1
|
Ma X, Tang W, Yang R. Bioinspired nanomaterials for the treatment of bacterial infections. NANO RESEARCH 2024; 17:691-714. [DOI: 10.1007/s12274-023-6283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/04/2025]
|
2
|
Chu D, Qu H, Huang X, Shi Y, Li K, Lin W, Xu Z, Li D, Chen H, Gao L, Wang W, Wang H. Manganese Amplifies Photoinduced ROS in Toluidine Blue Carbon Dots to Boost MRI Guided Chemo/Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304968. [PMID: 37715278 DOI: 10.1002/smll.202304968] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Indexed: 09/17/2023]
Abstract
The contrast agents and tumor treatments currently used in clinical practice are far from satisfactory, due to the specificity of the tumor microenvironment (TME). Identification of diagnostic and therapeutic reagents with strong contrast and therapeutic effect remains a great challenge. Herein, a novel carbon dot nanozyme (Mn-CD) is synthesized for the first time using toluidine blue (TB) and manganese as raw materials. As expected, the enhanced magnetic resonance (MR) imaging capability of Mn-CDs is realized in response to the TME (acidity and glutathione), and r1 and r2 relaxation rates are enhanced by 224% and 249%, respectively. In addition, the photostability of Mn-CDs is also improved, and show an efficient singlet oxygen (1 O2 ) yield of 1.68. Moreover, Mn-CDs can also perform high-efficiency peroxidase (POD)-like activity and catalyze hydrogen peroxide to hydroxyl radicals, which is greatly improved under the light condition. The results both in vitro and in vivo demonstrate that the Mn-CDs are able to achieve real-time MR imaging of TME responsiveness through aggregation of the enhanced permeability and retention effect at tumor sites and facilitate light-enhanced chemodynamic and photodynamic combination therapies. This work opens a new perspective in terms of the role of carbon nanomaterials in integrated diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Dongchuan Chu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Hang Qu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Xueping Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yu Shi
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Ke Li
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Wenzheng Lin
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Hao Chen
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wang
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Huihui Wang
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
3
|
Hu H, Yang J, Zhong Y, Wang J, Cai J, Luo C, Jin Z, Gao M, He M, Zheng L. Polydopamine-Pd nanozymes as potent ROS scavengers in combination with near-infrared irradiation for osteoarthritis treatment. iScience 2023; 26:106605. [PMID: 37182095 PMCID: PMC10172781 DOI: 10.1016/j.isci.2023.106605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Excessive reactive oxygen species (ROS) in joints could lead to gradual degeneration of the extracellular matrix (ECM) and apoptosis of chondrocytes, contributing to the occurrence and development of osteoarthritis (OA). Mimicking natural enzymes, polydopamine (PDA)-based nanozymes showed great potential in treating various inflammatory diseases. In this work, PDA loaded with ultra-small palladium (PDA-Pd) nanoparticles (NPs) was employed to scavenge ROS for OA therapy. As a result, PDA-Pd effectively declined the intracellular ROS levels and exhibited efficient antioxidative and anti-inflammatory capacity with good biocompatibility in IL-1β stimulated chondrocytes. Significantly, assisted with near-infrared (NIR) irradiation, its therapeutic effect was further enhanced. Further, NIR-stimulated PDA-Pd suppressed the progression of OA after intra-articular injection in the OA rat model. With favorable biocompatibility, PDA-Pd exhibits efficient antioxidative and anti-inflammatory capacity, leading to the alleviation of OA in rats. Our findings may provide new insights into the treatment of various ROS-induced inflammatory diseases.
Collapse
Affiliation(s)
- Hao Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yanping Zhong
- Life Sciences Institute of Guangxi Medical University, Nanning 530021, China
| | - Jiawei Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinhong Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Cuijuan Luo
- Life Sciences Institute of Guangxi Medical University, Nanning 530021, China
| | - Zhiqiang Jin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Corresponding author
| | - Maolin He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Corresponding author
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Corresponding author
| |
Collapse
|
4
|
Ye Z, Fan Y, Zhu T, Cao D, Hu X, Xiang S, Li J, Guo Z, Chen X, Tan K, Zheng N. Preparation of Two-Dimensional Pd@Ir Nanosheets and Application in Bacterial Infection Treatment by the Generation of Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23194-23205. [PMID: 35576507 DOI: 10.1021/acsami.2c03952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noble metal nanozymes have shown great promise in biomedicine; however, developing novel and high-performance noble metal nanozymes is still highly pressing and challenging. Herein, we, for the first time, prepared two-dimensional (2D) Pd@Ir bimetal nanosheets (NSs) with well-defined size and composition by a facile seed-mediated growth strategy. Enzyme-mimicked investigations find that the Pd@Ir NSs possess oxidase (OXD)-, peroxidase (POD)-, and catalase (CAT)-like multienzyme-mimetic activities. Especially, they exhibited much higher OXD- and POD-like activities than individual Pd NSs and Ir nanoparticles (NPs). The density functional theory (DFT) calculations reveal that the adsorption energy of O2 on Pd@Ir NSs is lower than that on the pure Pd NSs, which is more favorable for the conversion of O2 molecules from the triplet state (3O2) into the singlet state (1O2). Finally, based on the outstanding nanozyme activities to yield highly active singlet oxygen (1O2) and hydroxyl radicals (•OH) as well as excellent biosafety, the as-prepared Pd@Ir NSs were applied to treat bacteria-infected wounds, and satisfactory therapeutic outcomes were achieved. We believe that the highly efficient 2D Pd@Ir nanozyme will be an effective therapeutic reagent for various biomedical applications.
Collapse
Affiliation(s)
- Zichen Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yiyang Fan
- Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tianbao Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxu Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sijin Xiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai Tan
- Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Thangudu S, Su CH. Peroxidase Mimetic Nanozymes in Cancer Phototherapy: Progress and Perspectives. Biomolecules 2021; 11:1015. [PMID: 34356639 PMCID: PMC8301984 DOI: 10.3390/biom11071015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Nanomaterial-mediated cancer therapeutics is a fast developing field and has been utilized in potential clinical applications. However, most effective therapies, such as photodynamic therapy (PDT) and radio therapy (RT), are strongly oxygen-dependent, which hinders their practical applications. Later on, several strategies were developed to overcome tumor hypoxia, such as oxygen carrier nanomaterials and oxygen generated nanomaterials. Among these, oxygen species generation on nanozymes, especially catalase (CAT) mimetic nanozymes, convert endogenous hydrogen peroxide (H2O2) to oxygen (O2) and peroxidase (POD) mimetic nanozymes converts endogenous H2O2 to water (H2O) and reactive oxygen species (ROS) in a hypoxic tumor microenvironment is a fascinating approach. The present review provides a detailed examination of past, present and future perspectives of POD mimetic nanozymes for effective oxygen-dependent cancer phototherapeutics.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|