1
|
Tu Z, Wei W, Zeng F, Wang W, Zhang Y, Zhang Y, Zhou F, Cai C, Zhang S, Zhou H. IL-6 Up-Regulates Expression of LIM-Domain Only Protein 4 in Psoriatic Keratinocytes through Activation of the MEK/ERK/NF-κB Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:708-720. [PMID: 38320628 DOI: 10.1016/j.ajpath.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the activation of keratinocytes and the infiltration of immune cells. Overexpression of the transcription factor LIM-domain only protein 4 (LMO4) promoted by IL-23 has critical roles in regulating the proliferation and differentiation of psoriatic keratinocytes. IL-6, an autocrine cytokine in psoriatic epidermis, is a key mediator of IL-23/T helper 17-driven cutaneous inflammation. However, little is known about how IL-6 regulates the up-regulation of LMO4 expression in psoriatic lesions. In this study, human immortalized keratinocyte cells, clinical biopsy specimens, and an animal model of psoriasis induced by imiquimod cream were used to investigate the role of IL-6 in the regulation of keratinocyte proliferation and differentiation. Psoriatic epidermis showed abnormal expression of IL-6 and LMO4. IL-6 up-regulated the expression of LMO4 and promoted keratinocyte proliferation and differentiation. Furthermore, in vitro and in vivo studies showed that IL-6 up-regulates LMO4 expression by activating the mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK)/NF-κB signaling pathway. These results suggest that IL-6 can activate the NF-κB signaling pathway, up-regulate the expression of LMO4, lead to abnormal proliferation and differentiation of keratinocytes, and promote the occurrence and development of psoriasis.
Collapse
Affiliation(s)
- Zhenzhen Tu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wei Wei
- Department of Dermatology, Anhui Medical University-Affiliated Provincial Hospital, Hefei, China
| | - Fanjun Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenwen Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuyan Zhang
- Department of Dermatology, WanNan Medical College, WuHu, China
| | - Yintao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Chunlin Cai
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Siping Zhang
- Department of Dermatology, Anhui Medical University-Affiliated Provincial Hospital, Hefei, China.
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; The Center for Scientific Research, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Acosta AC, Joud H, Sun M, Avila MY, Margo CE, Espana EM. Keratocyte-Derived Myofibroblasts: Functional Differences With Their Fibroblast Precursors. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 37796488 PMCID: PMC10561788 DOI: 10.1167/iovs.64.13.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Purpose In this study, we aim to elucidate functional differences between fibroblasts and myofibroblasts derived from a keratocyte lineage to better understand corneal scarring. Methods Corneal fibroblasts, derived from a novel triple transgenic conditional KeraRT/tetO-Cre/mTmG mouse strain that allows isolation and tracking of keratocyte lineage, were expanded, and transformed by exposure to transforming growth factor (TGF)-β1 to myofibroblasts. The composition and organization of a fibroblast-built matrix, deposited by fibroblasts in vitro, was analyzed and compared to the composition of an in vitro matrix built by myofibroblasts. Second harmonic generation microscopy (SHG) was used to study collagen organization in deposited matrix. Different extracellular matrix proteins, expressed by fibroblasts or myofibroblasts, were analyzed and quantified. Functional assays compared latent (TGF-β) activation, in vitro wound healing, chemotaxis, and proliferation between fibroblasts and myofibroblasts. Results We found significant differences in cell morphology between fibroblasts and myofibroblasts. Fibroblasts expressed and deposited significantly higher quantities of fibril forming corneal collagens I and V. In contrast, myofibroblasts expressed and deposited higher quantities of fibronectin and other non-collagenous matrix components. A significant difference in the activation of latent TGF-β activation exists between fibroblasts and myofibroblasts when measured with a functional luciferase assay. Fibroblasts and myofibroblasts differ in their morphology, extracellular matrix synthesis, and deposition, activation of latent TGF-β, and chemotaxis. Conclusions The differences in the expression and deposition of extracellular matrix components by fibroblasts and myofibroblasts are likely related to critical roles they play during different stages of corneal wound healing.
Collapse
Affiliation(s)
- Ana C. Acosta
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Tampa, Florida, United States
| | - Hadi Joud
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Tampa, Florida, United States
| | - Mei Sun
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Tampa, Florida, United States
| | - Marcel Y. Avila
- Departamento de Oftalmologia, Universidad Nacional de Colombia, Bogota, Colombia
| | - Curtis E. Margo
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Tampa, Florida, United States
- Department of Pathology and Cellular Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Tampa, Florida, United States
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
3
|
Acosta AC, Sun M, Zafrullah N, Avila MY, Margo CE, Espana EM. Stromal matrix directs corneal fibroblasts to re-express keratocan after injury and transplantation. Dis Model Mech 2023; 16:dmm050090. [PMID: 37702214 PMCID: PMC10508697 DOI: 10.1242/dmm.050090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Every tissue has an extracellular matrix (ECM) with certain properties unique to it - the tissue 'niche' - that are necessary for normal function. A distinct specific population of quiescent keratocan-expressing keratocytes populate the corneal stroma during homeostasis to maintain corneal function. However, during wound healing, when there is alteration of the niche conditions, keratocytes undergo apoptosis, and activated corneal fibroblasts and myofibroblasts attempt to restore tissue integrity and function. It is unknown what the fate of activated and temporary fibroblasts and myofibroblasts is after the wound healing process has resolved. In this study, we used several strategies to elucidate the cellular dynamics of corneal wound healing and the fate of corneal fibroblasts. We injured the cornea of a novel mouse model that allows cell-lineage tracing, and we transplanted a cell suspension of in vitro-expanded corneal fibroblasts that could be tracked after being relocated into normal stroma. These transplanted fibroblasts regained expression of keratocan in vivo when relocated to a normal stromal niche. These findings suggest that transformed fibroblasts maintain plasticity and can be induced to a keratocyte phenotype once relocated to an ECM with normal signaling ECM.
Collapse
Affiliation(s)
- Ana C. Acosta
- Cornea and External Disease, Department of Ophthalmology, USF Health, 13330 USF Laurel Dr 4th floor, Tampa FL 33612, USA
| | - Mei Sun
- Cornea and External Disease, Department of Ophthalmology, USF Health, 13330 USF Laurel Dr 4th floor, Tampa FL 33612, USA
| | - Nabeel Zafrullah
- Cornea and External Disease, Department of Ophthalmology, USF Health, 13330 USF Laurel Dr 4th floor, Tampa FL 33612, USA
| | - Marcel Y. Avila
- Universidad Nacional de Colombia, Department of Ophthalmology, Bogota 111311, Colombia
| | - Curtis E. Margo
- Cornea and External Disease, Department of Ophthalmology, USF Health, 13330 USF Laurel Dr 4th floor, Tampa FL 33612, USA
- Department of Pathology and Cellular Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, USF Health, 13330 USF Laurel Dr 4th floor, Tampa FL 33612, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL 33612, USA
| |
Collapse
|
4
|
Donovan C, Sun M, Cogswell D, Margo CE, Avila MY, Espana EM. Genipin increases extracellular matrix synthesis preventing corneal perforation. Ocul Surf 2023; 28:115-123. [PMID: 36871831 PMCID: PMC10440284 DOI: 10.1016/j.jtos.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
PURPOSE Corneal melting and perforation are feared sight-threatening complications of infections, autoimmune disease, and severe burns. Assess the use of genipin in treating stromal melt. METHODS A model for corneal wound healing was created through epithelial debridement and mechanical burring to injure the corneal stromal matrix in adult mice. Murine corneas were then treated with varying concentrations of genipin, a natural occurring crosslinking agent, to investigate the effects that matrix crosslinking using genipin has in wound healing and scar formation. Genipin was used in patients with active corneal melting. RESULTS Corneas treated with higher concentrations of genipin were found to develop denser stromal scarring in a mouse model. In human corneas, genipin promoted stromal synthesis and prevention of continuous melt. Genipin mechanisms of action create a favorable environment for upregulation of matrix synthesis and corneal scarring. CONCLUSION Our data suggest that genipin increases matrix synthesis and inhibits the activation of latent transforming growth factor-β. These findings are translated to patients with severe corneal melting.
Collapse
Affiliation(s)
| | - Mei Sun
- Department of Ophthalmology, USA
| | | | - Curtis E Margo
- Department of Ophthalmology, USA; Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Marcel Y Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia
| | - Edgar M Espana
- Department of Ophthalmology, USA; Molecular Pharmacology and Physiology, USA.
| |
Collapse
|
5
|
Villabona-Martinez V, Sampaio LP, Shiju TM, Wilson SE. Standardization of corneal alkali burn methodology in rabbits. Exp Eye Res 2023; 230:109443. [PMID: 36948438 DOI: 10.1016/j.exer.2023.109443] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Alkali burns are one of the most common injuries used in corneal wound healing studies. Investigators have used different conditions to produce corneal alkali injuries that have varied in sodium hydroxide concentration, application methods, and duration of exposure. A critical factor in the subsequent corneal healing responses, including myofibroblast generation and fibrosis localization, is whether, or not, Descemet's membrane and the endothelium are injured during the initial exposure. After exposures that produce injuries confined to the epithelium and stroma, anterior stromal myofibroblasts and fibrosis are typical, with sparing of the posterior stroma. However, if there is also injury to Descemet's membrane and the endothelium, then myofibroblast generation and fibrosis is noted full corneal thickness, with predilection to the most anterior and most posterior stroma and a tendency for relative sparring of the central stroma that is likely related to the availability of TGF beta from the tears, epithelium, and the aqueous humor. A method is described where a 5 mm diameter circle of Whatman #1 filter paper wetted with only 30 μL of alkali solution is applied for 15 s prior to profuse irrigation in rabbit corneas. When 0.6N, or lower, NaOH is used, then the injury, myofibroblasts, and fibrosis generation are limited to the epithelium and stroma. Use of 0.75N NaOH triggers injury to Descemet's membrane and the corneal endothelium with fibrosis throughout the stroma, but rare corneal neovascularization (CNV) and persistent epithelial defects (PED). Use of 1N NaOH with this method produces greater stromal fibrosis and increased likelihood that CNV and PED will occur in individual corneas.
Collapse
Affiliation(s)
| | - Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
| | | | - Steven E Wilson
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
6
|
In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development. In Vitro Cell Dev Biol Anim 2021; 57:207-237. [PMID: 33544359 DOI: 10.1007/s11626-020-00533-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Testing of all manufactured products and their ingredients for eye irritation is a regulatory requirement. In the last two decades, the development of alternatives to the in vivo Draize eye irritation test method has substantially advanced due to the improvements in primary cell isolation, cell culture techniques, and media, which have led to improved in vitro corneal tissue models and test methods. Most in vitro models for ocular toxicology attempt to reproduce the corneal epithelial tissue which consists of 4-5 layers of non-keratinized corneal epithelial cells that form tight junctions, thereby limiting the penetration of chemicals, xenobiotics, and pharmaceuticals. Also, significant efforts have been directed toward the development of more complex three-dimensional (3D) equivalents to study wound healing, drug permeation, and bioavailability. This review focuses on in vitro reconstructed 3D corneal tissue models and their utilization in ocular toxicology as well as their application to pharmacology and ophthalmic research. Current human 3D corneal epithelial cell culture models have replaced in vivo animal eye irritation tests for many applications, and substantial validation efforts are in progress to verify and approve alternative eye irritation tests for widespread use. The validation of drug absorption models and further development of models and test methods for many ophthalmic and ocular disease applications is required.
Collapse
|
7
|
Fukuda K. Corneal fibroblasts: Function and markers. Exp Eye Res 2020; 200:108229. [PMID: 32919991 DOI: 10.1016/j.exer.2020.108229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Corneal stromal keratocytes contribute to the maintenance of corneal transparency and shape by synthesizing and degrading extracellular matrix. They are quiescent in the healthy cornea, but they become activated in response to insults from the external environment that breach the corneal epithelium, with such activation being associated with phenotypic transformation into fibroblasts. Corneal fibroblasts (activated keratocytes) act as sentinel cells to sense various external stimuli-including damage-associated molecular patterns derived from injured cells, pathogen-associated molecular patterns of infectious microorganisms, and inflammatory mediators such as cytokines-under pathological conditions such as trauma, infection, and allergy. The expression of various chemokines and adhesion molecules by corneal fibroblasts determines the selective recruitment and activation of inflammatory cells in a manner dependent on the type of insult. In infectious keratitis, the interaction of corneal fibroblasts with various components of microbes and with cytokines derived from infiltrated inflammatory cells results in excessive degradation of stromal collagen and consequent corneal ulceration. Corneal fibroblasts distinguish between type 1 and type 2 inflammation through recognition of corresponding cytokines, with their activation by type 2 cytokines contributing to the pathogenesis of corneal lesions in severe ocular allergic diseases. Pharmacological targeting of corneal fibroblast function is thus a potential novel therapeutic approach to prevention of excessive corneal stromal inflammation, damage, and scarring.
Collapse
Affiliation(s)
- Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Oko-cho, Nankoku City, Kochi, 783-8505, Japan.
| |
Collapse
|
8
|
Biomimetic corneal stroma using electro-compacted collagen. Acta Biomater 2020; 113:360-371. [PMID: 32652228 DOI: 10.1016/j.actbio.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Engineering substantia propria (or stroma of cornea) that mimics the function and anatomy of natural tissue is vital for in vitro modelling and in vivo regeneration. There are, however, few examples of bioengineered biomimetic corneal stroma. Here we describe the construction of an orthogonally oriented 3D corneal stroma model (3D-CSM) using pure electro-compacted collagen (EC). EC films comprise aligned collagen fibrils and support primary human corneal stromal cells (hCSCs). Cell-laden constructs are analogous to the anatomical structure of native human cornea. The hCSCs are guided by the topographical cues provided by the aligned collagen fibrils of the EC films. Importantly, the 3D-CSM are biodegradable, highly transparent, glucose-permeable and comprise quiescent hCSCs. Gene expression analysis indicated the presence of aligned collagen fibrils is strongly coupled to downregulation of active fibroblast/myofibroblast markers α-SMA and Thy-1, with a concomitant upregulation of the dormant keratocyte marker ALDH3. The 3D-CSM represents the first example of an optimally robust biomimetic engineered corneal stroma that is constructed from pure electro-compacted collagen for cell and tissue support. The 3D-CSM is a significant advance for synthetic corneal stroma engineering, with the potential to be used for full-thickness and functional cornea replacement, as well as informing in vivo tissue regeneration. STATEMENT OF SIGNIFICANCE: This manuscript represents the first example of a robust, transparent, glucose permeable and pure collagen-based biomimetic 3D corneal stromal model (3D-CSM) constructed from pure electro-compacted collagen. The collagen fibrils of 3D-CSM are aligned and orthogonally arranged, mimicking native human corneal stroma. The alignment of collagen fibrils correlates with the direction of current applied for electro-compaction and influences human corneal stromal cell (hCSC) orientation. Moreover, 3D-CSM constructs support a corneal keratocyte phenotype; an essential requirement for modelling healthy corneal stroma. As-prepared 3D-CSM hold great promise as corneal stromal substitutes for research and translation, with the potential to be used for full-thickness cornea replacement.
Collapse
|
9
|
Anti-Oxidative Effects of Human Adipose Stem Cell Conditioned Medium with Different Basal Medium during Mouse Embryo In Vitro Culture. Animals (Basel) 2020; 10:ani10081414. [PMID: 32823702 PMCID: PMC7459530 DOI: 10.3390/ani10081414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Assisted reproductive techniques, which are used to resolve various infertility problems, have advanced following the emphasis on their use. Embryos produced in vitro rather than in vivo are exposed to greater stress, with the quality of the embryos being affected by the in vitro culture conditions. To reduce oxidative stress and consequent apoptosis of embryos for successful implantation and pregnancy maintenance, the present study evaluated the anti-oxidative effect of human adipose stem cell conditioned medium (ASC-CM) with different basal medium as supplement in in vitro culture (IVC) medium for mouse preimplantation embryo. Treatment of 5% human ASC-CM based on Dulbecco′s modified Eagle′s medium (DMEM-CM) indicated an enhanced development of mouse in vitro fertilized embryo, decreased expression level of indicators for oxidative stress, and apoptosis in blastocysts. To our knowledge, this is the first study to demonstrate that DMEM-CM can be an optimal supplement during IVC to promote in vitro embryo development and the success rate of assisted reproduction with its anti-oxidative and anti-apoptotic effects. Abstract The quality of embryos produced by assisted reproductive techniques should be advanced by the improvement of in vitro culture conditions for successful implantation and pregnancy maintenance. We investigated the anti-oxidative effect of human adipose stem cell (ASC) conditioned medium with its optimal basal medium, Dulbecco′s modified Eagle′s medium (DMEM-CM), or keratinocyte serum-free medium (KSFM-CM) as supplements during in vitro culture (IVC) of in vitro fertilized mouse embryo. At first, preimplantation embryo development was evaluated in KSFM-CM and DMEM-CM supplemented cultures at various concentrations. The blastocyst (BL) and hatched BL formation rates were significantly increased in 5% DMEM-CM, while no difference was observed from KSFM-CM. Next, comparing the efficacy of KSFM-CM and DMEM-CM at the same concentration, DMEM-CM enhanced the developmental rate of 16 cells, morula, BL, and hatched BL. The expression level of reactive oxygen species decreased and that of glutathione increased in BL cultured with DMEM-CM, which confirms its anti-oxidative effect. Furthermore, apoptosis in BL cultured with DMEM-CM was reduced compared with that in KSFM-CM. This study demonstrated that the comparative effect of human ASC-CM made of two different basal media during mouse embryo IVC and anti-oxidative effect of 5% DMEM-CM was optimal to improve preimplantation embryo development.
Collapse
|
10
|
Yam GHF, Fuest M, Yusoff NZBM, Goh TW, Bandeira F, Setiawan M, Seah XY, Lwin NC, Stanzel TP, Ong HS, Mehta JS. Safety and Feasibility of Intrastromal Injection of Cultivated Human Corneal Stromal Keratocytes as Cell-Based Therapy for Corneal Opacities. Invest Ophthalmol Vis Sci 2019; 59:3340-3354. [PMID: 30025076 DOI: 10.1167/iovs.17-23575] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To evaluate the safety and feasibility of intrastromal injection of human corneal stromal keratocytes (CSKs) and its therapeutic effect on a rodent early corneal opacity model. Methods Twelve research-grade donor corneas were used in primary culture to generate quiescent CSKs and activated stromal fibroblasts (SFs). Single and repeated intrastromal injections of 2 to 4 × 104 cells to rat normal corneas (n = 52) or corneas with early opacities induced by irregular phototherapeutic keratectomy (n = 16) were performed, followed by weekly examination of corneal response under slit-lamp biomicroscopy and in vivo confocal microscopy with evaluation of haze level and stromal reflectivity, and corneal thickness using anterior segment optical coherence tomography (AS-OCT). Time-lapse tracing of Molday ION-labelled cells was conducted using Spectralis OCT and label intensity was measured. Corneas were collected at time intervals for marker expression by immunofluorescence, cell viability, and apoptosis assays. Results Injected CSKs showed proper marker expression with negligible SF-related features and inflammation, hence maintaining corneal clarity and stability. The time-dependent loss of injected cells was recovered by repeated injection, achieving an extended expression of human proteoglycans inside rat stroma. In the early corneal opacity model, intrastromal CSK injection reduced stromal reflectivity and thickness, resulting in recovery of corneal clarity, whereas noninjected corneas were thicker and had haze progression. Conclusions We demonstrated the safety, feasibility, and therapeutic efficacy of intrastromal CSK injection. The cultivated CSKs can be a reliable cell source for potential cell-based therapy for corneal opacities.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-Academic Clinical Program, Duke-National University Singapore Graduate Medical School, Singapore
| | - Matthias Fuest
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | - Tze-Wei Goh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Francisco Bandeira
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Melina Setiawan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Xin-Yi Seah
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Nyein-Chan Lwin
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Tisha P Stanzel
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Hon-Shing Ong
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore.,Singapore National Eye Centre, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-Academic Clinical Program, Duke-National University Singapore Graduate Medical School, Singapore.,Singapore National Eye Centre, Singapore.,School of Material Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Orozco Morales ML, Marsit NM, McIntosh OD, Hopkinson A, Sidney LE. Anti-inflammatory potential of human corneal stroma-derived stem cells determined by a novel in vitro corneal epithelial injury model. World J Stem Cells 2019; 11:84-99. [PMID: 30842807 PMCID: PMC6397805 DOI: 10.4252/wjsc.v11.i2.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/01/2018] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells (hCEC). AIM To investigate whether corneal-stroma derived stem cells (CSSC) seeded on an amniotic membrane (AM) construct manifests an anti-inflammatory, healing response. METHODS Treatment of hCEC with ethanol and pro-inflammatory cytokines were compared in terms of viability loss, cytotoxicity, and pro-inflammatory cytokine release, in order to generate the in vitro injury. This resulted in an optimal injury of 20% (v/v) ethanol for 30 s with 1 ng/mL interleukin-1 (IL-1) beta. Co-culture experiments were performed with CSSC alone and with CSSC-AM constructs. The effect of injury and co-culture on viability, cytotoxicity, IL-6 and IL-8 production, and IL1B, TNF, IL6, and CXCL8 mRNA expression were assessed. RESULTS Co-culture with CSSC inhibited loss of hCEC viability caused by injury. Enzyme linked immunosorbent assay and polymerase chain reaction showed a significant reduction in the production of IL-6 and IL-8 pro-inflammatory cytokines, and reduction in pro-inflammatory cytokine mRNA expression during co-culture with CSSC alone and with the AM construct. These results confirmed the therapeutic potential of the CSSC and the possible use of AM as a cell carrier for application to the ocular surface. CONCLUSION CSSC were shown to have a potentially therapeutic anti-inflammatory effect when treating injured hCEC, demonstrating an important role in corneal regeneration and wound healing, leading to an improved knowledge of their potential use for research and therapeutic purposes.
Collapse
Affiliation(s)
- Mariana Lizeth Orozco Morales
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Nagi M Marsit
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Owen D McIntosh
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Andrew Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Laura E Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|
12
|
Zhao X, Song W, Chen Y, Liu S, Ren L. Collagen-based materials combined with microRNA for repairing cornea wounds and inhibiting scar formation. Biomater Sci 2019; 7:51-62. [DOI: 10.1039/c8bm01054d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AuNP/miR-133b can be released from cornea regeneration materials and entered into stromal cells to inhibit cornea scar formation.
Collapse
Affiliation(s)
- Xuan Zhao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Wenjing Song
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yawei Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou 510006
- P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education
- South China University of Technology
| | - Sa Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
13
|
Adamowicz J, Van Breda S, Tyloch D, Pokrywczynska M, Drewa T. Application of amniotic membrane in reconstructive urology; the promising biomaterial worth further investigation. Expert Opin Biol Ther 2018; 19:9-24. [PMID: 30521409 DOI: 10.1080/14712598.2019.1556255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: In reconstructive urology, autologous tissues such as intestinal segments, skin, and oral mucosa are used. Due to their limitations, reconstructive urologists are waiting for a novel material, which would be suitable for urinary tract wall replacement. Human amniotic membrane (AM) is a naturally derived biomaterial with a capacity to support reepithelization and inhibit scar formation. AM has a potential to become a considerable asset for reconstructive urology, i.e., reconstruction of ureters, urinary bladder, and urethrae. Areas covered: This review aims to discuss the potential application of human AM in reconstructive urology. The environment for urinary tract healing is particularly unfavorable due to the presence of urine. Due to its fetal origin, the bioactivity of AM is orientated to induce intrinsic regeneration mechanisms and inhibit scarring. This review introduces the concept of applying human AM in reconstructive urology procedures to improve their outcomes and future tissue engineering based strategies. Expert opinion: Many fields of medicine that have accomplished translational research have proven the usefulness of AM in clinical practice. There is an urgent need for studies to be conducted on large animal models that might convincingly demonstrate the underestimated potential of AM to urologists around the world.
Collapse
Affiliation(s)
- Jan Adamowicz
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Shane Van Breda
- b Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Dominik Tyloch
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Marta Pokrywczynska
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Tomasz Drewa
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| |
Collapse
|
14
|
Dong M, Yang L, Qu M, Hu X, Duan H, Zhang X, Shi W, Zhou Q. Autocrine IL-1β mediates the promotion of corneal neovascularization by senescent fibroblasts. Am J Physiol Cell Physiol 2018; 315:C734-C743. [PMID: 30156862 DOI: 10.1152/ajpcell.00205.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our previous study has confirmed that senescent fibroblasts promote corneal neovascularization (CNV) partially via the enhanced secretion of matrix metalloproteases (MMPs). However, the regulation of MMP expression in senescent fibroblasts remained unclear. In this study, we identified that the expression and secretion levels of interleukin-1β (IL-1β) were significantly upregulated in senescent human corneal fibroblasts than that in normal fibroblasts. Moreover, compared with vehicle-pretreated senescent fibroblasts, IL-1β pretreatment enhanced the expression of angiogenic factors but reduced the expression of angiostatic factors in senescent fibroblasts. When cocultured with human umbilical vein endothelial cells, IL-1β-pretreated senescent fibroblasts more strongly promoted their proliferation, migration, and tube-formation capacities than the vehicle-controlled senescent fibroblasts. In addition, either interleukin-1 receptor antagonist or anti-IL-1β neutralization completely inhibited the promotion of senescent fibroblasts in vascular tube formation in vitro and CNV in vivo. Therefore, we concluded that autocrine IL-1β mediated the promotion of senescent fibroblasts on corneal neovascularization.
Collapse
Affiliation(s)
- Muchen Dong
- Shandong Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences , Jinan , China
| | - Lingling Yang
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences , Qingdao, Shandong , China
| | - Mingli Qu
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences , Qingdao, Shandong , China
| | - Xiaoli Hu
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences , Qingdao, Shandong , China
| | - Haoyun Duan
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences , Qingdao, Shandong , China
| | - Xiaoping Zhang
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences , Qingdao, Shandong , China
| | - Weiyun Shi
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences , Qingdao, Shandong , China
| | - Qingjun Zhou
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences , Qingdao, Shandong , China
| |
Collapse
|
15
|
Etxebarria J, Sanz-Lázaro S, Hernáez-Moya R, Freire V, Durán JA, Morales MC, Andollo N. Serum from plasma rich in growth factors regenerates rabbit corneas by promoting cell proliferation, migration, differentiation, adhesion and limbal stemness. Acta Ophthalmol 2017; 95:e693-e705. [PMID: 28266180 DOI: 10.1111/aos.13371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the regenerating potential and the mechanisms through which the autologous serum derived from plasma rich in growth factors (s-PRGF) favours corneal wound healing in vitro and in vivo. METHODS We compared the effect of various concentrations of s-PRGF versus fetal bovine serum (FBS) and control treatment in rabbit primary corneal epithelial and stromal cells and wounded rabbit corneas. Cell proliferation was measured using an enzymatic colorimetric assay. In vitro and in vivo wound-healing progression was assessed by image-analysis software. Migration and invasion were evaluated using transfilter assays. Histological structure was analysed in stained sections. Protein expression was evaluated by immunohistochemistry. RESULTS s-PRGF promoted the robust proliferation of epithelial cultures at any concentration, similar to FBS. Likewise, s-PRGF and FBS produced similar re-epithelialization rates in in vitro wound-healing assays. In vivo, s-PRGF treatment accelerated corneal wound healing in comparison with control treatment. This difference was significant only for 100% s-PRGF treatment in our healthy rabbit model. Histological analysis confirmed normal epithelialization in all cases. Immunohistochemistry showed a higher expression of cytokeratins 3/76 and 15, zonula occludens-1 and alpha-smooth muscle actin proteins as a function of s-PRGF concentration. Notably, keratocyte density in the anterior third of the stroma increased with increase in s-PRGF concentration, suggesting an in vivo chemotactic effect of s-PRGF on keratocytes that was further confirmed in vitro. CONCLUSION s-PRGF promotes proliferation and migration and influences limbal stemness, adhesion and fibrosis during corneal healing.
Collapse
Affiliation(s)
- Jaime Etxebarria
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
- Department of Ophthalmology; BioCruces Health Research Institute; University Hospital of Cruces; Begiker; Barakaldo Spain
| | - Sara Sanz-Lázaro
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - Raquel Hernáez-Moya
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - Vanesa Freire
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
- R & D Department; Instituto Clínico-Quirúrgico de Oftalmología; Bilbao Spain
| | - Juan A. Durán
- R & D Department; Instituto Clínico-Quirúrgico de Oftalmología; Bilbao Spain
- Department of Ophthalmology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - María-Celia Morales
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| |
Collapse
|
16
|
Rönkkö S, Vellonen KS, Järvinen K, Toropainen E, Urtti A. Human corneal cell culture models for drug toxicity studies. Drug Deliv Transl Res 2017; 6:660-675. [PMID: 27613190 PMCID: PMC5097077 DOI: 10.1007/s13346-016-0330-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vivo toxicity and absorption studies of topical ocular drugs are problematic, because these studies involve invasive tissue sampling and toxic effects in animal models. Therefore, different human corneal models ranging from simple monolayer cultures to three-dimensional models have been developed for toxicological prediction with in vitro models. Each system has its own set of advantages and disadvantages. Use of non-corneal cells, inadequate characterization of gene-expression profiles, and accumulation of genomic aberrations in human corneal models are typical drawbacks that decrease their reliability and predictive power. In the future, further improvements are needed for verifying comparable expression profiles and cellular properties of human corneal models with their in vivo counterparts. A rapidly expanding stem cell technology combined with tissue engineering may give future opportunities to develop new tools in drug toxicity studies. One approach may be the production of artificial miniature corneas. In addition, there is also a need to use large-scale profiling approaches such as genomics, transcriptomics, proteomics, and metabolomics for understanding of the ocular toxicity.
Collapse
Affiliation(s)
- Seppo Rönkkö
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Kristiina Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland. .,Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
17
|
Kumar P, Pandit A, Zeugolis DI. Progress in Corneal Stromal Repair: From Tissue Grafts and Biomaterials to Modular Supramolecular Tissue-Like Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5381-5399. [PMID: 27028373 DOI: 10.1002/adma.201503986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Corneal injuries and degenerative conditions have major socioeconomic consequences, given that in most cases, they result in blindness. In the quest of the ideal therapy, tissue grafts, biomaterials, and modular engineering approaches are under intense investigation. Herein, advancements and shortfalls are reviewed and future perspectives for these therapeutic strategies discussed.
Collapse
Affiliation(s)
- Pramod Kumar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
18
|
Sun CC, Chou SF, Lai JY, Cho CH, Lee CH. Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:222-30. [DOI: 10.1016/j.msec.2016.02.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/13/2016] [Accepted: 02/23/2016] [Indexed: 12/26/2022]
|
19
|
Sidney LE, Branch MJ, Dua HS, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy 2015; 17:1706-22. [PMID: 26454751 DOI: 10.1016/j.jcyt.2015.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS The limbal area of the corneal stroma has been identified as a source of mesenchymal-like stem cells, which have potential for exploitation as a cell therapy. However, the optimal culture conditions are disputed and few direct media comparisons have been performed. In this report, we evaluated several media types to identify the optimal for inducing an in vitro stem cell phenotype. METHODS Primary human corneal stroma-derived stem cells (CSSCs) were extracted from corneoscleral rims. Culture in seven different media types was compared: Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS); M199 with 20% FBS; DMEM-F12 with 20% serum replacement, basic fibroblast growth factor and leukemia inhibitory factor (SCM); endothelial growth medium (EGM); semi-solid MethoCult; serum-free keratinocyte medium (K-SFM); and StemPro-34. Effects on proliferation, morphology, protein and messenger RNA expression were evaluated. RESULTS All media supported proliferation of CSSCs with the exception of K-SFM and StemPro-34. Morphology differed between media: DMEM produced large cells, whereas EGM produced very small cells. Culture in M199 produced a typical mesenchymal stromal cell phenotype with high expression of CD105, CD90 and CD73 but not CD34. Culture in SCM produced a phenotype more reminiscent of a progenitor cell type with expression of CD34, ABCG2, SSEA-4 and PAX6. CONCLUSIONS Culture medium can significantly influence CSSC phenotype. SCM produced a cell phenotype closest to that of a pluripotent stem cell, and we consider it to be the most appropriate for development as a clinical-grade medium for the production of CSSC phenotypes suitable for cell therapy.
Collapse
Affiliation(s)
- Laura E Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, Queen's Medical Centre Campus, University of Nottingham, Nottingham, United Kingdom.
| | - Matthew J Branch
- Academic Ophthalmology, Division of Clinical Neuroscience, Queen's Medical Centre Campus, University of Nottingham, Nottingham, United Kingdom
| | - Harminder S Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, Queen's Medical Centre Campus, University of Nottingham, Nottingham, United Kingdom
| | - Andrew Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience, Queen's Medical Centre Campus, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
20
|
Foster JW, Gouveia RM, Connon CJ. Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Sci Rep 2015; 5:10839. [PMID: 26039975 PMCID: PMC4650697 DOI: 10.1038/srep10839] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/17/2015] [Indexed: 11/24/2022] Open
Abstract
The avascular cornea is a uniquely-isolated organ, with its stroma constituting a nutrient-poor environment. Consequently, the availability of metabolites such as glucose to corneal stromal cells is considerably reduced compared with other tissues, or indeed with media commonly used to culture these cells in vitro. However, the role of glucose in the behaviour of human corneal keratocytes has been overlooked. As such, we sought to investigate the effects of low-glucose formulations on the phenotype of human corneal stromal cells. Cells cultured in low-glucose were able to survive for extended periods when compared to high-glucose, serum-free conditions. Furthermore, low-glucose enhanced their reversal to a keratocyte-characteristic phenotype. Specifically, cells within low-glucose medium assumed dendritic morphologies, with bean-shaped condensed nuclei, absence of alpha-smooth muscle actin or stress fibres, and a corresponding reduction in migratory and contractile activities when compared with high-glucose, serum-free conditions. Moreover, cells within low-glucose uniquely recovered the ability to express a robust keratocyte-characteristic marker, CD34, while still expressing elevated levels of other representative phenotypic markers such as keratocan, lumican, ALDH1A1, and ALDH3A1. These results indicate that low-glucose enhances keratocyte-characteristic phenotype above and beyond established media formulations and thus has important implications for corneal biology in health and disease.
Collapse
Affiliation(s)
| | - Ricardo M. Gouveia
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Che J. Connon
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
21
|
Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:201-8. [PMID: 26117756 DOI: 10.1016/j.msec.2015.05.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/15/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)-citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col-CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS=60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30±5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin-eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col-CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications.
Collapse
|
22
|
Kumar P, Satyam A, Fan X, Rochev Y, Rodriguez BJ, Gorelov A, Joshi L, Raghunath M, Pandit A, Zeugolis DI. Accelerated Development of Supramolecular Corneal Stromal-Like Assemblies from Corneal Fibroblasts in the Presence of Macromolecular Crowders. Tissue Eng Part C Methods 2015; 21:660-70. [PMID: 25535812 DOI: 10.1089/ten.tec.2014.0387] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering by self-assembly uses the cells' secretome as a regeneration template and biological factory of trophic factors. Despite the several advantages that have been witnessed in preclinical and clinical settings, the major obstacle for wide acceptance of this technology remains the tardy extracellular matrix formation. In this study, we assessed the influence of macromolecular crowding (MMC)/excluding volume effect, a biophysical phenomenon that accelerates thermodynamic activities and biological processes by several orders of magnitude, in human corneal fibroblast (HCF) culture. Our data indicate that the addition of negatively charged galactose derivative (carrageenan) in HCF culture, even at 0.5% serum, increases by 12-fold tissue-specific matrix deposition, while maintaining physiological cell morphology and protein/gene expression. Gene analysis indicates that a glucose derivative (dextran sulfate) may drive corneal fibroblasts toward a myofibroblast lineage. Collectively, these results indicate that MMC may be suitable not only for clinical translation and commercialization of tissue engineering by self-assembly therapies, but also for the development of in vitro pathophysiology models.
Collapse
Affiliation(s)
- Pramod Kumar
- 1 Network of Excellence for Functional Biomaterials (NFB), Bioscience Research Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland
| | - Abhigyan Satyam
- 1 Network of Excellence for Functional Biomaterials (NFB), Bioscience Research Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland
| | - Xingliang Fan
- 1 Network of Excellence for Functional Biomaterials (NFB), Bioscience Research Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland
| | - Yury Rochev
- 1 Network of Excellence for Functional Biomaterials (NFB), Bioscience Research Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland
| | - Brian J Rodriguez
- 2 Conway Institute of Biomolecular & Biomedical Research, University College Dublin , Dublin, Ireland
| | - Alexander Gorelov
- 3 School of Chemistry & Chemical Biology, University College Dublin , Dublin, Ireland
| | - Lokesh Joshi
- 4 Alimentary Glycoscience Research Cluster, NUI Galway , Galway, Ireland
| | - Michael Raghunath
- 5 Department of Bioengineering, Faculty of Engineering, National University of Singapore , Singapore, Singapore .,6 Tissue Engineering Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Abhay Pandit
- 1 Network of Excellence for Functional Biomaterials (NFB), Bioscience Research Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland
| | - Dimitrios I Zeugolis
- 1 Network of Excellence for Functional Biomaterials (NFB), Bioscience Research Building, National University of Ireland Galway (NUI Galway) , Galway, Ireland
| |
Collapse
|
23
|
Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies. Sci Rep 2015; 5:8729. [PMID: 25736020 PMCID: PMC4348624 DOI: 10.1038/srep08729] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.
Collapse
|
24
|
Angiopoietin-like 7 is an anti-angiogenic protein required to prevent vascularization of the cornea. PLoS One 2015; 10:e0116838. [PMID: 25622036 PMCID: PMC4306551 DOI: 10.1371/journal.pone.0116838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/15/2014] [Indexed: 01/22/2023] Open
Abstract
Purpose We sought to identify the anti-angiogenic molecule expressed in corneal keratocytes that is responsible for maintaining the avascularity of the cornea. Methods Human umbilical vein endothelial cells (HUVECs) were cultured with either human dermal fibroblasts or with human corneal keratocytes under serum-free conditions. The areas that exhibited blood vessel formation were estimated by immunostaining the cultures with an antitibody against CD31, a blood vessel marker. We also performed microarray gene-expression analysis and selected one molecule, angiopoietin-like 7 (ANGPTL7) for further functional studies conducted with the keratocytes and in vivo in mice. Results Areas showing blood vessel formation in normal serum-free medium were conditions were markedly smaller when HUVECs were co-cultured with corneal keratocytes than when they were co-cultured with the dermal fibroblasts under the same conditions. Microarray analysis revealed that ANGPTL7 expression was higher in keratocytes than in dermal fibroblasts. In vitro, inhibiting ANGPTL7 expression by using a specific siRNA led to greater tube formation than did the transfection of cells with a control siRNA, and this increase in tube formation was abolished when recombinant ANGPTL7 protein was added to the cultures. In vivo, intrastromal injections of an ANGPTL7 PshRNA into the avascular corneal stroma of mice resulted in the growth of blood vessels. Conclusions ANGPTL7, which is abundantly expressed in keratocytes, plays a major role in maintaining corneal avascularity and transparency.
Collapse
|
25
|
Järventausta PJ, Tervo TMT, Kivelä T, Holopainen JM. Peripheral hypertrophic subepithelial corneal degeneration - clinical and histopathological features. Acta Ophthalmol 2014; 92:774-82. [PMID: 24655442 DOI: 10.1111/aos.12394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/15/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE To refine the diagnostic criteria for peripheral hypertrophic subepithelial corneal degeneration (PHSD) and characterize its clinical phenotype, histopathology and immunohistochemical features. METHODS Diagnostic criteria were refined on the basis of literature data. Fourteen patients (13 women and one man; median age 52 years, range 33-66) were identified based on these criteria. Keratectomy specimens were evaluated via routine and immunohistochemical stainings. The main outcome measures were symptoms, clinical phenotype, immunological status and histopathologic results. RESULTS We defined the diagnostic criteria of typical PHSD as elevated circumferential and perilimbal subepithelial fibrosis with focal superficial corneal neovascularization, which were supported by female sex (93%), bilaterality (86%), the centre being in the upper quadrants (81%) and irregular astigmatism of two dioptres or more. The typical symptoms were reduced vision (86%) and the symptoms of ocular surface disease (64%). Light microscopy showed fibrosis with abundant collagen deposition but no inflammation in all patients. An immunohistochemical analysis of nine patients showed uniform staining for vimentin in three distinct types of fibroblasts in variable proportions: keratocyte-like cells that were positive for CD34, myofibroblasts that were positive for smooth muscle actin (SMA) and fibroblasts that were negative for CD34 and SMA. Small numbers of CD68-positive macrophages were also found. CONCLUSIONS Peripheral hypertrophic subepithelial degeneration is characteristic of middle-aged women, in whom it is typically a bilateral idiopathic degeneration of the cornea associated with ocular surface disease and reduced vision. The fibrotic lesions probably undergo remodelling, inducing changes in corneal contour. A smouldering low-grade inflammation favouring low TGF-β1 concentrations is postulated as the primary pathological process leading to PHSD.
Collapse
Affiliation(s)
| | | | - Tero Kivelä
- Helsinki University Eye Hospital; Helsinki Finland
| | | |
Collapse
|
26
|
Foster J, Wu WH, Scott SG, Bassi M, Mohan D, Daoud Y, Stark WJ, Jun AS, Chakravarti S. Transforming growth factor β and insulin signal changes in stromal fibroblasts of individual keratoconus patients. PLoS One 2014; 9:e106556. [PMID: 25247416 PMCID: PMC4172437 DOI: 10.1371/journal.pone.0106556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022] Open
Abstract
Keratoconus (KC) is a complex thinning disease of the cornea that often requires transplantation. The underlying pathogenic molecular changes in this disease are poorly understood. Earlier studies reported oxidative stress, metabolic dysfunctions and accelerated death of stromal keratocytes in keratoconus (KC) patients. Utilizing mass spectrometry we found reduced stromal extracellular matrix (ECM) proteins in KC, suggesting ECM-regulatory changes that may be due to altered TGFβ signals. Here we investigated properties of stromal cells from donor (DN) and KC corneas grown as fibroblasts in serum containing DMEM: F12 or in serum-free medium containing insulin, transferrin, selenium (ITS). Phosphorylation of SMAD2/3 of the canonical TGFβ pathway, was high in serum-starved DN and KC fibroblast protein extracts, but pSMAD1/5/8 low at base line, was induced within 30 minutes of TGFβ1 stimulation, more so in KC than DN, suggesting a novel TGFβ1-SMAD1/5/8 axis in the cornea, that may be altered in KC. The serine/threonine kinases AKT, known to regulate proliferation, survival and biosynthetic activities of cells, were poorly activated in KC fibroblasts in high glucose media. Concordantly, alcohol dehydrogenase 1 (ADH1), an indicator of increased glucose uptake and metabolism, was reduced in KC compared to DN fibroblasts. By contrast, in low glucose (5.5 mM, normoglycemic) serum-free DMEM and ITS, cell survival and pAKT levels were comparable in KC and DN cells. Therefore, high glucose combined with serum-deprivation presents some cellular stress difficult to overcome by the KC stromal cells. Our study provides molecular insights into AKT and TGFβ signal changes in KC, and a mechanism for functional studies of stromal cells from KC corneas.
Collapse
Affiliation(s)
- James Foster
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wai-Hong Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sherri-Gae Scott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mehak Bassi
- All India Institute of Medical Sciences, New Delhi, India
| | - Divya Mohan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yassine Daoud
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Walter J. Stark
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Albert S. Jun
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
27
|
Satyam A, Kumar P, Fan X, Gorelov A, Rochev Y, Joshi L, Peinado H, Lyden D, Thomas B, Rodriguez B, Raghunath M, Pandit A, Zeugolis D. Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3024-3034. [PMID: 24505025 DOI: 10.1002/adma.201304428] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/07/2013] [Indexed: 06/03/2023]
Abstract
MMC, the addition of inert polydispersed macromolecules in the culture media, effectively emulates the dense in vivo extracellular space, resulting in amplified deposition of ECM in vitro and subsequent production of cohesive, ECM-rich living substitutes.
Collapse
Affiliation(s)
- Abhigyan Satyam
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland Galway, (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu J, Sheha H, Fu Y, Liang L, Tseng SC. Update on amniotic membrane transplantation. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 5:645-661. [PMID: 21436959 DOI: 10.1586/eop.10.63] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cryopreserved amniotic membrane modulates adult wound healing by promoting epithelialization while suppressing stromal inflammation, angiogenesis and scarring. Such clinical efficacies of amniotic membrane transplantation have been reported in several hundred publications for a wide spectrum of ophthalmic indications. The success of the aforementioned therapeutic actions prompts investigators to use amniotic membrane as a surrogate niche to achieve ex vivo expansion of ocular surface epithelial progenitor cells. Further investigation into the molecular mechanism whereby amniotic membrane exerts its actions will undoubtedly reveal additional applications in the burgeoning field of regenerative medicine. This article will focus on recent advances in amniotic membrane transplantation and expand to cover its clinical uses beyond the ocular surface.
Collapse
Affiliation(s)
- Jingbo Liu
- Ocular Surface Center, 7000 SW, 97 Avenue, Suite 213, Miami, FL 33173, USA
| | | | | | | | | |
Collapse
|
29
|
Hashmani K, Branch MJ, Sidney LE, Dhillon PS, Verma M, McIntosh OD, Hopkinson A, Dua HS. Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation. Stem Cell Res Ther 2013; 4:75. [PMID: 23800436 PMCID: PMC4058700 DOI: 10.1186/scrt226] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/04/2013] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The corneal stroma is being increasingly recognized as a repository for stem cells. Like the limbal and endothelial niches, stromal stem cells often reside in the peripheral cornea and limbus. These peripheral and limbal corneal stromal cells (PLCSCs) are known to produce mesenchymal stem cells in vitro. Recently, a common corneal stromal and epithelial progenitor was hinted at. This study aims to examine the stem cell potential of corneal stromal cells and to investigate their epithelial transdifferentiation ability. METHODS PLCSCs were grown in traditional Dulbecco modified Eagle medium (DMEM)-based keratocyte culture medium and an M199-based medium and analyzed for a profile of cell-surface markers by using flow cytometry and differentiated into mesenchymal phenotypes analyzed with quantitative polymerase chain reaction (qPCR) and histologic staining. PLCSCs in M199 were subsequently divided into subpopulations based on CD34 and CD105 expression by using fluorescence- activated cell sorting (FACS). Subpopulations were characterized by marker profile and mesenchymal differentiation ability. Both whole PLCSCs and subpopulations were also cultured for epithelial transdifferentiation. RESULTS Cells cultured in M199 demonstrated a more stem-like cell-surface marker profile, and the keratocyte marker CD34 was retained for several passages but absent in cells cultured in DMEM. Cells cultured in M199 also exhibited a greater mesenchymal differentiation potential, compared with DMEM. PLCSCs could be divided into CD34(+)CD105(+), CD34-CD105(+), and CD34-CD105- subpopulations, of which CD34(+)CD105(+) cells were the most stemlike with regard to marker expression and mesenchymal differentiation potential. Subpopulations of PLCSCs exhibited differing abilities to transdifferentiate into epithelial phenotypes. Cells that were initially CD34(+)CD105(+) showed the greatest differentiation potential, producing CK3(+) and CK19(+) cells, and expressed a range of both epithelial progenitor (HES1, FRZB1, DCT, SOD2, ABCG2, CDH1, KRT19) and terminally differentiated (DSG3, KRT3, KRT12, KRT24) genes. CONCLUSIONS Culture medium has a significant effect on the phenotype and differentiation capacity of PLCSCs. The stroma contains a heterogeneous cell population in which we have identified CD34(+) cells as a stem cell population with a capacity for mesenchymal and epithelial differentiation.
Collapse
|
30
|
Guan L, Tian P, Ge H, Tang X, Zhang H, Du L, Liu P. Chitosan-functionalized silk fibroin 3D scaffold for keratocyte culture. J Mol Histol 2013; 44:609-18. [PMID: 23636607 DOI: 10.1007/s10735-013-9508-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/17/2013] [Indexed: 12/13/2022]
Abstract
The goal of this study was to evaluate the potential suitability of an artificial membrane composed of silk fibroin (SF) functionalized by different ratios of chitosan (CS) as a substrate for the stroma of the cornea. Keratocytes were cultured on translucent membranes made of SF and CS with different ratios. The biophysical properties of the silk fibroin and chitosan (SF/CS) membrane were examined. The SF/CS showed tensile strengths that increased as the CS concentration increased, but the physical and mechanical properties of chitosan-functionalized silk fibroin scaffolds weakened significantly compared with those of native corneas. The resulting cell scaffolds were evaluated using western blot in addition to light and electron microscopy. The cell attachment and proliferation on the scaffold were similar to those on a plastic plate. Keratocytes cultured in serum on SF/CS exhibited stellate morphology along with a marked increase in the expression of keratocan compared with identical cultures on tissue culture plastics. The biocompatibility was tested by transplanting the acellular membrane into rabbit corneal stromal pockets. There was no inflammatory complication detected at any time point on the macroscopic level. Taken together, these results indicate that SF/CS holds promise as a substrate for corneal reconstruction.
Collapse
Affiliation(s)
- Linan Guan
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Thompson RE, Boraas LC, Sowder M, Bechtel MK, Orwin EJ. Three-dimensional cell culture environment promotes partial recovery of the native corneal keratocyte phenotype from a subcultured population. Tissue Eng Part A 2013; 19:1564-72. [PMID: 23410050 DOI: 10.1089/ten.tea.2012.0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Corneal disease is the fourth leading cause of blindness. According to the World Health Organization, roughly 1.6 million people globally are blind as a result of this disease. The only current treatment for corneal opacity is a corneal tissue transplant. Unfortunately, the demand for tissue exceeds supply, making a tissue-engineered in vitro cornea highly desirable. For an in vitro cornea to be useful, it must be transparent, which requires downregulation of the light-scattering intracellular protein alpha-smooth muscle actin (αSMA) and upregulation of the native corneal marker, aldehyde dehydrogenase 1A1 (ALDH1A1). This study focuses on the effects of a three-dimensional (3D) matrix on the expression levels of αSMA and ALDH1A1 by a subcultured population of rabbit corneal keratocytes and the comparison of the 3D matrix effects to other culture conditions. We show that, through western blot and quantitative real-time PCR, the presence of collagen strongly downregulates αSMA. Further, 3D cultures maintain low actin expression even in the presence of a proinflammatory cytokine, transforming growth factor-beta (TGF-β). Finally, 3D culture conditions show a partial recovery of ALDH1A1 expression, which has never been previously observed in a serum-exposed subcultured cell population. Overall, this study suggests that 3D culture is not only a relatively stronger signal than both collagen and TGF-β, it is also sufficient to induce some recovery of ALDH1A1 and the native corneal phenotype despite the presence of serum.
Collapse
|
32
|
Chao JR, Bronner ME, Lwigale PY. Human fetal keratocytes have multipotent characteristics in the developing avian embryo. Stem Cells Dev 2013; 22:2186-95. [PMID: 23461574 DOI: 10.1089/scd.2013.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human cornea contains stem cells that can be induced to express markers consistent with multipotency in cell culture; however, there have been no studies demonstrating that human corneal keratocytes are multipotent. The objective of this study is to examine the potential of human fetal keratocytes (HFKs) to differentiate into neural crest-derived tissues when challenged in an embryonic environment. HFKs were injected bilaterally into the cranial mesenchyme adjacent to the neural tube and the periocular mesenchyme in chick embryos at embryonic days 1.5 and 3, respectively. The injected keratocytes were detected by immunofluorescence using the human cell-specific marker, HuNu. HuNu-positive keratocytes injected along the neural crest pathway were localized adjacent to HNK-1-positive migratory host neural crest cells and in the cardiac cushion mesenchyme. The HuNu-positive cells transformed into neural crest derivatives such as smooth muscle in cranial blood vessels, stromal keratocytes, and corneal endothelium. However, they failed to form neurons despite their presence in the condensing trigeminal ganglion. These results show that HFKs retain the ability to differentiate into some neural crest-derived tissues. Their ability to respond to embryonic cues and generate corneal endothelium and stromal keratocytes provides a basis for understanding the feasibility of creating specialized cells for possible use in regenerative medicine.
Collapse
Affiliation(s)
- Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
33
|
Bray LJ, Heazlewood CF, Atkinson K, Hutmacher DW, Harkin DG. Evaluation of methods for cultivating limbal mesenchymal stromal cells. Cytotherapy 2012; 14:936-47. [PMID: 22587591 DOI: 10.3109/14653249.2012.684379] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) with similar properties to bone marrow-derived mesenchymal stromal cells (BM-MSC) have recently been grown from the limbus of the human cornea. We have evaluated methods for culturing human limbal MSC (L-MSC). METHODS Four basic strategies were compared: serum-supplemented medium (10% fetal bovine serum; FBS), standard serum-free medium supplemented with B-27, epidermal growth factor and fibroblast growth factor 2, or one of two commercial serum-free media, defined keratinocyte serum-free medium (Invitrogen) and MesenCult-XF® (Stem Cell Technologies). The resulting cultures were examined using photography, flow cytometry (for CD34, CD45, CD73, CD90, CD105, CD141 and CD271), immunocytochemistry (alpha-smooth muscle actin; α-sma), differentiation assays (osteogenesis, adipogenesis and chrondrogenesis) and co-culture experiments with human limbal epithelial (HLE) cells. RESULTS While all techniques supported the establishment of cultures to varying degrees, sustained growth and serial propagation were only achieved in 10% FBS medium or MesenCult-XF medium. Cultures established in 10% FBS medium were 70-80% CD34(-) CD45(-) CD90 (+) CD73 (+) CD105 (+) , approximately 25% α-sma (+) and displayed multipotency. Cultures established in MesenCult-XF were > 95% CD34(-) CD45(-) CD90 (+) CD73 (+) CD105 (+) , 40% CD141 (+) , rarely expressed α-sma, and displayed multipotency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of MesenCult-XF-grown L-MSC. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker ∆Np63, along with the corneal differentiation marker cytokeratin 3. CONCLUSIONS MesenCult-XF is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells.
Collapse
Affiliation(s)
- Laura J Bray
- Queensland Eye Institute, South Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
34
|
Lai JY, Tu IH. Adhesion, phenotypic expression, and biosynthetic capacity of corneal keratocytes on surfaces coated with hyaluronic acid of different molecular weights. Acta Biomater 2012; 8:1068-79. [PMID: 22134163 DOI: 10.1016/j.actbio.2011.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/21/2011] [Accepted: 11/10/2011] [Indexed: 12/13/2022]
Abstract
In ophthalmology, hyaluronic acid (HA) is an important extracellular matrix (ECM) component and is appropriate for use in generating a microenvironment for cell cultivation. The aim of this work was to evaluate the rabbit corneal keratocyte (RCK) growth in response to HA coatings under serum-free conditions. After modification with HA of varying molecular weights (MWs: 35-1500kDa), the surfaces were characterized by atomic force microscopy and contact angle measurements, and were used for cell culture studies. Our data indicated that the substrates coated with higher negatively charged HA become rougher and are more hydrophilic, resulting in the decrease of cell adhesion and cell-matrix interaction. This early cellular event was likely responsible for the determination of keratocyte configuration. Additionally, for the growth of RCKs on dry HA coatings with surface roughness of 1.1-1.7 nm, a strong cell-cell interaction was observed, which may facilitate the formation of multicellular spheroid aggregates and maintenance of mitotically quiescent state. At each culture time point from 1 to 5 days, a better biosynthetic capacity associated with a higher prevalence of elevated ECM production was found for the cells in a spherical configuration. Irrespective of polysaccharide MW of surface coatings, the RCKs presented good viability without hypoxia-induced death. As compared with a monolayer of adherent keratocytes on tissue culture polystyrene plates and low MW HA-modified samples, the cell spheroids (76-110 μm in diameter) showed significantly higher expressions of keratocan and lumican and lower expressions of biglycan, similar to those of keratocytes in vivo. Moreover, the expression levels of corneal crystallin aldehyde dehydrogenase (7-9-fold increase) and nestin (10-16-fold increase) were greater in larger-sized spheroids, indicating higher ability to maintain cellular transparency and self-renewal potential. It is concluded that the cultured RCKs on surfaces coated with HA of different MWs can sense ECM cues, and the multicellular spheroids may potentially be used for corneal stromal tissue engineering applications.
Collapse
|
35
|
Shay E, He H, Sakurai S, Tseng SCG. Inhibition of angiogenesis by HC·HA, a complex of hyaluronan and the heavy chain of inter-α-inhibitor, purified from human amniotic membrane. Invest Ophthalmol Vis Sci 2011; 52:2669-78. [PMID: 21228375 DOI: 10.1167/iovs.10-5888] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To determine whether antiangiogenic action of the amniotic membrane (AM) can be mediated by HC·HA, a covalent complex of hyaluronan (HA) and the heavy chain (HC) of inter-α-inhibitor, purified from AM soluble extract. METHODS HC·HA action on viability, proliferation, attachment, death, migration, and differentiation of human umbilical vein endothelial cells (HUVECs) and neovascularization in chicken chorioallantoic membrane (CAM) was examined by MTT assay, BrdU labeling, cell proliferation assay, cell death detection ELISA, transwell assay, tube formation assay, and CAM assay. RESULTS HC·HA suppressed HUVEC viability more significantly than HA and AM stromal extract, and such suppression was not mediated by CD44. HC·HA also caused HUVECs to become small and rounded, with a decrease in spreading and filamentous actin. Without promoting cell detachment or death, HC·HA dose dependently inhibited proliferation (IC(50), 2.3 μg/mL) and was 100-fold more potent than HA. Migration triggered by VEGF and tube formation was also significantly inhibited by HC·HA. Purified HC·HA did not contain PEDF and TSP-1 but did contain IGFBP-1 and platelet factor 4 while significantly suppressing neovascularization in CAM. CONCLUSIONS The antiangiogenic activity of HC·HA might explain why AM is developmentally avascular and how AM might exert an antiangiogenic action when transplanted to the ocular surface, and it might indicate a potential therapeutic effect of HC·HA in diseases manifesting pathogenic angiogenesis. Roles of IGFBP-1 and platelet factor 4 in HC·HA antiangiogenic action warrant further investigation.
Collapse
|
36
|
Lu JM, Zhou ZY, Zhang XR, Li XL, Wang HF, Song XJ. A preliminary study of mesenchymal stem cell-like cells derived from murine corneal stroma. Graefes Arch Clin Exp Ophthalmol 2010; 248:1279-85. [PMID: 20390423 DOI: 10.1007/s00417-010-1367-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells can be isolated from various tissues besides bone marrow and can differentiate into cells of three germ layers. Recent studies indicate that some cells in corneal stroma express stem cell markers and can also differentiate into chondrocytes and neurocytes. This study was carried out to investigate whether mesenchymal stem cells reside in the murine corneal stroma. METHODS Corneas of BALB/c mice were treated with collagenase digestion after the epithelium and endothelium were removed. Then the single cells were harvested and further identified by reverse transcription polymerase chain reaction (RT-PCR). After the immunophenotype of passage 2 corneal stroma-derived cells was analyzed by flow cytometry, attempts were made to differentiate these cells into adipocytes and osteocytes using conditioned medium. Following induction, cells were evaluated by RT-PCR, oil red O and Alizarin Red staining. RESULTS Isolated single cells were of stromal origin, not of epithelial or endothelial. Passage 2 corneal stroma-derived cells exhibited the spindle-shaped morphology and expressed CD29, CD90, CD105, and CD71; but were negative for CD34 and CD45. In addition, these cells showed the potentiality of differentiating into adipocytes and osteocytes, which was confirmed by RT-PCR and staining. CONCLUSION This study demonstrates the presence of mesenchymal stem cell-like cells in the murine corneal stroma. Further analysis of these cells will aid elucidation of the mechanisms of some keratopathies, and these cells may be a source for bioengineering of corneal tissue and for cell-based therapeutics.
Collapse
Affiliation(s)
- Jian-Min Lu
- Department of Ophthalmology, Third Hospital of Hebei Medical University, Ziqiang Road No. 139, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
37
|
Zhu B, Wang YJ, Zhu CF, Lin Y, Zhu XL, Wei S, Lu Y, Cheng XX. Triptolide inhibits extracellular matrix protein synthesis by suppressing the Smad2 but not the MAPK pathway in TGF-beta1-stimulated NRK-49F cells. Nephrol Dial Transplant 2010; 25:3180-91. [PMID: 20466671 DOI: 10.1093/ndt/gfq239] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Triptolide has been used for treating various autoimmune diseases. However, it remains unclear whether triptolide exerts effects on extracellular matrix (ECM) synthesis, which plays an important role in renal fibrosis. METHODS NRK-49F cells stimulated with TGF-β1 were incubated with triptolide in various concentrations. ECM proteins, including collagen type III and fibronectin, were detected using the reverse transcription real-time PCR and ELISA methods. MAPK and Smad2/3 phosphorylation were measured with western blot. P38 and ERK 1/2 pathways were inhibited with the specific inhibitors, SB203580 and PD98059. The Smad2 signal was blocked with the siRNA method. RESULTS Triptolide inhibited ECM synthesis in TGF-β1-stimulated NRK-49F cells in a concentration-dependent manner. Triptolide enhanced TGF-β1-induced activation of the p38, ERK 1/2 signals, whereas it inhibited Smad2 activation. There was no crosstalk between the p38, ERK 1/2 and Smad2 pathways in NRK-49F cells. Inhibition of either the p38 or ERK 1/2 signals reduced ECM synthesis. Triptolide downregulated synthesis of fibronectin and collagen type III in TGF-β1-stimulated cells treated with SB203580 and/or PD98059. SB203580 and/or PD98059 significantly repressed synthesis of fibronectin and collagen type III in TGF-β1-stimulated cells treated with triptolide. Smad2 inhibition by siRNA significantly reduced ECM synthesis. However, ECM synthesis in NRK-49F cells transfected with Smad2 siRNA and treated by triptolide was increased compared with Smad2 siRNA-transfected cells. CONCLUSION The effect of triptolide to suppress ECM synthesis by inhibiting Smad2 activation may surpass its stimulating effect on ECM synthesis by activation of p38 and ERK 1/2, leading to a total inhibition of ECM synthesis in TGF-β1-stimulated NRK-49F cells.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou Guangxing Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen YH, Wang IJ, Young TH. Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue Eng Part A 2009; 15:2001-13. [PMID: 19292684 DOI: 10.1089/ten.tea.2008.0251] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal keratocytes have been reported to be able to form spheroids that can preserve their phenotypes after being seeded back onto tissue culture plate in specific culture media. In this study, we found that keratocytes could also form spheroids on a bioengineered material, chitosan-coated surface, with 10% horse serum and Dulbecco's modified Eagle's medium. Under scanning electron microscopy observation, the cells in the spheroids were found to adhere each other tightly, and the cellular boundary could not be distinguished. They could return to a dendritic (keratocyte) morphology and proliferate after they were seeded back onto tissue culture plate. Immunocytochemistry was used to characterize these cells. Reverse transcription-polymerase chain reaction revealed that keratocytes in the spheroids were not from the PAX-6-positive progenitor cells. Further, the results of the seeding density and the number of spheroids formation, cell viability (MTT) assays, negative staining of Ki-67, and Live/Dead assay suggested that the spheroids were from cell aggregation instead of cell proliferation. Cells in the spheroids maintained phenotypes and functions characteristic of keratocytes, as seen by reverse transcription-polymerase chain reaction, collagen gel contraction assay, and challenges of keratocytes with transforming growth factor-beta1. Our results showed that corneal keratocytes could form spheroids on a chitosan-coated surface and maintain a keratocyte phenotype. However, such keratocyte spheroids do not proliferate and cannot withstand transforming growth factor-beta from myofibroblast differentiation.
Collapse
Affiliation(s)
- Yi-Hsin Chen
- Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University , Taipei, Taiwan
| | | | | |
Collapse
|
39
|
Pot SA, Liliensiek SJ, Myrna KE, Bentley E, Jester JV, Nealey PF, Murphy CJ. Nanoscale topography-induced modulation of fundamental cell behaviors of rabbit corneal keratocytes, fibroblasts, and myofibroblasts. Invest Ophthalmol Vis Sci 2009; 51:1373-81. [PMID: 19875665 DOI: 10.1167/iovs.09-4074] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Keratocyte-to-myofibroblast differentiation is a key factor in corneal wound healing. The purpose of this study was to determine the influence of environmental nanoscale topography on keratocyte, fibroblast, and myofibroblast cell behavior. METHODS Primary rabbit corneal keratocytes, fibroblasts, and myofibroblasts were seeded onto planar polyurethane surfaces with six patterned areas, composed of anisotropically ordered grooves and ridges with a 400-, 800-, 1200-, 1600-, 2000-, and 4000-nm pitch (pitch = groove + ridge width). After 24 hours cells were fixed, stained, imaged, and analyzed for cell shape and orientation. For migration studies, cells on each patterned surface were imaged every 10 minutes for 12 hours, and individual cell trajectories and migration rates were calculated. RESULTS Keratocytes, fibroblasts, and myofibroblasts aligned and elongated to pitch sizes larger than 1000 nm. A lower limit to the topographic feature sizes that the cells responded to was identified for all three phenotypes, with a transition zone around the 800- to 1200-nm pitch size. Fibroblasts and myofibroblasts migrated parallel to surface ridges larger than 1000 nm but lacked directional guidance on submicron and nanoscale topographic features and on planar surfaces. Keratocytes remained essentially immobile. CONCLUSIONS Corneal stromal cells elongated, aligned, and migrated, differentially guided by substratum topographic features. All cell types failed to respond to topographic features approximating the dimensions of individual stromal fibers. These findings contribute to our understanding of corneal stromal cell biology in health and disease and their interaction with biomaterials and their native extracellular matrix.
Collapse
Affiliation(s)
- Simon A Pot
- Department of Surgical Sciences, School of Veterinary Medicine, and
| | | | | | | | | | | | | |
Collapse
|
40
|
He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SCG. Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC*HA) purified from extracts of human amniotic membrane. J Biol Chem 2009; 284:20136-46. [PMID: 19491101 PMCID: PMC2740440 DOI: 10.1074/jbc.m109.021881] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Indexed: 01/01/2023] Open
Abstract
Clinically, amniotic membrane (AM) suppresses inflammation, scarring, and angiogenesis. AM contains abundant hyaluronan (HA) but its function in exerting these therapeutic actions remains unclear. Herein, AM was extracted sequentially with buffers A, B, and C, or separately by phosphate-buffered saline (PBS) alone. Agarose gel electrophoresis showed that high molecular weight (HMW) HA (an average of approximately 3000 kDa) was predominantly extracted in isotonic Extract A (70.1 +/- 6.0%) and PBS (37.7 +/- 3.2%). Western blot analysis of these extracts with hyaluronidase digestion or NaOH treatment revealed that HMW HA was covalently linked with the heavy chains (HCs) of inter-alpha-inhibitor (IalphaI) via a NaOH-sensitive bond, likely transferred by the tumor necrosis factor-alpha stimulated gene-6 protein (TSG-6). This HC.HA complex (nHC*HA) could be purified from Extract PBS by two rounds of CsCl/guanidine HCl ultracentrifugation as well as in vitro reconstituted (rcHC*HA) by mixing HMW HA, serum IalphaI, and recombinant TSG-6. Consistent with previous reports, Extract PBS suppressed transforming growth factor-beta1 promoter activation in corneal fibroblasts and induced mac ro phage apoptosis. However, these effects were abolished by hyaluronidase digestion or heat treatment. More importantly, the effects were retained in the nHC*HA or rcHC*HA. These data collectively suggest that the HC*HA complex is the active component in AM responsible in part for clinically observed anti-inflammatory and anti-scarring actions.
Collapse
Affiliation(s)
- Hua He
- From TissueTech, Inc. and Ocular Surface Center
| | - Wei Li
- From TissueTech, Inc. and Ocular Surface Center
| | - David Y. Tseng
- Ocular Surface Research Education Foundation, Miami, Florida 33173 and
| | - Shan Zhang
- From TissueTech, Inc. and Ocular Surface Center
| | - Szu-Yu Chen
- From TissueTech, Inc. and Ocular Surface Center
| | - Anthony J. Day
- the Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
41
|
Ruiz-Ederra J, Verkman AS. Aquaporin-1-facilitated keratocyte migration in cell culture and in vivo corneal wound healing models. Exp Eye Res 2009; 89:159-65. [PMID: 19298815 DOI: 10.1016/j.exer.2009.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/08/2009] [Accepted: 03/10/2009] [Indexed: 11/26/2022]
Abstract
Aquaporin-1 (AQP1) water channels are expressed in corneal keratocytes, which become activated and migrate following corneal wounding. The purpose of this study was to investigate the role of AQP1 in keratocyte migration. Keratocyte primary cell cultures from wildtype and AQP1-null mice were compared, as well as keratocyte cultures from pig cornea in which AQP1 expression was modulated by RNAi knockdown and adenovirus-mediated overexpression. AQP1 expression was found in a plasma membrane pattern in corneal stromal and cultured keratocytes. Osmotic water permeability, as measured by calcein fluorescence quenching, was AQP1-dependent in cultured keratocytes, as was keratocyte migration following a scratch wound. Keratocyte migration in vivo was compared in wildtype and AQP1 knockout mice by histology and immunofluorescence of corneal sections at different times after partial-thickness corneal stromal debridement. AQP1 expression in keratocytes was increased by 24h after corneal debridement. Wound healing and keratocyte appearance near the wound margin were significantly reduced in AQP1 knockout mice, and the number of neutrophils was increased. These results implicate AQP1 water permeability as a new determinant of keratocyte migration in cornea.
Collapse
Affiliation(s)
- Javier Ruiz-Ederra
- Department of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0521, USA.
| | | |
Collapse
|
42
|
Zhou Q, Wang Y, Yang L, Wang Y, Chen P, Wang Y, Dong X, Xie L. Histone deacetylase inhibitors blocked activation and caused senescence of corneal stromal cells. Mol Vis 2008; 14:2556-65. [PMID: 19122829 PMCID: PMC2613076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/24/2008] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Corneal myofibroblasts differentiated from activated corneal stromal cells are the major cellular sources of extracellular matrix synthesis for the repair of corneal injury. In this study, the effects of histone deacetylase (HDAC) inhibitors on the activation, proliferation, migration and senescence of corneal stromal cells were evaluated. METHODS Primary human and mouse corneal stromal cells were harvested by sequential digestion with dispase and collagenase, and cultured in DMEM/F-12 media under serum-free (keratocytes), serum- (corneal fibroblasts) and TGFbeta1-supplemented (corneal myofibroblasts) conditions. The responses of corneal stromal cells to HDAC inhibitors were characterized by cDNA microarray, real time PCR, immunocytochemistry and western blot analysis. The effects of HDAC inhibitors on corneal fibroblast proliferation, cell cycle distribution, migration and senescence were also assessed in vitro. RESULTS Fetal bovine serum and TGFbeta1 activated the transdifferentiation of corneal stromal cells into fibroblasts and myofibroblasts, indicated by cell spreading, renewed assembly of actin filaments and enhanced expression of extracellular matrix components, all of which were suppressed by the addition of HDAC inhibitors. HDAC inhibitors inhibited the proliferation of corneal fibroblasts by decreasing the proportion in the S-phase and increasing the proportion in the G0/G1 and G2/M cell cycle checkpoints. HDAC inhibitors showed a dose-dependent inhibitory effects on the migration of corneal fibroblasts. In addition, HDAC inhibitors induced the senescence of corneal myofibroblasts as shown by enhanced staining of beta-galactosidase and upregulated expression of p16(ink4a). CONCLUSIONS HDAC inhibitors may affect corneal stromal cells by inhibiting myofibroblastic differentiation, cell proliferation, migration and by inducing cell senescence. Thus, this has implications for future studies in the development of promising drugs in the prevention or treatment of corneal haze and scar formation.
Collapse
|
43
|
Li W, He H, Chen YT, Hayashida Y, Tseng SCG. Reversal of myofibroblasts by amniotic membrane stromal extract. J Cell Physiol 2008; 215:657-64. [PMID: 18181149 DOI: 10.1002/jcp.21345] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Myofibroblasts play an important role in morphogenesis, inflammation, and fibrosis in most tissues. The amniotic membrane stroma can maintain keratocytes in cultures and prevent them from differentiating into myofibroblasts. However, it is unknown whether the AM stroma can also reverse differentiated myofibroblasts. In this study, we found that amniotic membrane stromal cells (AMSCs), which adopted fibroblastic phenotype in vivo, quickly and completely differentiated into myofibroblasts during ex vivo culture in DMEM/FBS on plastic within 2 passages. When cultured on type I collagen, the myofibroblasts maintained their phenotype, however, when these myofibroblasts were re-seeded onto a cryopreserved amniotic membrane stromal surface, they reversed to the fibroblast phenotype. Moreover, we found that the amniotic membrane stromal extract not only helps maintain primary AMSCs fibroblastic phenotype in vitro, but also can reverse differentiated myofibroblasts back to fibroblasts. This reversal was not coupled with cell proliferation. We concluded that the amniotic membrane stroma contains soluble factors that can regulate the mesenchymal cell differentiation. Further investigation into the identity of these factors and the control mechanisms may unravel a new scar-reversing strategy.
Collapse
Affiliation(s)
- Wei Li
- TissueTech, Inc., Miami, Florida, USA
| | | | | | | | | |
Collapse
|
44
|
Funderburgh ML, Mann MM, Funderburgh JL. Keratocyte phenotype is enhanced in the absence of attachment to the substratum. Mol Vis 2008; 14:308-17. [PMID: 18334944 PMCID: PMC2255023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/04/2008] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Keratocytes, mesenchymal cells populating the corneal stroma, secrete the unique transparent connective tissue of the cornea as well as opaque scar tissue after injury. Previous studies identified factors mediating keratocyte phenotype in vitro, particularly the expression of the keratan sulfate proteoglycans, which are essential for vision. Whereas earlier work emphasized effects of cytokines, the current study examines the effects of substratum attachment on keratocyte phenotype. METHODS Primary keratocytes from collagenase digestion of bovine corneas were cultured on tissue-culture plastic or on poly (2-hydroxyethylmethacrylate)(polyHEMA)-coated, non-adhesive surfaces. Secreted proteoglycans from culture media and cell-associated proteins were characterized using western blotting or isotopic labeling. Gene expression was characterized with quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Secreted matrix was examined with immunostaining. RESULTS We observed that virtually all primary keratocytes participate in the formation of spheroidal aggregates, remaining viable for at least four weeks in vitro. Spheroid keratocytes secrete more keratan sulfate and keratocan than attached cells in the same culture medium. In spheroids, keratocytes accumulate substantial matrix in intercellular spaces, including keratan sulfate, lumican, keratocan, and collagens V and VI. The unattached cells undergo limited cell division and do not differentiate into myofibroblasts in response to transforming growth factor beta (TGFbeta), which is based on the expression of extra domain A (EDA) fibronectin and alpha-smooth muscle actin. Similarly, the platelet derived growth factor, a cytokine initiating the fibroblastic phenotype in attached keratocytes, had a limited effect on the spheroid-associated keratocytes. Ascorbate-2-phosphate was the only agent stimulating keratan sulfate secretion in the spheroid keratocytes. CONCLUSIONS These results provide a new paradigm for understanding signals that regulate extracellular matrix secretion. For primary keratocytes, the alteration of the cellular environment in terms of cell-cell and cell-matrix interactions mediates and can override signals from soluble cytokines in influencing matrix expression and also in adopting other aspects of the fibroblastic and myofibroblastic phenotypes found in healing wounds.
Collapse
|
45
|
Du Y, Sundarraj N, Funderburgh ML, Harvey SA, Birk DE, Funderburgh JL. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci 2007; 48:5038-45. [PMID: 17962455 DOI: 10.1167/iovs.07-0587] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the potential of human corneal stromal stem cells to assume a keratocyte phenotype and to organize extracellular matrix (ECM) in vitro similar to corneal stromal tissue. METHODS Human corneal stromal stem cells (hCSSC) were isolated as side population cells by flow cytometry. Cloned hCSSC were cultured as free-floating pellets in serum-free media for 3 weeks. Gene expression was examined using gene array, quantitative RT-PCR, immunostaining, and immunoblotting. Transmission electron microscopy showed collagen fibril size and alignment. RESULTS Pellet cultures of hCSSC in serum-free media upregulated the expression of keratocyte-specific genes and secreted substantial ECM containing characteristic stromal components: keratocan, keratan sulfate, collagen I, collagen V, and collagen VI. Abundant connexin 43 and cadherin 11 in pellets demonstrated cell-cell junctions typical of keratocytes in vivo. Electron microscopy of the pellet cultures revealed abundant fibrillar collagen, some of which was aligned in parallel arrays similar to those of stromal lamellae. Gene array identified expression in pellets of several genes highly expressed by keratocytes. Transcripts for these keratocyte genes -- FLJ30046, KERA, ALDH3A1, CXADR, PTGDS, PDK4, MTAC2D1, F13A1 -- were increased by as much as 100-fold in pellets compared with hCSSC. Simultaneously, expression of stem cell genes BMI1, KIT, NOTCH1, SIX2, PAX6, ABCG2, SPAG10, and OSIL was reduced by a similar factor in pellets compared with hCSSC. CONCLUSIONS Scaffolding-free pellet culture of hCSSC induces keratocyte gene expression patterns in these cells and secretion of an organized stroma-like ECM. These cells offer a novel potential for corneal bioengineering.
Collapse
Affiliation(s)
- Yiqin Du
- Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213-2588, USA
| | | | | | | | | | | |
Collapse
|