1
|
Luo ZX, Pan WN, Zeng XJ, Gong LY, Cai YC. Endogenous attention enhances contrast appearance regardless of stimulus contrast. Atten Percept Psychophys 2024; 86:1883-1896. [PMID: 38992320 DOI: 10.3758/s13414-024-02929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
There has been enduring debate on how attention alters contrast appearance. Recent research indicates that exogenous attention enhances contrast appearance for low-contrast stimuli but attenuates it for high-contrast stimuli. Similarly, one study has demonstrated that endogenous attention heightens perceived contrast for low-contrast stimuli, yet none have explored its impact on high-contrast stimuli. In this study, we investigated how endogenous attention alters contrast appearance, with a specific focus on high-contrast stimuli. In Experiment 1, we utilized the rapid serial visual presentation (RSVP) paradigm to direct endogenous attention, revealing that contrast appearance was enhanced for both low- and high-contrast stimuli. To eliminate potential influences from the confined attention field in the RSVP paradigm, Experiment 2 adopted the letter identification paradigm, deploying attention across a broader visual field. Results consistently indicated that endogenous attention increased perceived contrast for high-contrast stimuli. Experiment 3 employed equiluminant chromatic letters as stimuli in the letter identification task to eliminate potential interference from contrast adaption, which might have occurred in Experiment 2. Remarkably, the boosting effect of endogenous attention persisted. Combining the results from these experiments, we propose that endogenous attention consistently enhances contrast appearance, irrespective of stimulus contrast levels. This stands in contrast to the effects of exogenous attention, suggesting that mechanisms through which endogenous attention alters contrast appearance may differ from those of exogenous attention.
Collapse
Affiliation(s)
- Zi-Xi Luo
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China
| | - Wang-Nan Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China
| | - Xiang-Jun Zeng
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China
| | - Liang-Yu Gong
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China.
| |
Collapse
|
2
|
Pan WN, Zhao YW, Luo ZX, Chen Y, Cai YC. Attention modulates early visual processing: An association between subjective contrast perception and early C1 ERP component. Psychophysiology 2024; 61:e14507. [PMID: 38146152 DOI: 10.1111/psyp.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
The question of whether spatial attention can modulate initial afferent activity in area V1, as measured by the earliest visual event-related potential (ERP) component "C1", is still the subject of debate. Because attention always enhances behavioral performance, previous research has focused on finding evidence of attention-related enhancements in visual neural responses. However, recent psychophysical studies revealed a complex picture of attention's influence on visual perception: attention amplifies the perceived contrast of low-contrast stimuli while dampening the perceived contrast of high-contrast stimuli. This evidence suggests that attention may not invariably augment visual neural responses but could instead exert inhibitory effects under certain circumstances. Whether this bi-directional modulation of attention also manifests in C1 and whether the modulation of C1 underpins the attentional influence on contrast perception remain unknown. To address these questions, we conducted two experiments (N = 67 in total) by employing a combination of behavioral and ERP methodologies. Our results did not unveil a uniform attentional enhancement or attenuation effect of C1 across all subjects. However, an intriguing correlation between the attentional effects of C1 and contrast appearance for high-contrast stimuli did emerge, revealing an association between attentional modulation of C1 and the attentional modulation of contrast appearance. This finding offers new insights into the relationship between attention, perceptual experience, and early visual neural processing, suggesting that the attentional effect on subjective visual perception could be mediated by the attentional modulation of the earliest visual cortical response.
Collapse
Affiliation(s)
- Wang-Nan Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Wan Zhao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Zi-Xi Luo
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yue Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Laamerad P, Awada A, Pack CC, Bakhtiari S. Asymmetric stimulus representations bias visual perceptual learning. J Vis 2024; 24:10. [PMID: 38285454 PMCID: PMC10829801 DOI: 10.1167/jov.24.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024] Open
Abstract
The primate visual cortex contains various regions that exhibit specialization for different stimulus properties, such as motion, shape, and color. Within each region, there is often further specialization, such that particular stimulus features, such as horizontal and vertical orientations, are over-represented. These asymmetries are associated with well-known perceptual biases, but little is known about how they influence visual learning. Most theories would predict that learning is optimal, in the sense that it is unaffected by these asymmetries. However, other approaches to learning would result in specific patterns of perceptual biases. To distinguish between these possibilities, we trained human observers to discriminate between expanding and contracting motion patterns, which have a highly asymmetrical representation in the visual cortex. Observers exhibited biased percepts of these stimuli, and these biases were affected by training in ways that were often suboptimal. We simulated different neural network models and found that a learning rule that involved only adjustments to decision criteria, rather than connection weights, could account for our data. These results suggest that cortical asymmetries influence visual perception and that human observers often rely on suboptimal strategies for learning.
Collapse
Affiliation(s)
- Pooya Laamerad
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Asmara Awada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Shahab Bakhtiari
- Department of Psychology, Université de Montréal, Montreal, Canada
- Mila - Quebec AI Institute, Montreal, Canada
| |
Collapse
|
4
|
Meyerhoff HS, Gehrer NA, Frings C. The Beep-Speed Illusion Cannot Be Explained With a Simple Selection Bias. Exp Psychol 2023; 70:249-256. [PMID: 38105748 DOI: 10.1027/1618-3169/a000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
An object appears to move at higher speed than another equally fast object when brief nonspatial tones coincide with its changes in motion direction. We refer to this phenomenon as the beep-speed illusion (Meyerhoff et al., 2022, Cognition, 219, 104978). The origin of this illusion is unclear; however, attentional explanations and potential biases in the response behavior appear to be plausible candidates. In this report, we test a simple bias explanation that emerges from the way the dependent variable is assessed. As the participants have to indicate the faster of the two objects, participants possibly always indicate the audio-visually synchronized object in situations of perceptual uncertainty. Such a response behavior potentially could explain the observed shift in perceived speed. We therefore probed the magnitude of the beep-speed illusion when the participants indicated either the object that appeared to move faster or the object that appeared to move slower. If a simple selection bias would explain the beep-speed illusion, the response pattern should be inverted with the instruction to indicate the slower object. However, contrary to this bias hypothesis, illusion emerged indistinguishably under both instructions. Therefore, simple selection biases cannot explain the beep-speed illusion.
Collapse
Affiliation(s)
- Hauke S Meyerhoff
- Department of Psychology, University of Erfurt, Germany
- Cybermedia Lab, Leibniz-Institut für Wissensmedien, Tübingen, Germany
| | - Nina A Gehrer
- Department of Psychology, University of Tübingen, Germany
| | | |
Collapse
|
5
|
Dual counterstream architecture may support separation between vision and predictions. Conscious Cogn 2022; 103:103375. [DOI: 10.1016/j.concog.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/03/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
6
|
Balestrieri E, Busch NA. Spontaneous Alpha-Band Oscillations Bias Subjective Contrast Perception. J Neurosci 2022; 42:5058-5069. [PMID: 35589392 PMCID: PMC9233438 DOI: 10.1523/jneurosci.1972-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Perceptual decisions depend both on the features of the incoming stimulus and on the ongoing brain activity at the moment the stimulus is received. Specifically, trial-to-trial fluctuations in cortical excitability have been linked to fluctuations in the amplitude of prestimulus α oscillations (∼8-13 Hz), which are in turn are associated with fluctuations in subjects' tendency to report the detection of a stimulus. It is currently unknown whether α oscillations bias postperceptual decision-making, or even bias subjective perception itself. To answer this question, we used a contrast discrimination task in which both male and female human subjects reported which of two gratings (one in each hemifield) was perceived as having a stronger contrast. Our EEG analysis showed that subjective contrast was reduced for the stimulus in the hemifield represented in the hemisphere with relatively stronger prestimulus α amplitude, reflecting reduced cortical excitability. Furthermore, the strength of this spontaneous hemispheric lateralization was strongly correlated with the magnitude of individual subjects' biases, suggesting that the spontaneous patterns of α lateralization play a role in explaining the intersubject variability in contrast perception. These results indicate that spontaneous fluctuations in cortical excitability, indicated by patterns of prestimulus α amplitude, affect perceptual decisions by altering the phenomenological perception of the visual world.SIGNIFICANCE STATEMENT Our moment-to-moment perception of the world is shaped by the features of the environment surrounding us, as much as by the constantly evolving states that characterize our brain activity. Previous research showed how the ongoing electrical activity of the brain can influence whether a stimulus has accessed conscious perception. However, evidence is currently missing on whether these electrical brain states can be associated to the subjective experience of a sensory input. Here we show that local changes in patterns of electrical brain activity preceding visual stimulation can bias our phenomenological perception. Importantly, we show that the strength of these variations can help explain the great interindividual variability in how we perceive the visual environment surrounding us.
Collapse
Affiliation(s)
- Elio Balestrieri
- Institute of Psychology, University of Münster, Münster, Germany 48149
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany 48149
| | - Niko A Busch
- Institute of Psychology, University of Münster, Münster, Germany 48149
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany 48149
| |
Collapse
|
7
|
Marvan T, Polák M, Bachmann T, Phillips WA. Apical amplification-a cellular mechanism of conscious perception? Neurosci Conscious 2021; 2021:niab036. [PMID: 34650815 PMCID: PMC8511476 DOI: 10.1093/nc/niab036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.
Collapse
Affiliation(s)
- Tomáš Marvan
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 1, Prague 110 00, Czech Republic
| | - Michal Polák
- Department of Philosophy, University of West Bohemia, Sedláčkova 19, Pilsen 306 14, Czech Republic
| | - Talis Bachmann
- School of Law and Cognitive Neuroscience Laboratory, University of Tartu (Tallinn branch), Kaarli pst 3, Tallinn 10119, Estonia
| | - William A Phillips
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
8
|
Schneider KA, Malik I. A three-response task reveals how attention alters decision criteria but not appearance. J Vis 2021; 21:30. [PMID: 34038507 PMCID: PMC8164366 DOI: 10.1167/jov.21.5.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/01/2021] [Indexed: 01/09/2023] Open
Abstract
Whether attention alters appearance or just changes decision criteria continues to be controversial. When subjects are forced to choose which of two equal targets, one of which has been pre-cued, has a higher contrast, they tend to choose the cued target. This has been interpreted as attention increasing the apparent contrast of the cued target. However, when subjects must decide whether the two targets have equal or unequal contrast, they respond veridically with no apparent effect of attention. The discrepancy between these comparative and equality judgments is explained by attention altering the decision criteria but not appearance. We supposed that when subjects are forced to choose which of two apparently equal targets has the higher contrast, they tend to proportion their uncertainty in favor of the cued target. To test this hypothesis, we used a three-response task, in which subjects chose which target had the higher contrast but also had the option to report that the targets appeared equal. This task disentangled potential attention effects on appearance from those on the decision criteria. We found that subjects with narrower criteria about what constituted equal contrast were more likely to choose the cued target, supporting the uncertainty stealing hypothesis. Across the population, the effects of the attentional cue are explained as changes in the decision criteria and not changes in appearance.
Collapse
Affiliation(s)
- Keith A Schneider
- Department of Biology, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, USA
- Center for Biological & Brain Imaging, University of Delaware, Newark, Delaware, USA
| | - Ibrahim Malik
- Department of Psychology, York University, Toronto, Ontario, Canada
- Center for Biological & Brain Imaging, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
Abstract
Although spatial attention has been found to alter the subjective appearance of visual stimuli in several perceptual dimensions, no research has explored whether exogenous spatial attention can affect depth perception, which is a fundamental dimension in perception that allows us to effectively interact with the environment. Here, we used an experimental paradigm adapted from Gobell and Carrasco (Psychological Science, 16[8], 644-651, 2005) to investigate this question. A peripheral cue preceding two line stimuli was used to direct exogenous attention to either location of the two lines. The two lines were separated by a certain relative disparity, and participants were asked to judge the perceived depth of two lines while attention was manipulated. We found that a farther stereoscopic depth at the attended location was perceived to be equally distant as a nearer depth at the unattended location. No such effect was found in a control experiment that employed a postcue paradigm, suggesting that our findings could not be attributed to response bias. Therefore, our study shows that exogenous spatial attention shortens perceived depth. The apparent change in stereoscopic depth may be regulated by a mechanism involving direct neural enhancement on those tuned to disparity, or be modulated by an attentional effect on apparent contrast. This finding shows that attention can change not only visual appearance but also the perceived spatial relation between an object and an observer.
Collapse
|