1
|
Yoon Y, Hong SW. The role of pattern coherence in interocular grouping during binocular rivalry: Insights from individual differences. Vision Res 2024; 219:108401. [PMID: 38569223 DOI: 10.1016/j.visres.2024.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Interocular grouping during binocular rivalry occurs when two images presented to each eye combine into a coherent pattern. The experience of interocular grouping is thought to be influenced by both eye-of-origin, which involves excitatory lateral connections among monocular neurons, and pattern coherence, which results from top-down intervention from higher visual areas. However, it remains unclear which factor plays a more significant role in the interocularly-grouped percepts during binocular rivalry. The current study employed an individual difference approach to investigate whether grouping dynamics are mainly determined by eye-of-origin or pattern coherence. We found that participants who perceived interocularly-driven coherent percepts for a longer duration also tended to experience longer periods of monocularly-driven coherent percepts. In contrast, participants who experienced non-coherent piecemeal percepts for an extended duration in conventional rivalry also had longer duration of non-coherent percepts in the interocular coherence setting. This individual differences in experiencing interocular grouping suggest that pattern coherence exerts a stronger influence on grouping dynamics during binocular rivalry compared to eye-of-origin factors.
Collapse
Affiliation(s)
- Yosun Yoon
- Department of Psychology, Florida Atlantic University, 777 Glades Rd, BS-12, Boca Raton, FL 33431, USA; Stiles-Nicholson Brain Institute, Florida Atlantic University, 777 Glades Rd, BS-12, Boca Raton, FL 33431, USA.
| | - Sang Wook Hong
- Department of Psychology, Florida Atlantic University, 777 Glades Rd, BS-12, Boca Raton, FL 33431, USA; Stiles-Nicholson Brain Institute, Florida Atlantic University, 777 Glades Rd, BS-12, Boca Raton, FL 33431, USA.
| |
Collapse
|
2
|
Cravo MI, Bernardes R, Castelo-Branco M. Subtractive adaptation is a more effective and general mechanism in binocular rivalry than divisive adaptation. J Vis 2023; 23:18. [PMID: 37505915 PMCID: PMC10405863 DOI: 10.1167/jov.23.7.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
The activity of neurons is influenced by random fluctuations and can be strongly modulated by firing rate adaptation, particularly in sensory systems. Still, there is ongoing debate about the characteristics of neuronal noise and the mechanisms of adaptation, and even less is known about how exactly they affect perception. Noise and adaptation are critical in binocular rivalry, a visual phenomenon where two images compete for perceptual dominance. Here, we investigated the effects of different noise processes and adaptation mechanisms on visual perception by simulating a model of binocular rivalry with Gaussian white noise, Ornstein-Uhlenbeck noise, and pink noise, in variants with divisive adaptation, subtractive adaptation, and without adaptation. By simulating the nine models in parameter space, we find that white noise only produces rivalry when paired with subtractive adaptation and that subtractive adaptation reduces the influence of noise intensity on rivalry strength and introduces convergence of the mean percept duration, an important metric of binocular rivalry, across all noise processes. In sum, our results show that white noise is an insufficient description of background activity in the brain and that subtractive adaptation is a stronger and more general switching mechanism in binocular rivalry than divisive adaptation, with important noise-filtering properties.
Collapse
Affiliation(s)
- Maria Inês Cravo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Brain Imaging Network of Portugal, Portugal
| |
Collapse
|
3
|
Adaptation to transients disrupts spatial coherence in binocular rivalry. Sci Rep 2020; 10:8673. [PMID: 32457469 PMCID: PMC7251118 DOI: 10.1038/s41598-020-65678-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
When one eye is presented with an image that is distinct from the image presented to the other eye, the eyes start to rival and suppress each other's image. Binocular rivalry leads to perceptual alternations between the images of each eye, during which only one of the images is perceived at a time. However, when the eyes exert weak and shallow suppression, participants tend to perceive both images intermixed more often. A recent study proposed that the precedence of mixed percepts positively correlates with the degree of adaptation to conflict between the eyes. However, this study neglected the role of visual transients, which covaried with the degree of conflict in the stimulus design. Here we report that not the conflict between the eyes but prolonged and repeated observations of strong visual transients cause participants to report more mixed percepts. We conclude that visual transients, such as sudden changes in contrast, draw attention, strengthen both eyes' image representations, and facilitate the adaptation to interocular suppression, which consequentially disrupts the spatial coherence in binocular rivalry. This finding is relevant to virtual- and augmented reality for which it is crucial to design stereoscopic environments in which binocular rivalry is limited.
Collapse
|
4
|
Abstract
Evidence for perceptual periodicity emerges from studies showing periodic fluctuations in visual perception and decision making that are accompanied by neural oscillations in brain activity. We have uncovered signs of periodicity in the time course of binocular rivalry, a widely studied form of multistable perception. This was done by analyzing time series data contained in an unusually large dataset of rivalry state durations associated with states of exclusive monocular dominance and states of mixed perception during transitions between exclusive dominance. Identifiable within the varying durations of dynamic mixed perception are rhythmic clusters of durations whose incidence falls within the frequency band associated with oscillations in neural activity accompanying periodicity in perceptual judgments. Endogenous neural oscillations appear to be especially impactful when perception is unusually confounding.
Collapse
|
5
|
Wykes KM, Hugrass L, Crewther DP. Autistic Traits Are Not a Strong Predictor of Binocular Rivalry Dynamics. Front Neurosci 2018; 12:338. [PMID: 29867339 PMCID: PMC5967175 DOI: 10.3389/fnins.2018.00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
It has been suggested that differences in binocular rivalry switching rates and mixed percept durations in ASD could serve as a biomarker of excitation/inhibition imbalances in the autistic brain. If so, one would expect these differences to extend to neurotypical groups with high vs. low levels of autistic tendency. Previous studies did not detect any correlations between binocular rivalry dynamics and Autism Spectrum Quotient (AQ) scores in neurotypical control groups; however it is unclear whether this was due to the characteristics of the rivalry stimuli that were used. We further investigated this possibility in a sample of neurotypical young adults. The binocular rivalry stimuli were simple gratings, complex objects, or scrambled objects, which were presented dichoptically, either at fixation or in the periphery. A Bayesian correlation analysis showed that individuals with higher AQ scores tended to have lower perceptual switching rates for the centrally presented, simple grating rival stimuli. However, there was no evidence of a relationship between AQ and switching rates, reversal rates or mixed percept durations for any of the other binocular rivalry conditions. Overall, our findings suggest that in the non-clinical population, autistic personality traits are not a strong predictor of binocular rivalry dynamics.
Collapse
|
6
|
V1 surface size predicts GABA concentration in medial occipital cortex. Neuroimage 2016; 124:654-662. [DOI: 10.1016/j.neuroimage.2015.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022] Open
|
7
|
Veltz R, Chossat P, Faugeras O. On the Effects on Cortical Spontaneous Activity of the Symmetries of the Network of Pinwheels in Visual Area V1. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:23. [PMID: 26055523 PMCID: PMC4449351 DOI: 10.1186/s13408-015-0023-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
This paper challenges and extends earlier seminal work. We consider the problem of describing mathematically the spontaneous activity of V1 by combining several important experimental observations including (1) the organization of the visual cortex into a spatially periodic network of hypercolumns structured around pinwheels, (2) the difference between short-range and long-range intracortical connections, the first ones being rather isotropic and producing naturally doubly periodic patterns by Turing mechanisms, the second one being patchy, and (3) the fact that the Turing patterns spontaneously produced by the short-range connections and the network of pinwheels have similar periods. By analyzing the PO maps, we are able to classify all possible singular points (the pinwheels) as having symmetries described by a small subset of the wallpaper groups. We then propose a description of the spontaneous activity of V1 using a classical voltage-based neural field model that features isotropic short-range connectivities modulated by non-isotropic long-range connectivities. A key observation is that, with only short-range connections and because the problem has full translational invariance in this case, a spontaneous doubly periodic pattern generates a 2-torus in a suitable functional space which persists as a flow-invariant manifold under small perturbations, for example when turning on the long-range connections. Through a complete analysis of the symmetries of the resulting neural field equation and motivated by a numerical investigation of the bifurcations of their solutions, we conclude that the branches of solutions which are stable over an extended range of parameters are those that correspond to patterns with an hexagonal (or nearly hexagonal) symmetry. The question of which patterns persist when turning on the long-range connections is answered by (1) analyzing the remaining symmetries on the perturbed torus and (2) combining this information with the Poincaré-Hopf theorem. We have developed a numerical implementation of the theory that has allowed us to produce the predicted patterns of activities, the planforms. In particular we generalize the contoured and non-contoured planforms predicted by previous authors.
Collapse
Affiliation(s)
- Romain Veltz
- Neuromathcomp Project Team, Inria Sophia Antipolis Méditerranée, 2004 Route des Lucioles-BP 93, 06902, Sophia Antipolis, France,
| | | | | |
Collapse
|
8
|
Brascamp JW, Klink PC, Levelt WJM. The 'laws' of binocular rivalry: 50 years of Levelt's propositions. Vision Res 2015; 109:20-37. [PMID: 25749677 DOI: 10.1016/j.visres.2015.02.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 11/26/2022]
Abstract
It has been fifty years since Levelt's monograph On Binocular Rivalry (1965) was published, but its four propositions that describe the relation between stimulus strength and the phenomenology of binocular rivalry remain a benchmark for theorists and experimentalists even today. In this review, we will revisit the original conception of the four propositions and the scientific landscape in which this happened. We will also provide a brief update concerning distributions of dominance durations, another aspect of Levelt's monograph that has maintained a prominent presence in the field. In a critical evaluation of Levelt's propositions against current knowledge of binocular rivalry we will then demonstrate that the original propositions are not completely compatible with what is known today, but that they can, in a straightforward way, be modified to encapsulate the progress that has been made over the past fifty years. The resulting modified, propositions are shown to apply to a broad range of bistable perceptual phenomena, not just binocular rivalry, and they allow important inferences about the underlying neural systems. We argue that these inferences reflect canonical neural properties that play a role in visual perception in general, and we discuss ways in which future research can build on the work reviewed here to attain a better understanding of these properties.
Collapse
Affiliation(s)
- J W Brascamp
- Helmholtz Institute and Division of Experimental Psychology, Department of Psychology, Utrecht University, Utrecht, The Netherlands.
| | - P C Klink
- Vision & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands; Neuromodulation & Behaviour, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - W J M Levelt
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Fesi JD, Mendola JD. Individual peak gamma frequency predicts switch rate in perceptual rivalry. Hum Brain Mapp 2015; 36:566-76. [PMID: 25271195 PMCID: PMC6869462 DOI: 10.1002/hbm.22647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/11/2022] Open
Abstract
Perceptual rivalry-the experience of alternation between two mutually exclusive interpretations of an ambiguous image-provides powerful opportunities to study conscious awareness. It is known that individual subjects experience perceptual alternations for various types of bistable stimuli at distinct rates, and this a stable, heritable trait. Also stable and heritable is the peak frequency of induced gamma-band (30-100 Hz) oscillation of a population-level response in occipital cortex to simple visual patterns, which has been established as a neural correlate of conscious processing. Interestingly, models for rivalry alternation rate and for the frequency of population-level oscillation have both cited inhibitory connections in cortex as crucial determinants of individual differences, and yet the relationship between these two variables has not yet been investigated. Here, we used magnetoencephalography to compare differences in alternation rate for binocular and monocular types of perceptual rivalry to differences in evoked and induced gamma-band frequency of neuromagnetic brain responses to simple nonrivalrous grating stimuli. For both types of bistable images, alternation rate was inversely correlated with the peak frequency of late evoked gamma activity in primary visual cortex (200-400 ms latency). Our results advance models of inhibition that account for subtle variation in normal visual cortex, and shed light on how small differences in anatomy and physiology relate to individual cognition and performance.
Collapse
Affiliation(s)
- Jeremy D. Fesi
- Department of OphthalmologyMcGill UniversityMontrealCanada
- Department of PsychologyThe City University of New YorkNew YorkNY
| | - Janine D. Mendola
- Department of OphthalmologyMcGill UniversityMontrealCanada
- Department of PsychologyThe City University of New YorkNew YorkNY
| |
Collapse
|
10
|
Bonneh YS, Donner TH, Cooperman A, Heeger DJ, Sagi D. Motion-induced blindness and Troxler fading: common and different mechanisms. PLoS One 2014; 9:e92894. [PMID: 24658600 PMCID: PMC3962462 DOI: 10.1371/journal.pone.0092894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/26/2014] [Indexed: 11/19/2022] Open
Abstract
Extended stabilization of gaze leads to disappearance of dim visual targets presented peripherally. This phenomenon, known as Troxler fading, is thought to result from neuronal adaptation. Intense targets also disappear intermittently when surrounded by a moving pattern (the “mask”), a phenomenon known as motion-induced blindness (MIB). The similar phenomenology and dynamics of these disappearances may suggest that also MIB is, likewise, solely due to adaptation, which may be amplified by the presence of the mask. Here we directly compared the dependence of both phenomena on target contrast. Observers reported the disappearance and reappearance of a target of varying intensity (contrast levels: 8%–80%). MIB was induced by adding a mask that moved at one of various different speeds. The results revealed a lawful effect of contrast in both MIB and Troxler fading, but with opposite trends. Increasing target contrast increased (doubled) the rate of disappearance events for MIB, but decreased the disappearance rate to half in Troxler fading. The target mean invisible period decreased equally strongly with target contrast in MIB and in Troxler fading. The results suggest that both MIB and Troxler are equally affected by contrast adaptation, but that the rate of MIB is governed by an additional mechanism, possibly involving antagonistic processes between neuronal populations processing target and mask. Our results link MIB to other bi-stable visual phenomena that involve neuronal competition (such as binocular rivalry), which exhibit an analogous dependency on the strength of the competing stimulus components.
Collapse
Affiliation(s)
- Yoram S. Bonneh
- Department of Human Biology, University of Haifa, Haifa, Israel
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| | - Tobias H. Donner
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Cognitive Science Center, University of Amsterdam, Amsterdam, The Netherlands
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
- Department of Psychology and Center for Neural Science, New York University, New York, New York, United States of America
| | - Alexander Cooperman
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - David J. Heeger
- Department of Psychology and Center for Neural Science, New York University, New York, New York, United States of America
| | - Dov Sagi
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Genç E, Bergmann J, Singer W, Kohler A. Surface area of early visual cortex predicts individual speed of traveling waves during binocular rivalry. ACTA ACUST UNITED AC 2013; 25:1499-508. [PMID: 24334918 DOI: 10.1093/cercor/bht342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Binocular rivalry ensues when different images are presented to the 2 eyes with conscious perception alternating between the possible interpretations. For large rivalry displays, perceptual transitions are initiated at one location and spread to other parts of the visual field, a phenomenon termed "traveling wave." Previous studies investigated the underlying neural mechanisms of the traveling wave and surmised that primary visual cortex might play an important role. We used magnetic resonance imaging and behavioral measures in humans to explore how interindividual differences in observers' subjective experience of the wave are related to anatomical characteristics of cortical regions. We measured wave speed in participants and confirmed the long-term stability of the individual values. Retinotopic mapping was employed to delineate borders of visual areas V1-V3 in order to determine surface area and cortical thickness in those regions. Only the surface areas of V1 and V2, but not V3 showed a correlation with wave speed. For individuals with larger V1/V2 area, the traveling wave needed longer to spread across the same distance in visual space. Our results highlight the role of early visual areas in mediating binocular rivalry and suggest possible mechanisms for the correlation between surface area and the traveling waves.
Collapse
Affiliation(s)
- Erhan Genç
- Department of Neurophysiology, Max Planck Institute for Brain Research, D-60528 Frankfurt am Main, Germany Ruhr University Bochum, Biopsychology, D-44780 Bochum, Germany Brain Imaging Center Frankfurt, D-60528 Frankfurt am Main, Germany
| | - Johanna Bergmann
- Department of Neurophysiology, Max Planck Institute for Brain Research, D-60528 Frankfurt am Main, Germany Brain Imaging Center Frankfurt, D-60528 Frankfurt am Main, Germany School of Psychology, University of New South Wales, Sydney, Australia
| | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, D-60528 Frankfurt am Main, Germany Brain Imaging Center Frankfurt, D-60528 Frankfurt am Main, Germany Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, D-60528 Frankfurt am Main, Germany Frankfurt Institute for Advanced Studies, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Axel Kohler
- Department of Neurophysiology, Max Planck Institute for Brain Research, D-60528 Frankfurt am Main, Germany Brain Imaging Center Frankfurt, D-60528 Frankfurt am Main, Germany Institute of Psychology, University of Münster, D-48149 Münster, Germany Current address: University of Osnabrück, Institute of Cognitive Science, Albrechtstr. 28, D-49076 Osnabrück, Germany
| |
Collapse
|
12
|
Said CP, Egan RD, Minshew NJ, Behrmann M, Heeger DJ. Normal binocular rivalry in autism: implications for the excitation/inhibition imbalance hypothesis. Vision Res 2013; 77:59-66. [PMID: 23200868 PMCID: PMC3538943 DOI: 10.1016/j.visres.2012.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022]
Abstract
Autism is characterized by disruption in multiple dimensions of perception, emotion, language and social cognition. Many hypotheses for the underlying neurophysiological basis have been proposed. Among these is the excitation/inhibition (E/I) imbalance hypothesis, which states that levels of cortical excitation and inhibition are disrupted in autism. We tested this theory in the visual system, because vision is one of the better understood systems in neuroscience, and because the E/I imbalance theory has been proposed to explain hypersensitivity to sensory stimuli in autism. We conducted two experiments on binocular rivalry, a well-studied psychophysical phenomenon that depends critically on excitation and inhibition levels in cortex. Using a computational model, we made specific predictions about how imbalances in excitation and inhibition levels would affect perception during two aspects of binocular rivalry: mixed perception (Experiment 1) and traveling waves (Experiment 2). We found no significant differences in either of these phenomena between high-functioning adults with autism and controls, and no evidence for a relationship between these measurements and the severity of autism. These results do not conclusively rule out an excitation/inhibition imbalance in the visual system of those with autism, but they suggest that such an imbalance, if it exists, is likely to be small in magnitude.
Collapse
|
13
|
Kang MS, Blake R. An integrated framework of spatiotemporal dynamics of binocular rivalry. Front Hum Neurosci 2011; 5:88. [PMID: 21941473 PMCID: PMC3171066 DOI: 10.3389/fnhum.2011.00088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/09/2011] [Indexed: 11/13/2022] Open
Abstract
Fluctuations in perceptual dominance during binocular rivalry exhibit several hallmark characteristics. First, dominance switches are not periodic but, instead, stochastic: perception changes unpredictably. Second, despite being stochastic, average durations of rivalry dominance vary dependent on the strength of the rival stimuli: variations in contrast, luminance, or spatial frequency produce predictable changes in average dominance durations and, hence, in alternation rate. Third, perceptual switches originate locally and spread globally over time, sometimes as traveling waves of dominance: rivalry transitions are spatiotemporal events. This essay (1) reviews recent advances in our understanding of the bases of these three hallmark characteristics of binocular rivalry dynamics and (2) provides an integrated framework to account for those dynamics using cooperative and competitive spatial interactions among local neural circuits distributed over the visual field's retinotopic map. We close with speculations about how that framework might incorporate top-down influences on rivalry dynamics.
Collapse
Affiliation(s)
- Min-Suk Kang
- Department of Psychology, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Cognitive Neuroscience, Vanderbilt University Nashville, TN, USA
| | | |
Collapse
|
14
|
Neural field model of binocular rivalry waves. J Comput Neurosci 2011; 32:233-52. [PMID: 21748526 DOI: 10.1007/s10827-011-0351-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 10/25/2022]
Abstract
We present a neural field model of binocular rivalry waves in visual cortex. For each eye we consider a one-dimensional network of neurons that respond maximally to a particular feature of the corresponding image such as the orientation of a grating stimulus. Recurrent connections within each one-dimensional network are assumed to be excitatory, whereas connections between the two networks are inhibitory (cross-inhibition). Slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We derive an analytical expression for the speed of a binocular rivalry wave as a function of various neurophysiological parameters, and show how properties of the wave are consistent with the wave-like propagation of perceptual dominance observed in recent psychophysical experiments. In addition to providing an analytical framework for studying binocular rivalry waves, we show how neural field methods provide insights into the mechanisms underlying the generation of the waves. In particular, we highlight the important role of slow adaptation in providing a "symmetry breaking mechanism" that allows waves to propagate.
Collapse
|