1
|
Eisma YB, van Vliet ST, Nederveen AJ, de Winter JCF. Assessing the influence of visual stimulus properties on steady-state visually evoked potentials and pupil diameter. Biomed Phys Eng Express 2024; 10:065044. [PMID: 39401512 DOI: 10.1088/2057-1976/ad865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Steady-State Visual Evoked Potentials (SSVEPs) are brain responses measurable via electroencephalography (EEG) in response to continuous visual stimulation at a constant frequency. SSVEPs have been instrumental in advancing our understanding of human vision and attention, as well as in the development of brain-computer interfaces (BCIs). Ongoing questions remain about which type of visual stimulus causes the most potent SSVEP response. The current study investigated the effects of color, size, and flicker frequency on the signal-to-noise ratio of SSVEPs, complemented by pupillary light reflex measurements obtained through an eye-tracker. Six participants were presented with visual stimuli that differed in terms of color (white, red, green), shape (circles, squares, triangles), size (10,000 to 30,000 pixels), flicker frequency (8 to 25 Hz), and grouping (one stimulus at a time versus four stimuli presented in a 2 × 2 matrix to simulate a BCI). The results indicated that larger stimuli elicited stronger SSVEP responses and more pronounced pupil constriction. Additionally, the results revealed an interaction between stimulus color and flicker frequency, with red being more effective at lower frequencies and white at higher frequencies. Future SSVEP research could focus on the recommended waveform, interactions between SSVEP and power grid frequency, a wider range of flicker frequencies, a larger sample of participants, and a systematic comparison of the information transfer obtained through SSVEPs, pupil diameter, and eye movements.
Collapse
Affiliation(s)
- Y B Eisma
- Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands
| | - S T van Vliet
- Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands
| | - A J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - J C F de Winter
- Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
2
|
Chin HH, Tai YH, Yep R, Chang YH, Hsu CH, Wang CA. Investigating causal effects of pupil size on visual discrimination and visually evoked potentials in an optotype discrimination task. Front Neurosci 2024; 18:1412527. [PMID: 39411147 PMCID: PMC11473405 DOI: 10.3389/fnins.2024.1412527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Pupil size primarily changes to regulate the amount of light entering the retina, optimizing the balance between visual acuity and sensitivity for effective visual processing. However, research directly examining the relationship between pupil size and visual processing has been limited. While a few studies have recorded pupil size and EEG signals to investigate the role of pupil size in visual processing, these studies have predominantly focused on the domain of visual sensitivity. Causal effects of pupil size on visual acuity, therefore, remain poorly understood. By manipulating peripheral background luminance levels and target stimulus contrast while simultaneously recording pupillometry and EEG signals, we examined how absolute pupil size affects visual discrimination and visually evoked potentials (VEP) in a task using optotype mimicking the Snellen eye chart, the most common assessment of visual acuity. Our findings indicate that both higher background luminance levels and higher target contrast were associated with improved target discrimination and faster correct reaction times. Moreover, while higher contrast visual stimuli evoked larger VEPs, the effects of pupil size on VEPs were not significant. Additionally, we did not observe inter-individual correlations between absolute pupil size and discrimination performance or VEP amplitude. Together, our results demonstrate that absolute pupil size, regulated by global luminance level, played a functional role in enhancing visual discrimination performance in an optotype discrimination task. The differential VEP effects of pupil size compared to those of stimulus contrast further suggested distinct neural mechanisms involved in facilitating visual acuity under small pupils.
Collapse
Affiliation(s)
- Hsin-Hua Chin
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Department of Psychology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Ying-Hsuan Tai
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Rachel Yep
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Yi-Hsuan Chang
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Chun-Hsien Hsu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Chin-An Wang
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| |
Collapse
|
3
|
Mathôt S, Berberyan H, Büchel P, Ruuskanen V, Vilotijević A, Kruijne W. Effects of pupil size as manipulated through ipRGC activation on visual processing. Neuroimage 2023; 283:120420. [PMID: 37871758 DOI: 10.1016/j.neuroimage.2023.120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023] Open
Abstract
The size of the eyes' pupils determines how much light enters the eye and also how well this light is focused. Through this route, pupil size shapes the earliest stages of visual processing. Yet causal effects of pupil size on vision are poorly understood and rarely studied. Here we introduce a new way to manipulate pupil size, which relies on activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) to induce sustained pupil constriction. We report the effects of both experimentally induced and spontaneous changes in pupil size on visual processing as measured through EEG. We compare these to the effects of stimulus intensity and covert visual attention, because previous studies have shown that these factors all have comparable effects on some common measures of early visual processing, such as detection performance and steady-state visual evoked potentials; yet it is still unclear whether these are superficial similarities, or rather whether they reflect similar underlying processes. Using a mix of neural-network decoding, ERP analyses, and time-frequency analyses, we find that induced pupil size, spontaneous pupil size, stimulus intensity, and covert visual attention all affect EEG responses, mainly over occipital and parietal electrodes, but-crucially-that they do so in qualitatively different ways. Induced and spontaneous pupil-size changes mainly modulate activity patterns (but not overall power or intertrial coherence) in the high-frequency beta range; this may reflect an effect of pupil size on oculomotor activity and/ or visual processing. In addition, spontaneous (but not induced) pupil size tends to correlate positively with intertrial coherence in the alpha band; this may reflect a non-causal relationship, mediated by arousal. Taken together, our findings suggest that pupil size has qualitatively different effects on visual processing from stimulus intensity and covert visual attention. This shows that pupil size as manipulated through ipRGC activation strongly affects visual processing, and provides concrete starting points for further study of this important yet understudied earliest stage of visual processing.
Collapse
Affiliation(s)
- Sebastiaan Mathôt
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands.
| | | | - Philipp Büchel
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Veera Ruuskanen
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Ana Vilotijević
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Wouter Kruijne
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| |
Collapse
|
4
|
Panitz C, Gundlach C, Boylan MR, Keil A, Müller MM. Higher amplitudes in steady-state visual evoked potentials driven by square-wave versus sine-wave contrast modulation - A dual-laboratory study. Psychophysiology 2023:e14287. [PMID: 36906882 DOI: 10.1111/psyp.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023]
Abstract
Steady-state visual evoked potentials (ssVEPs) are an established tool for assessing visuocortical responses in visual perception and attention. They have the same temporal frequency characteristics as a periodically modulated stimulus (e.g., in contrast or luminance) that drives them. It has been hypothesized that the amplitude of a given ssVEP may depend on the shape of the stimulus modulation function, but the size and robustness of these effects is not well established. The current study systematically compared the effect of the two most common functions in the ssVEP literature, square-wave and sine-wave functions. Across two laboratories, we presented mid-complex color patterns to 30 participants with square-wave or sine-wave contrast modulation and at different driving frequencies (6 Hz, 8.57 Hz, 15 Hz). When ssVEPs were analyzed independently for the samples, with each laboratory's standard processing pipeline, ssVEP amplitudes in both samples decreased at higher driving frequencies and square-wave modulation evoked higher amplitudes at lower frequencies (i.e., 6 Hz, 8.57 Hz) compared to sine-wave modulation. These effects were replicated when samples were aggregated and analyzed with the same processing pipeline. In addition, when using signal-to-noise ratios as outcome measures, this joint analysis indicated a somewhat weaker effect of increased ssVEP amplitudes to square-wave modulation at 15 Hz. The present study suggests that square-wave modulation should be used in ssVEP research when the goal is to maximize signal amplitude or signal-to-noise ratio. Given effects of modulation function across laboratories, and data processing pipelines, the findings appear robust to differences in data collection and analysis.
Collapse
Affiliation(s)
- Christian Panitz
- Department of Psychology, University of Leipzig, Leipzig, Germany.,Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | | | - Maeve R Boylan
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | - Andreas Keil
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
5
|
Wardhani IK, Boehler CN, Mathôt S. The influence of pupil responses on subjective brightness perception. Perception 2022; 51:370-387. [PMID: 35491711 PMCID: PMC9121535 DOI: 10.1177/03010066221094757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When the pupil dilates, the amount of light that falls onto the retina increases.
However, in daily life, this does not make the world look brighter. Here we asked whether
pupil size (resulting from active pupil movement) influences subjective brightness in the
absence of indirect cues that, in daily life, support brightness constancy. We measured
the subjective brightness of a tester stimulus relative to a referent as a function of
pupil size during tester presentation. In Experiment 1, we manipulated pupil size through
a secondary working-memory task (larger pupils with higher load and after errors). We
found some evidence that the tester was perceived as darker, rather than brighter, when
pupils were larger. In Experiment 2, we presented a red or blue display (larger pupils
following red displays). We again found that the tester was perceived as darker when
pupils were larger. We speculate that the visual system takes pupil size into account when
making brightness judgments. Finally, we highlight the challenges associated with
manipulating pupil size. In summary, the current study (as well as a recent
pharmacological study on the same topic by another team) is intriguing first steps towards
understanding the role of pupil size in brightness perception.
Collapse
Affiliation(s)
- I. K. Wardhani
- Ghent University, Belgium; University of Groningen, the Netherlands
| | | | - S. Mathôt
- University of Groningen, the Netherlands
| |
Collapse
|
6
|
Short-Term Effect of Wearing of Extended Depth-of-Focus Contact Lenses in Myopic Children: A Pilot Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This pseudo-experimental, prospective, and longitudinal pilot study was conducted to characterize the optical and visual changes occurring in the short-term wear of a hydrophilic contact lens (CL) based on extended focus technology (EDOF). A total of 30 eyes of 15 children (age, 6–16 years) were fitted with the EDOF CL Mylo (Mark’ennovy Care SL), performing an exhaustive follow-up for one month evaluating changes in visual acuity (VA), accommodation, binocularity, ocular aberrometry, visual quality, pupillometry, keratometry and biometry. Far and near VA with the CL improved progressively (p < 0.001), obtaining mean final binocular values of −0.08 ± 0.01 and −0.07 ± 0.01 LogMAR, respectively. There was a mean reduction in the accommodative LAG of 0.30 D (p < 0.001), without associated alterations in the magnitude of the phoria and fusional vergences (p ≥ 0.066). A controlled but statistically significant increase (p ≤ 0.005) of ocular high order aberration (HOA) root mean square (RMS), primary coma RMS, primary spherical aberration Zernike term and secondary astigmatism RMS was found with the CL wear. In conclusion, the EDOF CL evaluated provides adequate visual acuity and quality, with associated increased of several HOAs and a trend to reduction in the accommodative LAG that should be confirmed in future studies.
Collapse
|
7
|
Tebbe AL, Friedl WM, Alpers GW, Keil A. Effects of affective content and motivational context on neural gain functions during naturalistic scene perception. Eur J Neurosci 2021; 53:3323-3340. [PMID: 33742482 DOI: 10.1111/ejn.15194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 01/23/2023]
Abstract
Visual scene processing is modulated by semantic, motivational, and emotional factors, in addition to physical scene statistics. An open question is to what extent those factors affect low-level visual processing. One index of low-level visual processing is the contrast response function (CRF), representing the change in neural or psychophysical gain with increasing stimulus contrast. Here we aimed to (a) establish the use of an electrophysiological technique for assessing CRFs with complex emotional scenes and (b) examine the effects of motivational context and emotional content on CRFs elicited by naturalistic stimuli, including faces and complex scenes (humans, animals). Motivational context varied by expectancy of threat (a noxious noise) versus safety. CRFs were measured in 18 participants by means of sweep steady-state visual evoked potentials. Results showed a facilitation in visuocortical sensitivity (contrast gain) under threat, compared with safe conditions, across all stimulus categories. Facial stimuli prompted heightened neural response gain, compared with scenes. Within the scenes, response gain was smaller for scenes high in emotional arousal, compared with low-arousing scenes, consistent with interference effects of emotional content. These findings support the notion that motivational context alters the contrast sensitivity of cortical tissue, differing from changes in response gain (activation) when visual cues themselves carry motivational/affective relevance.
Collapse
Affiliation(s)
- Anna-Lena Tebbe
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for the Study of Emotion & Attention, University of Florida, Gainesville, FL, USA
| | - Wendel M Friedl
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, FL, USA
| | - Georg W Alpers
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Andreas Keil
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Vettori S, Van der Donck S, Nys J, Moors P, Van Wesemael T, Steyaert J, Rossion B, Dzhelyova M, Boets B. Combined frequency-tagging EEG and eye-tracking measures provide no support for the "excess mouth/diminished eye attention" hypothesis in autism. Mol Autism 2020; 11:94. [PMID: 33228763 PMCID: PMC7686749 DOI: 10.1186/s13229-020-00396-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Scanning faces is important for social interactions. Difficulty with the social use of eye contact constitutes one of the clinical symptoms of autism spectrum disorder (ASD). It has been suggested that individuals with ASD look less at the eyes and more at the mouth than typically developing (TD) individuals, possibly due to gaze aversion or gaze indifference. However, eye-tracking evidence for this hypothesis is mixed. While gaze patterns convey information about overt orienting processes, it is unclear how this is manifested at the neural level and how relative covert attention to the eyes and mouth of faces might be affected in ASD. METHODS We used frequency-tagging EEG in combination with eye tracking, while participants watched fast flickering faces for 1-min stimulation sequences. The upper and lower halves of the faces were presented at 6 Hz and 7.5 Hz or vice versa in different stimulation sequences, allowing to objectively disentangle the neural saliency of the eyes versus mouth region of a perceived face. We tested 21 boys with ASD (8-12 years old) and 21 TD control boys, matched for age and IQ. RESULTS Both groups looked longer at the eyes than the mouth, without any group difference in relative fixation duration to these features. TD boys looked significantly more to the nose, while the ASD boys looked more outside the face. EEG neural saliency data partly followed this pattern: neural responses to the upper or lower face half were not different between groups, but in the TD group, neural responses to the lower face halves were larger than responses to the upper part. Face exploration dynamics showed that TD individuals mostly maintained fixations within the same facial region, whereas individuals with ASD switched more often between the face parts. LIMITATIONS Replication in large and independent samples may be needed to validate exploratory results. CONCLUSIONS Combined eye-tracking and frequency-tagged neural responses show no support for the excess mouth/diminished eye gaze hypothesis in ASD. The more exploratory face scanning style observed in ASD might be related to their increased feature-based face processing style.
Collapse
Affiliation(s)
- Sofie Vettori
- Center for Developmental Psychiatry, Department of Neurosciences, University of Leuven (KU Leuven), Leuven, Belgium.
- Leuven Autism Research (LAuRes), University of Leuven (KU Leuven), Leuven, Belgium.
| | - Stephanie Van der Donck
- Center for Developmental Psychiatry, Department of Neurosciences, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Autism Research (LAuRes), University of Leuven (KU Leuven), Leuven, Belgium
| | - Jannes Nys
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
- IDLab - Department of Computer Science, University of Antwerp - IMEC, Antwerp, Belgium
| | - Pieter Moors
- Laboratory of Experimental Psychology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Tim Van Wesemael
- Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of Neurosciences, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Autism Research (LAuRes), University of Leuven (KU Leuven), Leuven, Belgium
| | - Bruno Rossion
- Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Louvain-La-Neuve, Belgium
- CNRS, CRAN - UMR 7039, Université de Lorraine, 54000, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, 54000, Nancy, France
| | - Milena Dzhelyova
- Leuven Autism Research (LAuRes), University of Leuven (KU Leuven), Leuven, Belgium
- Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Louvain-La-Neuve, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, Department of Neurosciences, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Autism Research (LAuRes), University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
9
|
Abstract
The pupil responds reflexively to changes in brightness and focal distance to maintain the smallest pupil (and thus the highest visual acuity) that still allows sufficient light to reach the retina. The pupil also responds to a wide variety of cognitive processes, but the functions of these cognitive responses are still poorly understood. In this review, I propose that cognitive pupil responses, like their reflexive counterparts, serve to optimize vision. Specifically, an emphasis on central vision over peripheral vision results in pupil constriction, and this likely reflects the fact that central vision benefits most from the increased visual acuity provided by small pupils. Furthermore, an intention to act with a bright stimulus results in preparatory pupil constriction, which allows the pupil to respond quickly when that bright stimulus is subsequently brought into view. More generally, cognitively driven pupil responses are likely a form of sensory tuning: a subtle adjustment of the eyes to optimize their properties for the current situation and the immediate future. Expected final online publication date for the Annual Review of Vision Science, Volume 6 is September 15, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sebastiaan Mathôt
- Department of Psychology, University of Groningen, 9712TS Groningen, The Netherlands;
| |
Collapse
|
10
|
Vettori S, Dzhelyova M, Van der Donck S, Jacques C, Van Wesemael T, Steyaert J, Rossion B, Boets B. Combined frequency-tagging EEG and eye tracking reveal reduced social bias in boys with autism spectrum disorder. Cortex 2019; 125:135-148. [PMID: 31982699 DOI: 10.1016/j.cortex.2019.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Developmental accounts of autism spectrum disorder (ASD) state that infants and children with ASD are spontaneously less attracted by and less proficient in processing social stimuli such as faces. This is hypothesized to partly underlie social communication difficulties in ASD. While in some studies a reduced preference for social stimuli has been shown in individuals with ASD, effect sizes are moderate and vary across studies, stimuli, and designs. Eye tracking, often the methodology of choice to study social preference, conveys information about overt orienting processes but conceals covert attention, possibly resulting in an underestimation of the effects. In this study, we recorded eye tracking and electroencephalography (EEG) during fast periodic visual stimulation to address this issue. We tested 21 boys with ASD (8-12 years old) and 21 typically developing (TD) control boys, matched for age and IQ. Streams of variable images of faces were presented at 6 Hz alongside images of houses presented at 7.5 Hz or vice versa, while children were engaged in an orthogonal task. While frequency-tagged neural responses were larger in response to faces than simultaneously presented houses in both groups, this effect was much larger in TD boys than in boys with ASD. This group difference in saliency of social versus non-social processing is significant after 5 sec of stimulus presentation and holds throughout the entire trial. Although there was no interaction between group and stimulus category for simultaneously recorded eye-tracking data, eye tracking and EEG measures were strongly correlated. We conclude that frequency-tagging EEG, allowing monitoring of both overt and covert processes, provides a fast, objective and reliable measure of decreased preference for social information in ASD.
Collapse
Affiliation(s)
- Sofie Vettori
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium.
| | - Milena Dzhelyova
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium; Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Belgium
| | - Stephanie Van der Donck
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Corentin Jacques
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Belgium
| | - Tim Van Wesemael
- Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Bruno Rossion
- Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Belgium; Université de Lorraine, CNRS, CRAN - UMR 7039, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, France
| | - Bart Boets
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Mathôt S, Ivanov Y. The effect of pupil size and peripheral brightness on detection and discrimination performance. PeerJ 2019; 7:e8220. [PMID: 31875153 PMCID: PMC6925951 DOI: 10.7717/peerj.8220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023] Open
Abstract
It is easier to read dark text on a bright background (positive polarity) than to read bright text on a dark background (negative polarity). This positive-polarity advantage is often linked to pupil size: A bright background induces small pupils, which in turn increases visual acuity. Here we report that pupil size, when manipulated through peripheral brightness, has qualitatively different effects on discrimination of fine stimuli in central vision and detection of faint stimuli in peripheral vision. Small pupils are associated with improved discrimination performance, consistent with the positive-polarity advantage, but only for very small stimuli that are at the threshold of visual acuity. In contrast, large pupils are associated with improved detection performance. These results are likely due to two pupil-size related factors: Small pupils increase visual acuity, which improves discrimination of fine stimuli; and large pupils increase light influx, which improves detection of faint stimuli. Light scatter is likely also a contributing factor: When a display is bright, light scatter creates a diffuse veil of retinal illumination that reduces perceived image contrast, thus impairing detection performance. We further found that pupil size was larger during the detection task than during the discrimination task, even though both tasks were equally difficult and similar in visual input; this suggests that the pupil may automatically assume an optimal size for the current task. Our results may explain why pupils dilate in response to arousal: This may reflect an increased emphasis on detection of unpredictable danger, which is crucially important in many situations that are characterized by high levels of arousal. Finally, we discuss the implications of our results for the ergonomics of display design.
Collapse
Affiliation(s)
- Sebastiaan Mathôt
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
| | - Yavor Ivanov
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands.,Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Noord Holland, Netherlands.,Institute for Brain and Behavior, Amsterdam, Netherlands
| |
Collapse
|
12
|
Suzuki Y, Minami T, Nakauchi S. Pupil Constriction in the Glare Illusion Modulates the Steady-State Visual Evoked Potentials. Neuroscience 2019; 416:221-228. [DOI: 10.1016/j.neuroscience.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/26/2022]
|
13
|
Ajasse S, Benosman RB, Lorenceau J. Effects of pupillary responses to luminance and attention on visual spatial discrimination. J Vis 2018; 18:6. [PMID: 30347093 DOI: 10.1167/18.11.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The optic quality of the eyes is, at least in part, determined by pupil size. Large pupils let more light enter the eyes, but degrade the point spread function, and thus the spatial resolution that can be achieved (Campbell & Gregory, 1960). In natural conditions, the pupil is mainly driven by the luminance (and possibly the color and contrast) at the gazed location, but is also modulated by attention and cognitive factors. Whether changes in eyes' optics related to pupil size modulation by luminance and attention impacts visual processing was assessed in two experiments. In Experiment 1, we measured pupil size using a constantly visible display made of four disks with different luminance levels, with no other task than fixating the disks in succession. The results confirmed that pupil size depends on the luminance of the gazed stimulus. Experiment 2, using similar settings as Experiment 1, used a two-interval forced-choice design to test whether discriminating high spatial frequencies that requires covert attention to parafoveal stimuli is better during the fixation of bright disks that entails a small pupil size, and hence better eyes' optics, as compared to fixating dark disks that entails a large pupil size, and hence poorer eyes' optics. As in Experiment 1, we observed large modulations of pupil size depending on the luminance of the gazed stimulus, but pupil dynamics was more variable, with marked pupil dilation during stimulus encoding, presumably because the demanding spatial frequency discrimination task engaged attention. However, discrimination performance and mean pupil size were not correlated. Despite this lack of correlation, the slopes of pupil dilation during stimulus encoding were correlated to performance, while the slopes of pupil dilation during decision-making were not. We discuss these results regarding the possible functional roles of pupil size modulations.
Collapse
Affiliation(s)
- Suzon Ajasse
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ryad B Benosman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jean Lorenceau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|