disoproxil fumarate nanoparticles in a thermosensitive (TMS) gel (TDF-NP-TMS gel). TDF-NPs were fabricated using poly(lactic-co-glycolic acid) (PLGA) polymer and an ion-pairing agent by oil-in-water emulsification. The efficacy of TDF-NP-TMS gel was tested in humanized bone marrow-liver-thymus (hu-BLT) mice. Hu-BLT mice in the treatment group (Rx; n = 15) were administered TDF-NP-TMS gel intravaginally, having TDF at 0.1%, 0.5%, and 1% (wt/vol) concentrations, whereas the control (Ctr; n = 8) group received a blank TMS gel. All Rx mice (0.1% [n = 4], 0.5% [n = 6], and 1% [n = 5]) were vaginally challenged with two transmitted/founder (T/F) HIV-1 strains (2.5 × 10(5) 50% tissue culture infectious doses). Rx mice were challenged at 4 h (0.1%), 24 h (0.5%), and 7 days (1%) posttreatment (p.t.) and Ctr mice were challenged at 4 h p.t. Blood was drawn weekly for 4 weeks postinoculation (p.i.) for plasma viral load (pVL) using reverse transcription-quantitative PCR. Ctr mice had positive pVL within 2 weeks p.i. Rx mice challenged at 4 h and 24 h showed 100% protection and no detectable pVL throughout the 4 weeks of follow-up (P = 0.009; Mantel-Cox test). Mice challenged at 7 days were HIV-1 positive at 14 days p.i. Further, HIV-1 viral RNA (vRNA) in vaginal and spleen tissues of Rx group mice with negative pVL were examined using an in situ hybridization (ISH) technique. The detection of vRNA was negative in all Rx mice studied. The present studies elucidate TDF-NP-TMS gel as a long-acting, coitus-independent HIV-1 vaginal protection modality.
Collapse
|
31
|
Natural polyphenols: potential in the prevention of sexually transmitted viral infections. Drug Discov Today 2015; 21:333-41. [PMID: 26546859 DOI: 10.1016/j.drudis.2015.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
Sexually transmitted viral infections represent a major public health concern due to lack of effective prevention strategies. Efforts are ongoing to develop modalities that can enable simultaneous prevention of multiple sexually transmitted infections. In the present review, we discuss the potential of natural polyphenols to prevent sexually transmitted viral infections. The review gives an account of various in vitro and in vivo studies carried out on epigallocatechin gallate, theaflavins (black tea polyphenols), resveratrol, genistein and curcumin to highlight their potential to prevent sexually transmitted infections caused by HIV (human immunodeficiency virus), HSV (herpes simplex virus) and HPV (human papilloma virus).
Collapse
|