1
|
Monzel M, Reuter M. Where's Wanda? The influence of visual imagery vividness on visual search speed measured by means of hidden object pictures. Atten Percept Psychophys 2024; 86:22-27. [PMID: 36627474 PMCID: PMC10769966 DOI: 10.3758/s13414-022-02645-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/11/2023]
Abstract
Previous research demonstrated effects of visual imagery on search speed in visual search paradigms. However, these effects were rather small, questioning their ecological validity. Thus, our present study aimed to generalize these effects to more naturalistic material (i.e., a paradigm that allows for top-down strategies in highly complex visual search displays that include overlapping stimuli while simultaneously avoiding possibly confounding search instructions). One hundred and four participants with aphantasia (= absence of voluntary mental imagery) and 104 gender and age-matched controls were asked to find hidden objects in several hidden object pictures with search times recorded. Results showed that people with aphantasia were significantly slower than controls, even when controlling for age and general processing speed. Thus, effects of visual imagery might be strong enough to influence the perception of our real-life surroundings, probably because of the involvement of visual imagery in several top-down strategies.
Collapse
Affiliation(s)
- Merlin Monzel
- Department of Psychology, Personality Psychology and Biological Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany.
| | - Martin Reuter
- Department of Psychology, Personality Psychology and Biological Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
- Center for Economics and Neuroscience (CENs), Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Alexander R, Waite S, Bruno MA, Krupinski EA, Berlin L, Macknik S, Martinez-Conde S. Mandating Limits on Workload, Duty, and Speed in Radiology. Radiology 2022; 304:274-282. [PMID: 35699581 PMCID: PMC9340237 DOI: 10.1148/radiol.212631] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Research has not yet quantified the effects of workload or duty hours on the accuracy of radiologists. With the exception of a brief reduction in imaging studies during the 2020 peak of the COVID-19 pandemic, the workload of radiologists in the United States has seen relentless growth in recent years. One concern is that this increased demand could lead to reduced accuracy. Behavioral studies in species ranging from insects to humans have shown that decision speed is inversely correlated to decision accuracy. A potential solution is to institute workload and duty limits to optimize radiologist performance and patient safety. The concern, however, is that any prescribed mandated limits would be arbitrary and thus no more advantageous than allowing radiologists to self-regulate. Specific studies have been proposed to determine whether limits reduce error, and if so, to provide a principled basis for such limits. This could determine the precise susceptibility of individual radiologists to medical error as a function of speed during image viewing, the maximum number of studies that could be read during a work shift, and the appropriate shift duration as a function of time of day. Before principled recommendations for restrictions are made, however, it is important to understand how radiologists function both optimally and at the margins of adequate performance. This study examines the relationship between interpretation speed and error rates in radiology, the potential influence of artificial intelligence on reading speed and error rates, and the possible outcomes of imposed limits on both caseload and duty hours. This review concludes that the scientific evidence needed to make meaningful rules is lacking and notes that regulating workloads without scientific principles can be more harmful than not regulating at all.
Collapse
Affiliation(s)
- Robert Alexander
- From the Departments of Ophthalmology (R.A., S.M., S.M.C.), Radiology (S.W.), Neurology (S.M., S.M.C.), and Physiology & Pharmacology (S.M., S.M.C.), SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203; Department of Radiology, Penn State Milton S. Hershey Medical Center, Hershey, Pa (M.A.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (E.A.K.); and Department of Radiology, Rush University Medical College and University of Illinois, Chicago, Ill (L.B.)
| | - Stephen Waite
- From the Departments of Ophthalmology (R.A., S.M., S.M.C.), Radiology (S.W.), Neurology (S.M., S.M.C.), and Physiology & Pharmacology (S.M., S.M.C.), SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203; Department of Radiology, Penn State Milton S. Hershey Medical Center, Hershey, Pa (M.A.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (E.A.K.); and Department of Radiology, Rush University Medical College and University of Illinois, Chicago, Ill (L.B.)
| | - Michael A Bruno
- From the Departments of Ophthalmology (R.A., S.M., S.M.C.), Radiology (S.W.), Neurology (S.M., S.M.C.), and Physiology & Pharmacology (S.M., S.M.C.), SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203; Department of Radiology, Penn State Milton S. Hershey Medical Center, Hershey, Pa (M.A.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (E.A.K.); and Department of Radiology, Rush University Medical College and University of Illinois, Chicago, Ill (L.B.)
| | - Elizabeth A Krupinski
- From the Departments of Ophthalmology (R.A., S.M., S.M.C.), Radiology (S.W.), Neurology (S.M., S.M.C.), and Physiology & Pharmacology (S.M., S.M.C.), SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203; Department of Radiology, Penn State Milton S. Hershey Medical Center, Hershey, Pa (M.A.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (E.A.K.); and Department of Radiology, Rush University Medical College and University of Illinois, Chicago, Ill (L.B.)
| | - Leonard Berlin
- From the Departments of Ophthalmology (R.A., S.M., S.M.C.), Radiology (S.W.), Neurology (S.M., S.M.C.), and Physiology & Pharmacology (S.M., S.M.C.), SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203; Department of Radiology, Penn State Milton S. Hershey Medical Center, Hershey, Pa (M.A.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (E.A.K.); and Department of Radiology, Rush University Medical College and University of Illinois, Chicago, Ill (L.B.)
| | - Stephen Macknik
- From the Departments of Ophthalmology (R.A., S.M., S.M.C.), Radiology (S.W.), Neurology (S.M., S.M.C.), and Physiology & Pharmacology (S.M., S.M.C.), SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203; Department of Radiology, Penn State Milton S. Hershey Medical Center, Hershey, Pa (M.A.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (E.A.K.); and Department of Radiology, Rush University Medical College and University of Illinois, Chicago, Ill (L.B.)
| | - Susana Martinez-Conde
- From the Departments of Ophthalmology (R.A., S.M., S.M.C.), Radiology (S.W.), Neurology (S.M., S.M.C.), and Physiology & Pharmacology (S.M., S.M.C.), SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203; Department of Radiology, Penn State Milton S. Hershey Medical Center, Hershey, Pa (M.A.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (E.A.K.); and Department of Radiology, Rush University Medical College and University of Illinois, Chicago, Ill (L.B.)
| |
Collapse
|
3
|
Alexander RG, Yazdanie F, Waite S, Chaudhry ZA, Kolla S, Macknik SL, Martinez-Conde S. Visual Illusions in Radiology: Untrue Perceptions in Medical Images and Their Implications for Diagnostic Accuracy. Front Neurosci 2021; 15:629469. [PMID: 34177444 PMCID: PMC8226024 DOI: 10.3389/fnins.2021.629469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Errors in radiologic interpretation are largely the result of failures of perception. This remains true despite the increasing use of computer-aided detection and diagnosis. We surveyed the literature on visual illusions during the viewing of radiologic images. Misperception of anatomical structures is a potential cause of error that can lead to patient harm if disease is seen when none is present. However, visual illusions can also help enhance the ability of radiologists to detect and characterize abnormalities. Indeed, radiologists have learned to exploit certain perceptual biases in diagnostic findings and as training tools. We propose that further detailed study of radiologic illusions would help clarify the mechanisms underlying radiologic performance and provide additional heuristics to improve radiologist training and reduce medical error.
Collapse
Affiliation(s)
- Robert G Alexander
- Department of Ophthalmology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States.,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States.,Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Fahd Yazdanie
- Department of Radiology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Stephen Waite
- Department of Radiology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Zeshan A Chaudhry
- Department of Radiology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Srinivas Kolla
- Department of Radiology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Stephen L Macknik
- Department of Ophthalmology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States.,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States.,Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Susana Martinez-Conde
- Department of Ophthalmology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States.,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States.,Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
4
|
Alexander RG, Waite S, Macknik SL, Martinez-Conde S. What do radiologists look for? Advances and limitations of perceptual learning in radiologic search. J Vis 2020; 20:17. [PMID: 33057623 PMCID: PMC7571277 DOI: 10.1167/jov.20.10.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/14/2020] [Indexed: 12/31/2022] Open
Abstract
Supported by guidance from training during residency programs, radiologists learn clinically relevant visual features by viewing thousands of medical images. Yet the precise visual features that expert radiologists use in their clinical practice remain unknown. Identifying such features would allow the development of perceptual learning training methods targeted to the optimization of radiology training and the reduction of medical error. Here we review attempts to bridge current gaps in understanding with a focus on computational saliency models that characterize and predict gaze behavior in radiologists. There have been great strides toward the accurate prediction of relevant medical information within images, thereby facilitating the development of novel computer-aided detection and diagnostic tools. In some cases, computational models have achieved equivalent sensitivity to that of radiologists, suggesting that we may be close to identifying the underlying visual representations that radiologists use. However, because the relevant bottom-up features vary across task context and imaging modalities, it will also be necessary to identify relevant top-down factors before perceptual expertise in radiology can be fully understood. Progress along these dimensions will improve the tools available for educating new generations of radiologists, and aid in the detection of medically relevant information, ultimately improving patient health.
Collapse
Affiliation(s)
- Robert G Alexander
- Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stephen Waite
- Department of Radiology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stephen L Macknik
- Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Susana Martinez-Conde
- Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|