1
|
Ivanov V, Manenti GL, Plewe SS, Kagan I, Schwiedrzik CM. Decision-making processes in perceptual learning depend on effectors. Sci Rep 2024; 14:5644. [PMID: 38453977 PMCID: PMC10920771 DOI: 10.1038/s41598-024-55508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
Visual perceptual learning is traditionally thought to arise in visual cortex. However, typical perceptual learning tasks also involve systematic mapping of visual information onto motor actions. Because the motor system contains both effector-specific and effector-unspecific representations, the question arises whether visual perceptual learning is effector-specific itself, or not. Here, we study this question in an orientation discrimination task. Subjects learn to indicate their choices either with joystick movements or with manual reaches. After training, we challenge them to perform the same task with eye movements. We dissect the decision-making process using the drift diffusion model. We find that learning effects on the rate of evidence accumulation depend on effectors, albeit not fully. This suggests that during perceptual learning, visual information is mapped onto effector-specific integrators. Overlap of the populations of neurons encoding motor plans for these effectors may explain partial generalization. Taken together, visual perceptual learning is not limited to visual cortex, but also affects sensorimotor mapping at the interface of visual processing and decision making.
Collapse
Affiliation(s)
- Vladyslav Ivanov
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Sensorimotor Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Giorgio L Manenti
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Systems Neuroscience Program, Graduate School for Neurosciences, Biophysics and Molecular Biosciences (GGNB), 37077, Göttingen, Germany
| | - Sandrin S Plewe
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Igor Kagan
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Decision and Awareness Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany.
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany.
| |
Collapse
|
2
|
Lutz ND, Admard M, Genzoni E, Born J, Rauss K. Occipital sleep spindles predict sequence learning in a visuo-motor task. Sleep 2021; 44:zsab056. [PMID: 33743012 PMCID: PMC8361350 DOI: 10.1093/sleep/zsab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The brain appears to use internal models to successfully interact with its environment via active predictions of future events. Both internal models and the predictions derived from them are based on previous experience. However, it remains unclear how previously encoded information is maintained to support this function, especially in the visual domain. In the present study, we hypothesized that sleep consolidates newly encoded spatio-temporal regularities to improve predictions afterwards. METHODS We tested this hypothesis using a novel sequence-learning paradigm that aimed to dissociate perceptual from motor learning. We recorded behavioral performance and high-density electroencephalography (EEG) in male human participants during initial training and during testing two days later, following an experimental night of sleep (n = 16, including high-density EEG recordings) or wakefulness (n = 17). RESULTS Our results show sleep-dependent behavioral improvements correlated with sleep-spindle activity specifically over occipital cortices. Moreover, event-related potential (ERP) responses indicate a shift of attention away from predictable to unpredictable sequences after sleep, consistent with enhanced automaticity in the processing of predictable sequences. CONCLUSIONS These findings suggest a sleep-dependent improvement in the prediction of visual sequences, likely related to visual cortex reactivation during sleep spindles. Considering that controls in our experiments did not fully exclude oculomotor contributions, future studies will need to address the extent to which these effects depend on purely perceptual versus oculomotor sequence learning.
Collapse
Affiliation(s)
- Nicolas D Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience/IMPRS for Cognitive & Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Marie Admard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Elsa Genzoni
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Germany
| | - Karsten Rauss
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Klinzing JG, Nienborg H, Rauss K. Sleep does not aid the generalisation of binocular disparity-based learning to the other visual hemifield. J Sleep Res 2021; 30:e13335. [PMID: 33709537 DOI: 10.1111/jsr.13335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Visual perceptual learning refers to long-lasting performance improvements on a visual skill - an ability supported by plastic changes in early visual brain areas. Visual perceptual learning has been shown to be induced by training and to benefit from consolidation during sleep, presumably via the reactivation of learning-associated neuronal firing patterns. However, previous studies have almost exclusively relied on a single paradigm, the texture discrimination task, on which performance improvements may rely on higher-order rather than lower-level perceptual skills. In the present study, we tested whether sleep has beneficial effects on a visual disparity discrimination task. We confirm previous findings in showing that the ability to discriminate different disparities is unaffected by sleep during a 12-hr retention period after training. Importantly, we extend these results by providing evidence against an effect of sleep on the generalisation of improved disparity discrimination across the vertical meridian. By relying on a between-subject design, we further exclude carry-over effects as a possible confound present in previous findings. These data argue against sleep as an important factor in the consolidation of a low-level perceptual skill. This sets important constraints on models of the role of sleep and sleep-associated neural reactivation in the consolidation of non-declarative memories.
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Hendrikje Nienborg
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,National Eye Institute, Bethesda, MD, USA
| | - Karsten Rauss
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|