1
|
Vieira T, Silva JC, Kubinova S, Borges JP, Henriques C. Evaluation of Gelatin-Based Poly(Ester Urethane Urea) Electrospun Fibers Using Human Mesenchymal and Neural Stem Cells. Macromol Biosci 2024; 24:e2400014. [PMID: 39072995 DOI: 10.1002/mabi.202400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Indexed: 07/30/2024]
Abstract
Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).
Collapse
Affiliation(s)
- Tânia Vieira
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Jorge Carvalho Silva
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Sarka Kubinova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - João P Borges
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Ciência dos Materiais, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Célia Henriques
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
2
|
Vieira T, Afonso AF, Correia C, Henriques C, Borges JP, Silva JC. Electrospun poly(lactic acid) membranes with defined pore size to enhance cell infiltration. Heliyon 2024; 10:e36091. [PMID: 39224377 PMCID: PMC11367500 DOI: 10.1016/j.heliyon.2024.e36091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Electrospun membranes are compact structures with small pore sizes that hinder cell infiltration, resulting in membranes with cells attached only to the external surface rather than throughout the entire volume. Thus, there is a need to increase the pore size of electrospun membranes maintaining their structural similarity to the extracellular matrix. In this work, we used glucose crystals embedded in polyethylene oxide (PEO) fibers to create large pores in poly(lactic acid) (PLA) electrospun membranes to allow for cellular infiltration. The PEO fibers containing glucose crystals of different sizes (>50, 50-100 and 100-150 μm) and in varying concentrations (10, 15 and 20 %) were co-electrospun with PLA fibers and subsequently leached out using distilled water. PLA fibrous membranes without glucose crystals were also produced as controls. The membranes were examined for their morphology, mechanical properties, and potential to support the proliferation of fibroblasts. In addition, the immune response to the membranes was evaluated using monocyte-derived macrophages. The glucose crystals were uniformly distributed in the PLA membranes and their removal created open pores without collapsing the structure. Although a reduced Young's modulus was observed for membranes produced using higher glucose crystal concentrations and larger crystal sizes, the structural integrity remained intact, and the values are still suitable for tissue engineering. In vitro results showed that the scaffolds supported the adhesion and proliferation of fibroblasts and the pores created in the PLAmembranes were large enough for fibroblasts infiltration and colonization of the entire scaffold without inducing an inflammatory response.
Collapse
Affiliation(s)
- Tânia Vieira
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Filipa Afonso
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Catarina Correia
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Célia Henriques
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - João Paulo Borges
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Jorge Carvalho Silva
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
3
|
Qi Y, Lv H, Huang Q, Pan G. The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds. Ann Biomed Eng 2024; 52:1518-1533. [PMID: 38530536 DOI: 10.1007/s10439-024-03500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The primary goal of bone tissue engineering is to restore and rejuvenate bone defects by using a suitable three-dimensional scaffold, appropriate cells, and growth hormones. Various scaffolding methods are used to fabricate three-dimensional scaffolds, which provide the necessary environment for cell activity and bone formation. Multiple materials may be used to create scaffolds with hierarchical structures that are optimal for cell growth and specialization. This study examines a notion for creating an optimal framework for bone regeneration using a combination of the robocasting method and the electrospinning approach. Research indicates that the integration of these two procedures enhances the benefits of each method and provides a rationale for addressing their shortcomings via this combination. The hybrid approach is anticipated to provide a manufactured scaffold that can effectively replace bone defects while possessing the necessary qualities for bone regeneration.
Collapse
Affiliation(s)
- Yongjie Qi
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Hangying Lv
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Qinghua Huang
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Guangyong Pan
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China.
| |
Collapse
|
4
|
Sandhoff CA, Loewen A, Kuhn Y, Vidal HT, Ruetten S, Jockenhoevel S. The Challenge of E-Spinning Sub-Millimeter Tubular Scaffolds-A Design-of-Experiments Study for Fiber Yield Improvement. Polymers (Basel) 2024; 16:1475. [PMID: 38891422 PMCID: PMC11174914 DOI: 10.3390/polym16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
In tissue engineering, electrospinning has gained significant interest due to its highly porous structure with an excellent surface area to volume ratio and fiber diameters that can mimic the structure of the extracellular matrix. Bioactive substances such as growth factors and drugs are easily integrated. In many applications, there is an important need for small tubular structures (I.D. < 1 mm). However, fabricating sub-millimeter structures is challenging as it reduces the collector area and increases the disturbing factors, leading to significant fiber loss. This study aims to establish a reliable and reproducible electrospinning process for sub-millimeter tubular structures with minimized material loss. Influencing factors were analyzed, and disturbance factors were removed before optimizing control variables through the design-of-experiments method. Structural and morphological characterization was performed, including the yield, thickness, and fiber arrangement of the scaffold. We evaluated the electrospinning process to enhance the manufacturing efficiency and reduce material loss. The results indicated that adjusting the voltage settings and polarity significantly increased the fiber yield from 8% to 94%. Variations in the process parameters also affected the scaffold thickness and homogeneity. The results demonstrate the complex relationship between the process parameters and provide valuable insights for optimizing electrospinning, particularly for the cost-effective and reproducible production of small tubular diameters.
Collapse
Affiliation(s)
- Cilia A. Sandhoff
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.S.); (A.L.); (Y.K.)
| | - Alexander Loewen
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.S.); (A.L.); (Y.K.)
| | - Yasmin Kuhn
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.S.); (A.L.); (Y.K.)
| | - Haude-Tukua Vidal
- Laboratoire de Physique et Mécanique Textiles (LPMT), École Nationale Supérieure d’Ingénieurs Sud-Alsace, 12 Rue des Frères Lumière, 68 093 Mulhouse, France
| | - Stephan Ruetten
- Electron Microscopy Facility, University Hospital Aachen, Pauwelsstr. 30, 52074 Aachen, Germany;
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany; (C.A.S.); (A.L.); (Y.K.)
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
5
|
Zahra FT, Zhang Y, Ajayi AO, Quick Q, Mu R. Optimization of Electrospinning Parameters for Lower Molecular Weight Polymers: A Case Study on Polyvinylpyrrolidone. Polymers (Basel) 2024; 16:1217. [PMID: 38732686 PMCID: PMC11085657 DOI: 10.3390/polym16091217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyvinylpyrrolidone (PVP) is a synthetic polymer that holds significance in various fields such as biomedical, medical, and electronics, due to its biocompatibility and exceptional dielectric properties. Electrospinning is the most commonly used tool to fabricate fibers because of its convenience and the wide choice of parameter optimization. Various parameters, including solution molarity, flow rate, voltage, needle gauge, and needle-to-collector distance, can be optimized to obtain the desired morphology of the fibers. Although PVP is commercially available in various molecular weights, PVP with a molecular weight of 130,000 g/mol is generally considered to be the easiest PVP to fabricate fibers with minimal challenges. However, the fiber diameter in this case is usually in the micron regime, which limits the utilization of PVP fibers in fields that require fiber diameters in the nano regime. Generally, PVP with a lower molecular weight, such as 10,000 g/mol and 55,000 g/mol, is known to present challenges in fiber preparation. In the current study, parameter optimization for PVP possessing molecular weights of 10,000 g/mol and 55,000 g/mol was carried out to obtain nanofibers. The electrospinning technique was utilized for fiber fabrication by optimizing the above-mentioned parameters. SEM analysis was performed to analyze the fiber morphology, and quantitative analysis was performed to correlate the effect of parameters on the fiber morphology. This research study will lead to various applications, such as drug encapsulation for sustained drug release and nanoparticles/nanotubes encapsulation for microwave absorption applications.
Collapse
Affiliation(s)
- Fatima Tuz Zahra
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA
| | - Ying Zhang
- Center for Manufacturing Research, Tennessee Technological University, Cookeville, TN 38505, USA;
| | - Adeolu Oluwaseun Ajayi
- Department of Industrial Engineering and Operations Research, Columbia University in the City of New York, New York, NY 10027, USA;
| | - Quincy Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Richard Mu
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
6
|
Anisiei A, Andreica BI, Mititelu-Tartau L, Coman CG, Bilyy R, Bila G, Rosca I, Sandu AI, Amler E, Marin L. Biodegradable trimethyl chitosan nanofiber mats by electrospinning as bioabsorbable dressings for wound closure and healing. Int J Biol Macromol 2023; 249:126056. [PMID: 37524280 DOI: 10.1016/j.ijbiomac.2023.126056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The paper aimed to prepare quaternary chitosan-based nanofibers as bioabsorbable wound dressings. To this aim, fully biodegradable chitosan/N,N,N-trimethyl chitosan (TMC) nanofibers were designed and prepared via electrospinning, using poly(ethylene glycol) as sacrificial additive. The new biomaterials were structurally and morphologically characterized by FTIR and NMR spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy, and their properties required for wound dressings application were investigated and discussed in detail. Thus, the nanofiber behavior was investigated by swelling, dynamic vapor sorption, and in vitro biodegradation in media mimicking the wound exudate. The mechanical properties were analysed from the stress-strain curves, the bioadhesivity from the texture analysis and the mucoadhesivity from the Zeta potential and transmittance measurements. The antimicrobial activity was assessed against S. aureus and E. coli strains, and the biocompatibility was tested in vitro on normal human dermal fibroblasts, and in vivo on rats. The application of the fiber mats with the best balance of properties as dressings on deep burn wound models in rats showed wound closure and active healing, with fully restoration of epithelia. It was concluded that the combination of chitosan with TMC into nanofibers provides new potential bioabsorbable wound dressing, opening new perspectives in regenerative medicine.
Collapse
Affiliation(s)
- Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | | | | | - Corneliu G Coman
- "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Rostyslav Bilyy
- Lectinotest R&D, Mechamichna Str 2, 79022, Ukraine; Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Galyna Bila
- Lectinotest R&D, Mechamichna Str 2, 79022, Ukraine; Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Evžen Amler
- Research and Development Department Inocure, Prague, Czech Republic; Charles University, Prague, Czech Republic
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
7
|
Preparation and Characterization of Electrospun Polysaccharide FucoPol-Based Nanofiber Systems. NANOMATERIALS 2022; 12:nano12030498. [PMID: 35159843 PMCID: PMC8839707 DOI: 10.3390/nano12030498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022]
Abstract
The electrospinnability of FucoPol, a bacterial exopolysaccharide, is presented for the first time, evaluated alone and in combination with other polymers, such as polyethylene oxide (PEO) and pullulan. The obtained fibers were characterized in terms of their morphological, structural and thermal properties. Pure FucoPol fibers could not be obtained due to FucoPol’s low water solubility and a lack of molecular entanglements. Nanofibers were obtained via blending with PEO and pullulan. FucoPol:PEO (1:3 w/w) showed fibers with well-defined cylindrical structure, since the higher molecular weight of PEO helps the continuity of the erupted jet towards the collector, forming stable fibers. WAXS, DSC and TGA showed that FucoPol is an amorphous biopolymer, stable until 220 °C, whereas FucoPol-PEO fibers were stable until 140 °C, and FucoPol:pullulan fibers were stable until 130 °C. Interestingly, blended components influenced one another in intermolecular order, since new peaks associated to intermolecular hierarchical assemblies were seen by WAXS. These results make FucoPol-based systems viable candidates for production of nanofibers for packaging, agriculture, biomedicine, pharmacy and cosmetic applications.
Collapse
|
8
|
El-Aassar MR, Ibrahim OM, Al-Oanzi ZH. Biotechnological Applications of Polymeric Nanofiber Platforms Loaded with Diverse Bioactive Materials. Polymers (Basel) 2021; 13:3734. [PMID: 34771291 PMCID: PMC8586957 DOI: 10.3390/polym13213734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023] Open
Abstract
This review article highlights the critical research and formative works relating to nanofiber composites loaded with bioactive materials for diverse applications, and discusses the recent research on the use of electrospun nanofiber incorporating bioactive compounds such as essential oils, herbal bioactive components, plant extracts, and metallic nanoparticles. Inevitably, with the common advantages of bioactive components and polymer nanofibers, electrospun nanofibers containing bioactive components have attracted intense interests for their applications in biomedicine and cancer treatment. Many studies have only concentrated on the production and performance of electrospun nanofiber loaded with bioactive components; in this regard, the features of different types of electrospun nanofiber incorporating a wide variety of bioactive compounds and their developing trends are summarized and assessed in the present article, as is the feasible use of nanofiber technology to produce products on an industrial scale in different applications.
Collapse
Affiliation(s)
- M. R. El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 75471, Saudi Arabia
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Omar M. Ibrahim
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Ziad H. Al-Oanzi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Saudi Arabia
| |
Collapse
|
9
|
Design of a novel PEBA/CDs polymeric fibrous composite nanostructure in order to remove navicula algal and improve the quality of drinking water. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03852-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Fadil F, Affandi NDN, Misnon MI, Bonnia NN, Harun AM, Alam MK. Review on Electrospun Nanofiber-Applied Products. Polymers (Basel) 2021; 13:2087. [PMID: 34202857 PMCID: PMC8271930 DOI: 10.3390/polym13132087] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Electrospinning technology, which was previously known as a scientific interdisciplinary research approach, is now ready to move towards a practice-based interdisciplinary approach in a variety of fields, progressively. Electrospun nanofiber-applied products are made directly from a nonwoven fabric-based membranes prepared from polymeric liquids involving the application of sufficiently high voltages during electrospinning. Today, electrospun nanofiber-based materials are of remarkable interest across multiple fields of applications, such as in electronics, sensors, functional garments, sound proofing, filters, wound dressing and scaffolds. This article presents such a review for summarizing the current progress on the manufacturing scalability of electrospun nanofibers and the commercialization of electrospun nanofiber products by dedicated companies globally. Despite the clear potential and limitless possibilities for electrospun nanofiber applications, the uptake of electrospinning by the industry is still limited due to the challenges in the manufacturing and turning of electrospun nanofibers into physical products. The recent developments in the field of electrospinning, such as the prominent nonwoven technology, personal views and the potential path forward for the growth of commercially applied products based on electrospun nanofibers, are also highlighted.
Collapse
Affiliation(s)
- Fatirah Fadil
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (F.F.); (M.I.M.)
| | - Nor Dalila Nor Affandi
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (F.F.); (M.I.M.)
| | - Mohd Iqbal Misnon
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (F.F.); (M.I.M.)
| | - Noor Najmi Bonnia
- Materials Science and Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Ahmad Mukifza Harun
- Faculty Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | | |
Collapse
|
11
|
Esmail A, Pereira JR, Zoio P, Silvestre S, Menda UD, Sevrin C, Grandfils C, Fortunato E, Reis MAM, Henriques C, Oliva A, Freitas F. Oxygen Plasma Treated-Electrospun Polyhydroxyalkanoate Scaffolds for Hydrophilicity Improvement and Cell Adhesion. Polymers (Basel) 2021; 13:polym13071056. [PMID: 33801747 PMCID: PMC8036702 DOI: 10.3390/polym13071056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Poly(hydroxyalkanoates) (PHAs) with differing material properties, namely, the homopolymer poly(3-hydroxybutyrate), P(3HB), the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), with a 3HV content of 25 wt.% and a medium chain length PHA, and mcl-PHA, mainly composed of 3-hydroxydecanoate, were studied as scaffolding material for cell culture. P(3HB) and P(3HB-co-3HV) were individually spun into fibers, as well as blends of the mcl-PHA with each of the scl-PHAs. An overall biopolymer concentration of 4 wt.% was used to prepare the electrospinning solutions, using chloroform as the solvent. A stable electrospinning process and good quality fibers were obtained for a solution flow rate of 0.5 mL h−1, a needle tip collector distance of 20 cm and a voltage of 12 kV for P(3HB) and P(3HB-co-3HV) solutions, while for the mcl-PHA the distance was increased to 25 cm and the voltage to 15 kV. The scaffolds’ hydrophilicity was significantly increased under exposure to oxygen plasma as a surface treatment. Complete wetting was obtained for the oxygen plasma treated scaffolds and the water uptake degree increased in all treated scaffolds. The biopolymers crystallinity was not affected by the electrospinning process, while their treatment with oxygen plasma decreased their crystalline fraction. Human dermal fibroblasts were able to adhere and proliferate within the electrospun PHA-based scaffolds. The P(3HB-co-3HV): mcl-PHA oxygen plasma treated scaffold highlighted the most promising results with a cell adhesion rate of 40 ± 8%, compared to 14 ± 4% for the commercial oxygen plasma treated polystyrene scaffold AlvetexTM. Scaffolds based on P(3HB-co-3HV): mcl-PHA blends produced by electrospinning and submitted to oxygen plasma exposure are therefore promising biomaterials for the development of scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Asiyah Esmail
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Nova University Lisbon, 2780-157 Oeiras, Portugal; (P.Z.); (A.O.)
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - João R. Pereira
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
| | - Patrícia Zoio
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Nova University Lisbon, 2780-157 Oeiras, Portugal; (P.Z.); (A.O.)
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Sara Silvestre
- CENIMAT/i3N, Materials Science Department, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (S.S.); (U.D.M.); (E.F.)
| | - Ugur Deneb Menda
- CENIMAT/i3N, Materials Science Department, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (S.S.); (U.D.M.); (E.F.)
| | - Chantal Sevrin
- CEIB-Interfaculty Research Centre of Biomaterials, University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Christian Grandfils
- CEIB-Interfaculty Research Centre of Biomaterials, University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Elvira Fortunato
- CENIMAT/i3N, Materials Science Department, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (S.S.); (U.D.M.); (E.F.)
| | - Maria A. M. Reis
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
| | - Célia Henriques
- CENIMAT/i3N, Physics Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal;
| | - Abel Oliva
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Nova University Lisbon, 2780-157 Oeiras, Portugal; (P.Z.); (A.O.)
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
- Correspondence: ; Tel.: +35-12-1294-8300
| |
Collapse
|
12
|
Amirova A, Rodchenko S, Kurlykin M, Tenkovtsev A, Krasnou I, Krumme A, Filippov A. Intermolecular interaction of thermoresponsive poly‐2‐isopropyl‐2‐oxazoline in solutions and interpolymer complex with fiber‐forming polyethylene oxide. J Appl Polym Sci 2021. [DOI: 10.1002/app.49708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alina Amirova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg Russia
| | - Serafim Rodchenko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg Russia
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg Russia
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg Russia
| | - Illia Krasnou
- Department of Materials and Environmental Technology Tallinn University of Technology Tallinn Estonia
| | - Andres Krumme
- Department of Materials and Environmental Technology Tallinn University of Technology Tallinn Estonia
| | - Alexander Filippov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg Russia
| |
Collapse
|
13
|
Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Vieira T, Carvalho Silva J, Botelho do Rego A, Borges JP, Henriques C. Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109819. [DOI: 10.1016/j.msec.2019.109819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/04/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
|
15
|
Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineering. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1890-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Kothandaraman A, Alfadhl Y, Qureshi M, Edirisinghe M, Ventikos Y. Effect of the Mixing Region Geometry and Collector Distance on Microbubble Formation in a Microfluidic Device Coupled with ac-dc Electric Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10052-10060. [PMID: 30995839 DOI: 10.1021/acs.langmuir.8b03677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we report a significant advance in the preparation of monodisperse microbubbles using a combination of microfluidic and electric field technologies. Microbubbles have been employed in various fields such as biomedical engineering, water purification, and food engineering. Many techniques have been investigated for their preparation. Of these, the microfluidic T-junction has shown great potential because of the high degree of control it has over processing parameters and the ability to produce monodisperse microbubbles. Two main lines of investigation were conducted in this work-the effect of varying the mixing region distance (Mx) and the influence of altering the tip-to-collector distance (Dx) when an ac-dc field is applied. It was found that when Mx was decreased from 200 to 100 μm, the microbubble diameter also decreased from 128 ± 3 to 88 ± 5 μm due to an increase in shear stress as a result of a reduction in surface area. Similarly, decreasing the tip-to-collector distance results in an increase in the electric field strength experienced at the nozzle, facilitating further reduction of the bubble diameter from 111 ± 1 to 86 ± 1 μm at an ac voltage of 6 kV P-P and an applied dc voltage of 6 kV. Experiments conducted with the optimal parameters identified from these previous experiments enabled further reduction of the microbubble diameter to 18 ± 2 μm. These results suggest that a unique combination of parameters can be employed to achieve particular microbubble diameters to suit various applications.
Collapse
Affiliation(s)
- Anjana Kothandaraman
- Department of Mechanical Engineering , University College London , London WC1E 7JE , United Kingdom
| | - Yasir Alfadhl
- School of Electronic Engineering and Computer Science , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Muhammad Qureshi
- School of Electronic Engineering and Computer Science , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Mohan Edirisinghe
- Department of Mechanical Engineering , University College London , London WC1E 7JE , United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering , University College London , London WC1E 7JE , United Kingdom
| |
Collapse
|
17
|
Tough, hybrid chondroitin sulfate nanofibers as a promising scaffold for skin tissue engineering. Int J Biol Macromol 2019; 132:63-75. [DOI: 10.1016/j.ijbiomac.2019.03.208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
|
18
|
Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1772-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Application of response surface methodology in assessing the effect of electrospinning parameters on the morphology of polyethylene oxide/polyacrylonitrile blend nanofibers containing graphene oxide. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-018-2448-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Valente T, Ferreira JL, Henriques C, Borges JP, Silva JC. Polymer blending or fiber blending: A comparative study using chitosan and poly(ε-caprolactone) electrospun fibers. J Appl Polym Sci 2018. [DOI: 10.1002/app.47191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tiago Valente
- Faculty of Science and Technology, Physics Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| | - José Luís Ferreira
- CENIMAT/I3N, Faculty of Science and Technology, Physics Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| | - Célia Henriques
- CENIMAT/I3N, Faculty of Science and Technology, Physics Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| | - João Paulo Borges
- CENIMAT/I3N, Faculty of Science and Technology, Materials Science Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| | - Jorge Carvalho Silva
- CENIMAT/I3N, Faculty of Science and Technology, Physics Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| |
Collapse
|
21
|
Bhattarai DP, Aguilar LE, Park CH, Kim CS. A Review on Properties of Natural and Synthetic Based Electrospun Fibrous Materials for Bone Tissue Engineering. MEMBRANES 2018; 8:E62. [PMID: 30110968 PMCID: PMC6160934 DOI: 10.3390/membranes8030062] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering is an interdisciplinary field where the principles of engineering are applied on bone-related biochemical reactions. Scaffolds, cells, growth factors, and their interrelation in microenvironment are the major concerns in bone tissue engineering. Among many alternatives, electrospinning is a promising and versatile technique that is used to fabricate polymer fibrous scaffolds for bone tissue engineering applications. Copolymerization and polymer blending is a promising strategic way in purpose of getting synergistic and additive effect achieved from either polymer. In this review, we summarize the basic chemistry of bone, principle of electrospinning, and polymers that are used in bone tissue engineering. Particular attention will be given on biomechanical properties and biological activities of these electrospun fibers. This review will cover the fundamental basis of cell adhesion, differentiation, and proliferation of the electrospun fibers in bone tissue scaffolds. In the last section, we offer the current development and future perspectives on the use of electrospun mats in bone tissue engineering.
Collapse
Affiliation(s)
- Deval Prasad Bhattarai
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal.
| | - Ludwig Erik Aguilar
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Korea.
| |
Collapse
|
22
|
Vieira T, Silva JC, Borges JP, Henriques C. Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineering. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Hendrikson WJ, van Blitterswijk CA, Rouwkema J, Moroni L. The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering. Front Bioeng Biotechnol 2017; 5:30. [PMID: 28567371 PMCID: PMC5434139 DOI: 10.3389/fbioe.2017.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 01/13/2023] Open
Abstract
Computational modeling has been increasingly applied to the field of tissue engineering and regenerative medicine. Where in early days computational models were used to better understand the biomechanical requirements of targeted tissues to be regenerated, recently, more and more models are formulated to combine such biomechanical requirements with cell fate predictions to aid in the design of functional three-dimensional scaffolds. In this review, we highlight how computational modeling has been used to understand the mechanisms behind tissue formation and can be used for more rational and biomimetic scaffold-based tissue regeneration strategies. With a particular focus on musculoskeletal tissues, we discuss recent models attempting to predict cell activity in relation to specific mechanical and physical stimuli that can be applied to them through porous three-dimensional scaffolds. In doing so, we review the most common scaffold fabrication methods, with a critical view on those technologies that offer better properties to be more easily combined with computational modeling. Finally, we discuss how modeling, and in particular finite element analysis, can be used to optimize the design of scaffolds for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Wim. J. Hendrikson
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens. A. van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Maastricht, Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
24
|
Ghorani B, Goswami P, Russell S. Parametric Study of Electrospun Cellulose Acetate in Relation to Fibre Diameter. ACTA ACUST UNITED AC 2015. [DOI: 10.1108/rjta-19-04-2015-b003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective was to identify the main factors and interactions influencing the fibre diameter in the production of electrospun cellulose acetate (CA) webs. A systematic parameter study was completed for producing electrospun CA fibres that were substantially free of bead defects and the effect of different process parameters during electrospinning CA were evaluated in respect of mean fibre diameter. The experiments were planned using factorial designs. Altogether three parameters, each at three levels, were selected for this study. The results indicate that polymer concentration, voltage and flow rate interact so that the magnitude of any change in the mean fibre diameter is dependent upon the level of the other factors. Furthermore, stable electrospinning conditions for CA were confirmed using an acetone: N, N-dimethylacetamide (DMAc) (2:1) solvent system that minimised the presence of structural defects in the web and promoted uniform fibre diameters.
Collapse
|
25
|
Vannuruswamy G, Rathna GVN, Gadgil BST, Gadad AP. Blends of shellac as nanofiber formulations for wound healing. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515585180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Shellac is being used in food, pharmaceutical, and agricultural industries. It is seldom used for biomedical applications due to its poor mechanical property and instability. We designed thermoresponsive shellac-based bioactive nanofiber mats that mimic extracellular matrix to extend their utility in wound healing. Various blend compositions of shellac, gelatin, and poly(N-isopropylacrylamide) enriched with a bioactive agent, nadifloxacin, were prepared and nanofiber mats were fabricated. The morphology of the nanofiber formation was influenced by the concentration of polymer, drug, and polymer blend composition. Polymer–drug interactions and thermal and crystalline properties of nanofiber mats were analyzed. The shellac/gelatin/poly(N−isopropylacrylamide) blend of composition 3%/7%/3% (w/v) was chosen to evaluate in vitro drug release. Release studies recorded slow, constant, and sustained release for 140 h. The release kinetics and mechanism confirmed zero-order release with resultant r2 values greater than 0.99, and the Korsmeyer–Peppas release exponent ( n) was slightly higher than 0.8, which indicated that drug diffusion was anomalous or non-Fickian type and drug release followed diffusion involving chain stretching. Indirect cytotoxicity studies recorded insignificant toxicity against normal human fibroblast cells. In vivo studies demonstrated that drug-loaded nanofiber mats were more suitable for faster tissue regeneration as compared to nanofiber mats without drug and commercial nadifloxacin cream.
Collapse
Affiliation(s)
- Garikapati Vannuruswamy
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, India
- Department of Pharmaceutics, KLE University’s College of Pharmacy, Belgaum, India
| | | | | | | |
Collapse
|
26
|
Pezeshki-Modaress M, Mirzadeh H, Zandi M. Gelatin–GAG electrospun nanofibrous scaffold for skin tissue engineering: Fabrication and modeling of process parameters. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:704-12. [DOI: 10.1016/j.msec.2014.12.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/18/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
27
|
Gomes S, Rodrigues G, Martins G, Roberto M, Mafra M, Henriques C, Silva J. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:348-58. [DOI: 10.1016/j.msec.2014.10.051] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/20/2014] [Accepted: 10/21/2014] [Indexed: 11/28/2022]
|
28
|
Garg T, Rath G, Goyal AK. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J Drug Target 2014; 23:202-21. [PMID: 25539071 DOI: 10.3109/1061186x.2014.992899] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanofiber scaffold formulations (diameter less than 1000 nm) were successfully used to deliver the drug/cell/gene into the body organs through different routes for an effective treatment of various diseases. Various fabrication methods like drawing, template synthesis, fiber-mesh, phase separation, fiber-bonding, self-assembly, melt-blown, and electrospinning are successfully used for fabrication of nanofibers. These formulations are widely used in various fields such as tissue engineering, drug delivery, cosmetics, as filter media, protective clothing, wound dressing, homeostatic, sensor devices, etc. The present review gives a detailed account on the need of the nanofiber scaffold formulation development along with the biomaterials and techniques implemented for fabrication of the same against innumerable diseases. At present, there is a huge extent of research being performed worldwide on all aspects of biomolecules delivery. The unique characteristics of nanofibers such as higher loading efficiency, superior mechanical performance (stiffness and tensile strength), controlled release behavior, and excellent stability helps in the delivery of plasmid DNA, large protein drugs, genetic materials, and autologous stem-cell to the target site in the future.
Collapse
Affiliation(s)
- Tarun Garg
- Department of Pharmaceutics, ISF College of Pharmacy , Moga, Punjab , India
| | | | | |
Collapse
|
29
|
Pezeshki-Modaress M, Zandi M, Mirzadeh H. Fabrication of gelatin/chitosan nanofibrous scaffold: process optimization and empirical modeling. POLYM INT 2014. [DOI: 10.1002/pi.4843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Mojgan Zandi
- Department of Biomaterials; Iran Polymer and Petrochemical Institute; PO Box 14965/159 Tehran Iran
| | - Hamid Mirzadeh
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; PO Box 15875/4413 Tehran Iran
| |
Collapse
|
30
|
Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Electrospun poly(ε-caprolactone)-based skin substitutes:In vivoevaluation of wound healing and the mechanism of cell proliferation. J Biomed Mater Res B Appl Biomater 2014; 103:1445-54. [DOI: 10.1002/jbm.b.33325] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 08/23/2014] [Accepted: 11/04/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Robin Augustine
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University; Kottayam 686 560 Kerala India
| | - Edwin Anto Dominic
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences & Research Centre; Tiruvalla 689 101 Kerala India
| | - Indu Reju
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences & Research Centre; Tiruvalla 689 101 Kerala India
| | - Balarama Kaimal
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences & Research Centre; Tiruvalla 689 101 Kerala India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University; Kottayam 686 560 Kerala India
- School of Pure and Applied Physics, Mahatma Gandhi University; Kottayam 686 560 Kerala India
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University; Kottayam 686 560 Kerala India
- School of Chemical Sciences, Mahatma Gandhi University; Kottayam 686 560 Kerala India
| |
Collapse
|
31
|
Ferreira JL, Gomes S, Henriques C, Borges JP, Silva JC. Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, andIn Vitroevaluation. J Appl Polym Sci 2014. [DOI: 10.1002/app.41068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- José Luís Ferreira
- Departamento de Física; Faculdade de Ciências e Tecnologia, Centro de Física e Investigação Tecnológica, CeFITec, Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Susana Gomes
- Departamento de Física; Faculdade de Ciências e Tecnologia, Centro de Física e Investigação Tecnológica, CeFITec, Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Célia Henriques
- Departamento de Física; Faculdade de Ciências e Tecnologia, Centro de Física e Investigação Tecnológica, CeFITec, Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - João Paulo Borges
- Departamento de Ciência dos Materiais; Faculdade de Ciências e Tecnologia, Centro de Investigação de Materiais, CENIMAT/I3N, Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Jorge Carvalho Silva
- Departamento de Física; Faculdade de Ciências e Tecnologia, Centro de Física e Investigação Tecnológica, CeFITec, Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| |
Collapse
|
32
|
Senturk-Ozer S, Ward D, Gevgilili H, Kalyon DM. Dynamics of electrospinning of poly(caprolactone) via a multi-nozzle spinneret connected to a twin screw extruder and properties of electrospun fibers. POLYM ENG SCI 2012. [DOI: 10.1002/pen.23389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Critical variables in the alignment of electrospun PLLA nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:1779-1784. [DOI: 10.1016/j.msec.2012.04.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/04/2012] [Accepted: 04/22/2012] [Indexed: 11/19/2022]
|
34
|
Parizek M, Douglas TEL, Novotna K, Kromka A, Brady MA, Renzing A, Voss E, Jarosova M, Palatinus L, Tesarek P, Ryparova P, Lisa V, dos Santos AM, Warnke PH, Bacakova L. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int J Nanomedicine 2012; 7:1931-51. [PMID: 22619532 PMCID: PMC3356197 DOI: 10.2147/ijn.s26665] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. METHODS In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). RESULTS In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm(2) versus 1.28 ± 0.09 μm(2) in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1-7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and RAW 264.7 macrophages on these membranes did not show considerable inflammatory activity. CONCLUSION This study shows that nanofibrous PLGA membranes loaded with diamond nanoparticles have interesting potential for use in bone tissue engineering.
Collapse
Affiliation(s)
- Martin Parizek
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2011.11.032] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Sakai S, Kawakami K, Taya M. Controlling the Diameters of Silica Nanofibers Obtained by Sol–Gel/Electrospinning Methods. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2012. [DOI: 10.1252/jcej.11we249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University
| | - Koei Kawakami
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University
| | - Masahito Taya
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
37
|
Wang Y, Chen L. Fabrication and characterization of novel assembled prolamin protein nanofabrics with improved stability, mechanical property and release profiles. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34611g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
De Vrieze S, De Schoenmaker B, Ceylan Ö, Depuydt J, Van Landuyt L, Rahier H, Van Assche G, De Clerck K. Morphologic study of steady state electrospun polyamide 6 nanofibres. J Appl Polym Sci 2010. [DOI: 10.1002/app.33036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|