1
|
Cheng C. Tissue, cellular, and molecular level determinants for eye lens stiffness and elasticity. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1456474. [PMID: 39176256 PMCID: PMC11339033 DOI: 10.3389/fopht.2024.1456474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
The eye lens is a transparent, ellipsoid tissue in the anterior chamber that is required for the fine focusing of light onto the retina to transmit a clear image. The focusing function of the lens is tied to tissue transparency, refractive index, and biomechanical properties. The stiffness and elasticity or resilience of the human lens allows for shape changes during accommodation to focus light from objects near and far. It has long been hypothesized that changes in lens biomechanical properties with age lead to the loss of accommodative ability and the need for reading glasses with age. However, the cellular and molecular mechanisms that influence lens biomechanical properties and/or change with age remain unclear. Studies of lens stiffness and resilience in mouse models with genetic defects or at advanced age inform us of the cytoskeletal, structural, and morphometric parameters that are important for biomechanical stability. In this review, we will explore whether: 1) tissue level changes, including the capsule, lens volume, and nucleus volume, 2) cellular level alterations, including cell packing, suture organization, and complex membrane interdigitations, and 3) molecular scale modifications, including the F-actin and intermediate filament networks, protein modifications, lipids in the cell membrane, and hydrostatic pressure, influence overall lens biomechanical properties.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Maddala R, Allen A, Skiba NP, Rao PV. Ankyrin-B is required for the establishment and maintenance of lens cytoarchitecture, mechanics, and clarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598702. [PMID: 38952798 PMCID: PMC11216410 DOI: 10.1101/2024.06.12.598702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
This study illustrates a vital role for ankyrin-B in lens architecture, growth and function through its involvement in membrane protein and spectrin-actin cytoskeletal organization and stability The transparent ocular lens is essential for vision by focusing light onto the retina. Despite recognizing the importance of its unique cellular architecture and mechanical properties, the molecular mechanisms governing these attributes remain elusive. This study aims to elucidate the role of ankyrin-B (AnkB), a membrane scaffolding protein, in lens cytoarchitecture, growth and function using a conditional knockout (cKO) mouse model. AnkB cKO mouse has no defects in lens morphogenesis, but exhibited changes that supported a global role for AnkB in maintenance of lens clarity, size, cytoarchitecture, and stiffness. Notably, absence of AnkB led to nuclear cataract formation, evident from P16. AnkB cKO lens fibers exhibit progressive disruption in membrane organization of the spectrin-actin cytoskeleton, channel proteins, cell-cell adhesion, shape change, loss and degradation of several membrane proteins (e.g., NrCAM. N-cadherin and aquaporin-0) along with a disorganized plasma membrane and impaired ball-and-socket membrane interdigitations. Furthermore, absence of AnkB led to decreased lens stiffness. Collectively, these results illustrate the essential role for AnkB in lens architecture, growth and function through its involvement in membrane protein and cytoskeletal organization.
Collapse
|
3
|
Tashiro M, Nakamura A, Kuratani Y, Takada M, Iwamoto S, Oka M, Ando S. Effects of truncations in the N- and C-terminal domains of filensin on filament formation with phakinin in cell-free conditions and cultured cells. FEBS Open Bio 2023; 13:1990-2004. [PMID: 37615966 PMCID: PMC10626283 DOI: 10.1002/2211-5463.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Filensin and phakinin are lens fiber cell-specific proteins that constitute the beaded filaments (BFs) that are critical for maintaining lens transparency. In the Shumiya cataract rat, filensin 94 kDa undergoes N- and C-terminal proteolytic processing to give a transient 50 kDa fragment and a final 38 kDa fragment, just before opacification. To characterize the effects of this processing on filensin function, recombinant proteins representing the two filensin fragments, termed Fil(30-416) and Fil(30-369), respectively, were examined. Fil(30-416) lacks the N-terminal 29 amino acids and the C-terminal 248 amino acids. Fil(30-369) lacks the N-terminal 29 residues and the C-terminal 295 residues. In cell-free assembly characterized by electron microscopy, filensin and Fil(30-416) co-polymerized with phakinin and formed rugged, entangled filaments, whereas Fil(30-369) formed only aggregates. In cultured SW-13 and MCF-7 cells expressing fluorescent fusion proteins, filensin and Fil(30-416) co-polymerized with phakinin and formed cytoplasmic sinuous filaments with different widths, while Fil(30-369) gave aggregates. Therefore, while truncation of the N-terminal 29 amino acids did not affect filament formation, truncation of the C-terminal 295 but not the 248 residues resulted in failure of filament formation. These results indicate that the tail B region (residues 370-416) of rat filensin is essential for filament formation with phakinin. Truncation of the tail B region by proteolytic processing in the cataract rat lens might interfere with BF formation and thereby contribute to opacification.
Collapse
Affiliation(s)
- Moe Tashiro
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Akari Nakamura
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Yamato Kuratani
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Miyako Takada
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Satoshi Iwamoto
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Mikako Oka
- Faculty of PharmacyKeio UniversityTokyoJapan
- Present address:
Yokohama University of Pharmacy601 Matano‐cho, Totsuka‐kuYokohama245‐0066Japan
| | - Shoji Ando
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| |
Collapse
|
4
|
Rodriguez J, Tan Q, Šikić H, Taber LA, Bassnett S. The effect of fibre cell remodelling on the power and optical quality of the lens. J R Soc Interface 2023; 20:20230316. [PMID: 37727073 PMCID: PMC10509584 DOI: 10.1098/rsif.2023.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
Vertebrate eye lenses are uniquely adapted to form a refractive index gradient (GRIN) for improved acuity, and to grow slowly in size despite constant cell proliferation. The mechanisms behind these adaptations remain poorly understood. We hypothesize that cell compaction contributes to both. To test this notion, we examined the relationship between lens size and shape, refractive characteristics and the cross-sectional areas of constituent fibre cells in mice of different ages. We developed a block-face imaging method to visualize cellular cross sections and found that the cross-sectional areas of fibre cells rose and then decreased over time, with the most significant reduction occurring in denucleating cells in the adult lens cortex, followed by cells in the embryonic nucleus. These findings help reconcile differences between the predictions of lens growth models and empirical data. Biomechanical simulations suggested that compressive forces generated from continuous deposition of fibre cells could contribute to cellular compaction. However, optical measurements revealed that the GRIN did not mirror the pattern of cellular compaction, implying that compaction alone cannot account for GRIN formation and that additional mechanisms are likely to be involved.
Collapse
Affiliation(s)
- J. Rodriguez
- Department of Basic Sciences, University of Health Sciences and Pharmacy in St. Louis, 1 Pharmacy Place, St. Louis, MO 63110, USA
| | - Q. Tan
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8096, St. Louis, MO 63110, USA
| | - H. Šikić
- Department of Mathematics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - L. A. Taber
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - S. Bassnett
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8096, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Paidi SK, Zhang Q, Yang Y, Xia CH, Ji N, Gong X. Adaptive optical two-photon fluorescence microscopy probes cellular organization of ocular lenses in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524320. [PMID: 36711806 PMCID: PMC9882239 DOI: 10.1101/2023.01.17.524320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mammalian ocular lens is an avascular multicellular organ that grows continuously throughout life. Traditionally, its cellular organization is investigated using dissected lenses, which eliminates in vivo environmental and structural support. Here, we demonstrated that two-photon fluorescence microscopy (2PFM) can visualize lens cells in vivo. To maintain subcellular resolution at depth, we employed adaptive optics (AO) to correct aberrations due to ocular and lens tissues, which led to substantial signal and resolution improvements. Imaging lens cells up to 980 μm deep, we observed novel cellular organizations including suture-associated voids, enlarged vacuoles, and large cavities, contrary to the conventional view of a highly ordered organization. We tracked these features longitudinally over weeks and observed the incorporation of new cells during growth. Taken together, non-invasive longitudinal in vivo imaging of lens morphology using AO 2PFM will allow us to directly observe the development or alterations of lens cellular organization in living animals.
Collapse
Affiliation(s)
- Santosh Kumar Paidi
- School of Optometry, University of California, Berkeley, California 94720, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, California 94720, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yuhan Yang
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Chun-Hong Xia
- School of Optometry, University of California, Berkeley, California 94720, USA,Vision Science Program, University of California, Berkeley, California 94720, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, California 94720, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Corresponding authors: Xiaohua Gong () and Na Ji ()
| | - Xiaohua Gong
- School of Optometry, University of California, Berkeley, California 94720, USA,Vision Science Program, University of California, Berkeley, California 94720, USA,Corresponding authors: Xiaohua Gong () and Na Ji ()
| |
Collapse
|
6
|
Martin JB, Herman K, Houssin NS, Rich W, Reilly MA, Plageman TF. Arvcf Dependent Adherens Junction Stability is Required to Prevent Age-Related Cortical Cataracts. Front Cell Dev Biol 2022; 10:840129. [PMID: 35874813 PMCID: PMC9297370 DOI: 10.3389/fcell.2022.840129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The etiology of age-related cortical cataracts is not well understood but is speculated to be related to alterations in cell adhesion and/or the changing mechanical stresses occurring in the lens with time. The role of cell adhesion in maintaining lens transparency with age is difficult to assess because of the developmental and physiological roles that well-characterized adhesion proteins have in the lens. This report demonstrates that Arvcf, a member of the p120-catenin subfamily of catenins that bind to the juxtamembrane domain of cadherins, is an essential fiber cell protein that preserves lens transparency with age in mice. No major developmental defects are observed in the absence of Arvcf, however, cortical cataracts emerge in all animals examined older than 6-months of age. While opacities are not obvious in young animals, histological anomalies are observed in lenses at 4-weeks that include fiber cell separations, regions of hexagonal lattice disorganization, and absence of immunolabeled membranes. Compression analysis of whole lenses also revealed that Arvcf is required for their normal biomechanical properties. Immunofluorescent labeling of control and Arvcf-deficient lens fiber cells revealed a reduction in membrane localization of N-cadherin, β-catenin, and αN-catenin. Furthermore, super-resolution imaging demonstrated that the reduction in protein membrane localization is correlated with smaller cadherin nanoclusters. Additional characterization of lens fiber cell morphology with electron microscopy and high resolution fluorescent imaging also showed that the cellular protrusions of fiber cells are abnormally elongated with a reduction and disorganization of cadherin complex protein localization. Together, these data demonstrate that Arvcf is required to maintain transparency with age by mediating the stability of the N-cadherin protein complex in adherens junctions.
Collapse
Affiliation(s)
- Jessica B. Martin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Kenneth Herman
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Nathalie S. Houssin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Wade Rich
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matthew A. Reilly
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Science, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Timothy F. Plageman
- College of Optometry, The Ohio State University, Columbus, OH, United States
- *Correspondence: Timothy F. Plageman Jr.,
| |
Collapse
|
7
|
Cheng C, Wang K, Hoshino M, Uesugi K, Yagi N, Pierscionek B. EphA2 Affects Development of the Eye Lens Nucleus and the Gradient of Refractive Index. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 34978559 PMCID: PMC8742528 DOI: 10.1167/iovs.63.1.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose Our studies in mouse eye lenses demonstrate that ephrin-A5 and EphA2 are needed for normal epithelial cells and lens transparency. We sought to determine whether EphA2 and ephrin-A5 are important for lens morphometrics, nucleus formation, and refractive index. Methods We performed tissue morphometric measurements, electron microscopy, Western blots, and interferometric measurements using an X-ray synchrotron beam source to measure the gradient of refractive index (GRIN) to compare mouse lenses with genetic disruption of EphA2 or ephrin-A5. Results Morphometric analysis revealed that although there is no change in the overall lens volume, there is a change in lens shape in both EphA2-/- lenses and ephrin-A5-/- lenses. Surprisingly, EphA2-/- lenses had small and soft lens nuclei different from hard lens nuclei of control lenses. SEM images revealed changes in cell morphology of EphA2-/- fiber cells close to the center of the lens. Inner EphA2-/- lens fibers had more pronounced tongue-and-groove interdigitations and formed globular membrane morphology only in the deepest layers of the lens nucleus. We did not observe nuclear defects in ephrin-A5-/- lenses. There was an overall decrease in magnitude of refractive index across EphA2-/- lenses, which is most pronounced in the nucleus. Conclusions This work reveals that Eph-ephrin signaling plays a role in fiber cell maturation, nuclear compaction, and lens shape. Loss of EphA2 disrupts the nuclear compaction resulting in a small lens nucleus. Our data suggest that Eph-ephrin signaling may be required for fiber cell membrane reorganization and compaction and for establishing a normal GRIN.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry, Indiana University, Bloomington, IN, United States
| | - Kehao Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan
| | - Barbara Pierscionek
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford Campus, United Kingdom
| |
Collapse
|
8
|
Pei R, Liang PF, Ye W, Li J, Ma JY, Zhou J. A novel mutation of LIM2 causes autosomal dominant membranous cataract in a Chinese family. Int J Ophthalmol 2020; 13:1512-1520. [PMID: 33078099 DOI: 10.18240/ijo.2020.10.02] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To identify mutations in the genes of a four-generation Chinese family with congenital membranous cataracts and investigate the morphologic changes and possible functional damage underlying the role of the mutant gene. METHODS Whole exome analysis of thirteen members of a four-generation pedigree affected with congenital membranous cataracts was performed; co-segregation analysis of identified variants was validated by Sanger sequencing. All members underwent detailed physical and complete eye examinations. The physical changes caused by the mutation were analyzed in silico through homology modeling. The lens fiber block from a patient was observed under a scanning electron microscope (SEM). Cell membrane proteins and cytoplasmic proteins from the human lenses donated by one patient with cataract in this family and from the dislocated lens resulted from the penetrating ocular trauma of a patient unrelated with this family were extracted, and the expression and localization of MP20 and Cx46 were detected by Western blot (WB) assay in these proteins. RESULTS A novel LIM2 heterozygous mutation (c.388C>T, p.R130C) was identified with congenital membranous cataracts inherited by an autosomal dominant (AD) pattern. Nystagmus and amblyopia were observed in all patients of this family, and exotropia and long axial length were observed in most patients. A/B ultrasound scan and ultrasound biomicroscopy revealed obvious thin crystalline lenses from 1.7 to 2.7 mm in central thickness in all cataract eyes. The bioinformatic analysis showed that the mutation was deleterious to the physiological function of LIM2-encoded MP20. Furthermore, by SEM, ultrastructure of the cataract nucleus showed that lens fiber cells (LFCs) remained morphologic characteristics of immature fiber cells, including flap cell surface with straight edges and lacking normal ball-and-socket joint boundaries, which implied that the differentiation of LFCs might be inhibited. Accumulation of MP20 and Cx46 in the cytoplasm was observed in the cytoplasm of the LFCs in human cataract lens. CONCLUSION We identify a novel heterozygous LIM2 (c.388C>T, p.R130C) mutation inherited by an AD pattern. This LIM2 mutation causes the abnormal sub-localization of MP20 and Cx46 in LFCs resulting in membranous cataracts.
Collapse
Affiliation(s)
- Rui Pei
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Peng-Fei Liang
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wei Ye
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Ji Li
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Ji-Yuan Ma
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jian Zhou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
9
|
Cheng C, Parreno J, Nowak RB, Biswas SK, Wang K, Hoshino M, Uesugi K, Yagi N, Moncaster JA, Lo WK, Pierscionek B, Fowler VM. Age-related changes in eye lens biomechanics, morphology, refractive index and transparency. Aging (Albany NY) 2019; 11:12497-12531. [PMID: 31844034 PMCID: PMC6949082 DOI: 10.18632/aging.102584] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 04/09/2023]
Abstract
Life-long eye lens function requires an appropriate gradient refractive index, biomechanical integrity and transparency. We conducted an extensive study of wild-type mouse lenses 1-30 months of age to define common age-related changes. Biomechanical testing and morphometrics revealed an increase in lens volume and stiffness with age. Lens capsule thickness and peripheral fiber cell widths increased between 2 to 4 months of age but not further, and thus, cannot account for significant age-dependent increases in lens stiffness after 4 months. In lenses from mice older than 12 months, we routinely observed cataracts due to changes in cell structure, with anterior cataracts due to incomplete suture closure and a cortical ring cataract corresponding to a zone of compaction in cortical lens fiber cells. Refractive index measurements showed a rapid growth in peak refractive index between 1 to 6 months of age, and the area of highest refractive index is correlated with increases in lens nucleus size with age. These data provide a comprehensive overview of age-related changes in murine lenses, including lens size, stiffness, nuclear fraction, refractive index, transparency, capsule thickness and cell structure. Our results suggest similarities between murine and primate lenses and provide a baseline for future lens aging studies.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justin Parreno
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roberta B. Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K. Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30303, USA
| | - Kehao Wang
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Juliet A. Moncaster
- Department of Radiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30303, USA
| | - Barbara Pierscionek
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Velia M. Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
10
|
Cheng C, Nowak RB, Amadeo MB, Biswas SK, Lo WK, Fowler VM. Tropomyosin 3.5 protects the F-actin networks required for tissue biomechanical properties. J Cell Sci 2018; 131:jcs222042. [PMID: 30333143 PMCID: PMC6288072 DOI: 10.1242/jcs.222042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Tropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. Mouse lenses contain Tpm3.5 (also known as TM5NM5), a previously unstudied isoform encoded by Tpm3, which is associated with F-actin on lens fiber cell membranes. Decreased levels of Tpm3.5 lead to softer and less mechanically resilient lenses that are unable to resume their original shape after compression. While cell organization and morphology appear unaffected, Tmod1 dissociates from the membrane in Tpm3.5-deficient lens fiber cells resulting in reorganization of the spectrin-F-actin and α-actinin-F-actin networks at the membrane. These rearranged F-actin networks appear to be less able to support mechanical load and resilience, leading to an overall change in tissue mechanical properties. This is the first in vivo evidence that a Tpm protein is essential for cell biomechanical stability in a load-bearing non-muscle tissue, and indicates that Tpm3.5 protects mechanically stable, load-bearing F-actin in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael B Amadeo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Wang E, Geng A, Maniar AM, Mui BWH, Gong X. Connexin 50 Regulates Surface Ball-and-Socket Structures and Fiber Cell Organization. Invest Ophthalmol Vis Sci 2017; 57:3039-46. [PMID: 27281269 PMCID: PMC4913802 DOI: 10.1167/iovs.16-19521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose The roles of gap junction protein connexin 50 (Cx50) encoded by Gja8, during lens development are not fully understood. Connexin 50 knockout (KO) lenses have decreased proliferation of epithelial cells and altered fiber cell denucleation. We further investigated the mechanism for cellular defects in Cx50 KO (Gja8−/−) lenses. Methods Fiber cell morphology and subcellular distribution of various lens membrane/cytoskeleton proteins from wild-type and Cx50 KO mice were visualized by immunofluorescent staining and confocal microscopy. Results We observed multiple morphological defects in the cortical fibers of Cx50 KO lenses, including abnormal fiber cell packing geometry, decreased F-actin enrichment at tricellular vertices, and disrupted ball-and-socket (BS) structures on the long sides of hexagonal fibers. Moreover, only small gap junction plaques consisting of Cx46 (α3 connexin) were detected in cortical fibers and the distributions of the BS-associated beta-dystroglycan and ZO-1 proteins were altered. Conclusions Connexin 50 gap junctions are important for BS structure maturation and cortical fiber cell organization. Connexin 50–based gap junction plaques likely form structural domains with an array of membrane/cytoskeletal proteins to stabilize BS. Loss of Cx50-mediated coupling, BS disruption, and altered F-actin in Cx50 KO fibers, thereby contribute to the small lens and mild cataract phenotypes.
Collapse
|
12
|
Cheng C, Nowak RB, Biswas SK, Lo WK, FitzGerald PG, Fowler VM. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells. Invest Ophthalmol Vis Sci 2017; 57:4084-99. [PMID: 27537257 PMCID: PMC4986768 DOI: 10.1167/iovs.16-19949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end–capping protein. Methods We investigated F-actin and F-actin–binding protein localization in interdigitations of Tmod1+/+ and Tmod1−/− single mature lens fibers. Results F-actin–rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1−/− mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1−/− mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1−/− mature fibers. Conclusions These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin–actin network stabilized by Tmod1. α-Actinin–crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin–associated proteins required for the formation of paddles between lens fibers.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Roberta B Nowak
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, United States
| | - Velia M Fowler
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
13
|
Wu HTD, Donaldson PJ, Vaghefi E. Review of the Experimental Background and Implementation of Computational Models of the Ocular Lens Microcirculation. IEEE Rev Biomed Eng 2016; 9:163-76. [DOI: 10.1109/rbme.2016.2583404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Stradleigh TW, Ishida AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res 2015; 48:181-202. [PMID: 25892361 PMCID: PMC4543575 DOI: 10.1016/j.preteyeres.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
15
|
Mochizuki T, Masai I. The lens equator: a platform for molecular machinery that regulates the switch from cell proliferation to differentiation in the vertebrate lens. Dev Growth Differ 2014; 56:387-401. [PMID: 24720470 DOI: 10.1111/dgd.12128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/17/2023]
Abstract
The vertebrate lens is a transparent, spheroidal tissue, located in the anterior region of the eye that focuses visual images on the retina. During development, surface ectoderm associated with the neural retina invaginates to form the lens vesicle. Cells in the posterior half of the lens vesicle differentiate into primary lens fiber cells, which form the lens fiber core, while cells in the anterior half maintain a proliferative state as a monolayer lens epithelium. After formation of the primary fiber core, lens epithelial cells start to differentiate into lens fiber cells at the interface between the lens epithelium and the primary lens fiber core, which is called the equator. Differentiating lens fiber cells elongate and cover the old lens fiber core, resulting in growth of the lens during development. Thus, lens fiber differentiation is spatially regulated and the equator functions as a platform that regulates the switch from cell proliferation to cell differentiation. Since the 1970s, the mechanism underlying lens fiber cell differentiation has been intensively studied, and several regulatory factors that regulate lens fiber cell differentiation have been identified. In this review, we focus on the lens equator, where these regulatory factors crosstalk and cooperate to regulate lens fiber differentiation. Normally, lens epithelial cells must pass through the equator to start lens fiber differentiation. However, there are reports that when the lens epithelium structure is collapsed, lens fiber cell differentiation occurs without passing the equator. We also discuss a possible mechanism that represses lens fiber cell differentiation in lens epithelium.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | | |
Collapse
|
16
|
Scheiblin DA, Gao J, Caplan JL, Simirskii VN, Czymmek KJ, Mathias RT, Duncan MK. Beta-1 integrin is important for the structural maintenance and homeostasis of differentiating fiber cells. Int J Biochem Cell Biol 2014; 50:132-45. [PMID: 24607497 DOI: 10.1016/j.biocel.2014.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 02/04/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
Abstract
β1-Integrin is a heterodimeric transmembrane protein that has roles in both cell-extra-cellular matrix and cell-cell interactions. Conditional deletion of β1-integrin from all lens cells during embryonic development results in profound lens defects, however, it is less clear whether this reflects functions in the lens epithelium alone or whether this protein plays a role in lens fibers. Thus, a conditional approach was used to delete β1-integrin solely from the lens fiber cells. This deletion resulted in two distinct phenotypes with some lenses exhibiting cataracts while others were clear, albeit with refractive defects. Analysis of "clear" conditional knockout lenses revealed that they had profound defects in fiber cell morphology associated with the loss of the F-actin network. Physiological measurements found that the lens fiber cells had a twofold increase in gap junctional coupling, perhaps due to differential localization of connexins 46 and 50, as well as increased water permeability. This would presumably facilitate transport of ions and nutrients through the lens, and may partially explain how lenses with profound structural abnormalities can maintain transparency. In summary, β1-integrin plays a role in maintaining the cellular morphology and homeostasis of the lens fiber cells.
Collapse
Affiliation(s)
- David A Scheiblin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Junyuan Gao
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, NY 11794-8661, United States
| | - Jeffrey L Caplan
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, United States
| | - Vladimir N Simirskii
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Richard T Mathias
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, NY 11794-8661, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
17
|
Lens artifacts in human fetal eyes - the challenge of interpreting the histomorphology of human fetal lenses. Graefes Arch Clin Exp Ophthalmol 2013; 252:155-62. [PMID: 24193350 DOI: 10.1007/s00417-013-2485-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Evaluation of the lens, including cataractous changes, is often of paramount importance in the classification of fetal syndromes or forensic questions. On histology, the crystalline lens is - especially in fetal and infant eyes - an organ susceptible to numerous artifacts. Thus, the aim of our study was to study various factors (including fixatives) that might have an impact on lens histomorphology. METHODS Twenty eyes from ten fetuses (formalin fixation: n = 10, glutaraldehyde fixation: n = 10), matched for gestational age and abortion (spontaneous vs. induced), were investigated macroscopically and by light microscopy. Sections were stained with routine hematoxylin & eosin (H&E), and periodic acid schiff (PAS). The age of the fetal eyes ranged from 15 to 36 weeks of gestation. Lens artifacts were analyzed and compared to fetal and adult lenses with definitive cataractous changes. In addition, 34 eyes from 27 fetuses with trisomy 21 were investigated for lens changes. RESULTS All lenses showed artifacts of varying extent, in particular globules, vacuoles, clefts, anterior/posterior capsular separation, subcapsular proteinaceous material, fragmentation of the lens capsule/epithelium, and a posterior umbilication. Glutaraldehyde-fixed lenses displayed less artifacts compared to those fixed in formalin. Slight differences in the appearance of artifacts were found dependent on the fixative (formaldehyde vs glutaraldehyde) and the kind of abortion (iatrogenous vs spontaneous). The gestational age did not have a significant influence on the type and extent of lens artifacts. The lenses from fetuses with trisomy 21 displayed similar lens artifacts with no specific findings. CONCLUSIONS Alterations in fetal lens morphology are extremely frequent and variable. These artifacts have to be carefully taken into account when interpreting post-mortem findings. Thus, the postmortem diagnosis of a fetal cataract should be made with great caution, and should include, in adherence to our proposed diagnostic flow diagram, the macroscopic lens assessment. Reference slides with a proven cataract are recommended for comparison in equivocal cases.
Collapse
|
18
|
Gokhin DS, Nowak RB, Kim NE, Arnett EE, Chen AC, Sah RL, Clark JI, Fowler VM. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One 2012; 7:e48734. [PMID: 23144950 PMCID: PMC3492431 DOI: 10.1371/journal.pone.0048734] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/28/2012] [Indexed: 11/25/2022] Open
Abstract
The basis for mammalian lens fiber cell organization, transparency, and biomechanical properties has contributions from two specialized cytoskeletal systems: the spectrin-actin membrane skeleton and beaded filament cytoskeleton. The spectrin-actin membrane skeleton predominantly consists of α2β2-spectrin strands interconnecting short, tropomyosin-coated actin filaments, which are stabilized by pointed-end capping by tropomodulin 1 (Tmod1) and structurally disrupted in the absence of Tmod1. The beaded filament cytoskeleton consists of the intermediate filament proteins CP49 and filensin, which require CP49 for assembly and contribute to lens transparency and biomechanics. To assess the simultaneous physiological contributions of these cytoskeletal networks and uncover potential functional synergy between them, we subjected lenses from mice lacking Tmod1, CP49, or both to a battery of structural and physiological assays to analyze fiber cell disorder, light scattering, and compressive biomechanical properties. Findings show that deletion of Tmod1 and/or CP49 increases lens fiber cell disorder and light scattering while impairing compressive load-bearing, with the double mutant exhibiting a distinct phenotype compared to either single mutant. Moreover, Tmod1 is in a protein complex with CP49 and filensin, indicating that the spectrin-actin network and beaded filament cytoskeleton are biochemically linked. These experiments reveal that the spectrin-actin membrane skeleton and beaded filament cytoskeleton establish a novel functional synergy critical for regulating lens fiber cell geometry, transparency, and mechanical stiffness.
Collapse
Affiliation(s)
- David S. Gokhin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Roberta B. Nowak
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nancy E. Kim
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ernest E. Arnett
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Albert C. Chen
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Robert L. Sah
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - John I. Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Velia M. Fowler
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Vaghefi E, Malcolm DTK, Jacobs MD, Donaldson PJ. Development of a 3D finite element model of lens microcirculation. Biomed Eng Online 2012; 11:69. [PMID: 22992294 PMCID: PMC3494564 DOI: 10.1186/1475-925x-11-69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been proposed that in the absence of a blood supply, the ocular lens operates an internal microcirculation system. This system delivers nutrients, removes waste products and maintains ionic homeostasis in the lens. The microcirculation is generated by spatial differences in membrane transport properties; and previously has been modelled by an equivalent electrical circuit and solved analytically. While effective, this approach did not fully account for all the anatomical and functional complexities of the lens. To encapsulate these complexities we have created a 3D finite element computer model of the lens. METHODS Initially, we created an anatomically-correct representative mesh of the lens. We then implemented the Stokes and advective Nernst-Plank equations, in order to model the water and ion fluxes respectively. Next we complemented the model with experimentally-measured surface ionic concentrations as boundary conditions and solved it. RESULTS Our model calculated the standing ionic concentrations and electrical potential gradients in the lens. Furthermore, it generated vector maps of intra- and extracellular space ion and water fluxes that are proposed to circulate throughout the lens. These fields have only been measured on the surface of the lens and our calculations are the first 3D representation of their direction and magnitude in the lens. CONCLUSION Values for steady state standing fields for concentration and electrical potential plus ionic and fluid fluxes calculated by our model exhibited broad agreement with observed experimental values. Our model of lens function represents a platform to integrate new experimental data as they emerge and assist us to understand how the integrated structure and function of the lens contributes to the maintenance of its transparency.
Collapse
Affiliation(s)
- Ehsan Vaghefi
- Department of Optometry and Vision Sciences, University of Auckland, Building 502, Level 4, 85 Park Road, Grafton, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Duane TK Malcolm
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Marc D Jacobs
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Optometry and Vision Sciences, University of Auckland, Building 502, Level 4, 85 Park Road, Grafton, Auckland, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Vaghefi E, Walker K, Pontre BP, Jacobs MD, Donaldson PJ. Magnetic resonance and confocal imaging of solute penetration into the lens reveals a zone of restricted extracellular space diffusion. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1250-9. [DOI: 10.1152/ajpregu.00611.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been proposed that in the absence of blood supply, the ocular lens operates an internal microcirculation system that delivers nutrients to internalized fiber cells faster and more efficiently than would occur by passive diffusion alone. To visualize the extracellular space solute fluxes potentially generated by this system, bovine lenses were organ cultured in artificial aqueous humor (AAH) for 4 h in the presence or absence of two gadolinium-based contrast agents, ionic Gd3+, or a chelated form of Gd3+, Gd-diethylenetriamine penta-acetic acid (Gd-DTPA; mol mass = 590 Da). Contrast reagent penetration into the lens core was monitored in real time using inversion recovery-spin echo (IR-SE) magnetic resonance imaging (MRI), while steady-state accumulation of [Gd-DTPA]−2 was also determined by calculating T1 values. After incubation, lenses were fixed and cryosectioned, and sections were labeled with the membrane marker wheat germ agglutinin (WGA). Sections were imaged by confocal microscopy using standard and reflectance imaging modalities to visualize the fluorescent WGA label and gadolinium reagents, respectively. Real-time IR-SE MRI showed rapid penetration of Gd3+ into the outer cortex of the lens and a subsequent bloom of signal in the core. These two areas of signal were separated by an area in the inner cortex that limited entry of Gd3+. Similar results were obtained for Gd-DTPA, but the penetration of the larger negatively charged molecule into the core could only be detected by calculating T1 values. The presence of Gd-DTPA in the extracellular space of the outer cortex and core, but its apparent absence from the inner cortex was confirmed using reflectance imaging of equatorial sections. In axial sections, Gd-DTPA was associated with the sutures, suggesting these structures provide a pathway from the surface, across the inner cortex barrier to the lens core. Our studies have revealed inner and outer boundaries of a zone within which a narrowing of the extracellular space restricts solute diffusion and acts to direct fluxes into the lens core via the sutures.
Collapse
Affiliation(s)
- Ehsan Vaghefi
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Kerry Walker
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Beau P. Pontre
- Centre for Advanced MRI, University of Auckland, New Zealand; and
| | - Marc D. Jacobs
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Paul J. Donaldson
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
21
|
Nowak RB, Fowler VM. Tropomodulin 1 constrains fiber cell geometry during elongation and maturation in the lens cortex. J Histochem Cytochem 2012; 60:414-27. [PMID: 22473940 DOI: 10.1369/0022155412440881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lens fiber cells exhibit a high degree of hexagonal packing geometry, determined partly by tropomodulin 1 (Tmod1), which stabilizes the spectrin-actin network on lens fiber cell membranes. To ascertain whether Tmod1 is required during epithelial cell differentiation to fiber cells or during fiber cell elongation and maturation, the authors quantified the extent of fiber cell disorder in the Tmod1-null lens and determined locations of disorder by confocal microscopy and computational image analysis. First, nearest neighbor analysis of fiber cell geometry in Tmod1-null lenses showed that disorder is confined to focal patches. Second, differentiating epithelial cells at the equator aligned into ordered meridional rows in Tmod1-null lenses, with disordered patches first observed in elongating fiber cells. Third, as fiber cells were displaced inward in Tmod1-null lenses, total disordered area increased due to increased sizes (but not numbers) of individual disordered patches. The authors conclude that Tmod1 is required first to coordinate fiber cell shapes and interactions during tip migration and elongation and second to stabilize ordered fiber cell geometry during maturation in the lens cortex. An unstable spectrin-actin network without Tmod1 may result in imbalanced forces along membranes, leading to fiber cell rearrangements during elongation, followed by propagation of disorder as fiber cells mature.
Collapse
|
22
|
Shi Y, De Maria AB, Wang H, Mathias RT, FitzGerald PG, Bassnett S. Further analysis of the lens phenotype in Lim2-deficient mice. Invest Ophthalmol Vis Sci 2011; 52:7332-9. [PMID: 21775657 DOI: 10.1167/iovs.11-7724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Lim2 (MP20) is the second most abundant integral protein of lens fiber cell membranes. A comparative analysis was performed of wild-type and Lim2-deficient (Lim2(Gt/Gt)) mouse lenses, to better define the anatomic and physiologic roles of Lim2. METHODS Scanning electron microscopy (SEM) and confocal microscopy were used to assess the contribution of Lim2 to lens tissue architecture. Differentiation-dependent changes in cytoskeletal composition were identified by mass spectrometry and immunoblot analysis. The effects on cell-cell communication were quantified using impedance analysis. RESULTS Lim2-null lenses were grossly normal. At the cellular level, however, subtle structural alterations were evident. Confocal microscopy and SEM analysis revealed that cortical Lim2(Gt/Gt) fiber cells lacked the undulating morphology that characterized wild-type fiber cells. On SDS-PAGE analysis the composition of cortical fiber cells from wild-type and Lim2-null lenses appeared similar. However, marked disparities were evident in samples prepared from the lens core of the two genotypes. Several cytoskeletal proteins that were abundant in wild-type core fiber cells were diminished in the cores of Lim2(Gt/Gt) lenses. Electrophysiological measurements indicated a small decrease in the membrane potential of Lim2(Gt/Gt) lenses and a two-fold increase in the effective intracellular resistivity. In the lens core, this may have reflected decreased expression levels of the gap junction protein connexin 46 (Cx46). In contrast, increased resistivity in the outer cell layers of Lim2(Gt/Gt) lenses could not be attributed to decreased connexin expression and may reflect the absence of cell fusions in Lim2(Gt/Gt) lenses. CONCLUSIONS Comparative analysis of wild-type and Lim2-deficient lenses has implicated Lim2 in maintenance of cytoskeletal integrity, cell morphology, and intercellular communication.
Collapse
Affiliation(s)
- Yanrong Shi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
23
|
Maddala R, Skiba NP, Lalane R, Sherman DL, Brophy PJ, Rao PV. Periaxin is required for hexagonal geometry and membrane organization of mature lens fibers. Dev Biol 2011; 357:179-90. [PMID: 21745462 PMCID: PMC3164832 DOI: 10.1016/j.ydbio.2011.06.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 01/06/2023]
Abstract
Transparency of the ocular lens depends on symmetric packing and membrane organization of highly elongated hexagonal fiber cells. These cells possess an extensive, well-ordered cortical cytoskeleton to maintain cell shape and to anchor membrane components. Periaxin (Prx), a PDZ domain protein involved in myelin sheath stabilization, is also a component of adhaerens plaques in lens fiber cells. Here we show that Prx is expressed in lens fibers and exhibits maturation dependent redistribution, clustering discretely at the tricellular junctions in mature fiber cells. Prx exists in a macromolecular complex with proteins involved in membrane organization including ankyrin-B, spectrin, NrCAM, filensin, ezrin and desmoyokin. Importantly, Prx knockout mouse lenses were found to be softer and more easily deformed than normal lenses, revealing disruptions in fiber cell hexagonal packing, membrane skeleton and membrane stability. These observations suggest a key role for Prx in maturation, packing, and membrane organization of lens fiber cells. Hence, there may be functional parallels between the roles of Prx in membrane stabilization of the myelin sheath and the lens fiber cell.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Robert Lalane
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Diane L. Sherman
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Peter J. Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, NC. USA
| |
Collapse
|
24
|
Bassnett S, Shi Y, Vrensen GFJM. Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci 2011; 366:1250-64. [PMID: 21402584 PMCID: PMC3061108 DOI: 10.1098/rstb.2010.0302] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The purpose of the lens is to project a sharply focused, undistorted image of the visual surround onto the neural retina. The first pre-requisite, therefore, is that the tissue should be transparent. Despite the presence of remarkably high levels of protein, the lens cytosol remains transparent as a result of short-range-order interactions between the proteins. At a cellular level, the programmed elimination of nuclei and other light-scattering organelles from cells located within the pupillary space contributes directly to tissue transparency. Scattering at the cell borders is minimized by the close apposition of lens fibre cells facilitated by a plethora of adhesive proteins, some expressed only in the lens. Similarly, refractive index matching between lens membranes and cytosol is believed to minimize scatter. Refractive index matching between the cytoplasm of adjacent cells is achieved through the formation of cellular fusions that allow the intermingling of proteins. Together, these structural adaptations serve to minimize light scatter and enable this living, cellular structure to function as 'biological glass'.
Collapse
Affiliation(s)
- Steven Bassnett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Yanrong Shi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Gijs F. J. M. Vrensen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
De Maria A, Shi Y, Luo X, Van Der Weyden L, Bassnett S. Cadm1 expression and function in the mouse lens. Invest Ophthalmol Vis Sci 2011; 52:2293-9. [PMID: 21217103 DOI: 10.1167/iovs.10-6677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE The immunoglobulin superfamily member Cadm1 is a single-pass, type 1 membrane protein that mediates calcium-independent, cell-cell adhesion. Cadm1 has been implicated in tumor formation and synaptogenesis. A recent analysis of mouse lens cell membranes identified Cadm1 as a major constituent of the fiber cell membrane proteome. Here the authors examined the expression and function of Cadm1 in the mouse lens. METHODS Cadm1 expression was analyzed by Western blotting and immunofluorescence. The morphology of individual wild-type and Cadm1-null lens cells was visualized by confocal microscopy. RESULTS Cadm1 was present in epithelial and superficial fiber cells as a heavily glycosylated protein with an apparent molecular mass of ≈80 kDa. Analysis of proteins extracted from various strata of the lens indicated that Cadm1 was degraded during fiber cell differentiation, at approximately the same time as the lens organelles, an observation confirmed by confocal microscopy. In epithelial cells, Cadm1 was enriched in basolateral membranes, whereas, in fiber cells, expression was restricted to the lateral membranes. Lenses from Cadm1-null mice were of normal size and transparency. The three-dimensional morphology of the cells in the epithelial layer was unaltered in the absence of Cadm1. However, in contrast to wild-type lens fiber cells, Cadm1-null fiber cells had an irregular, highly undulating morphology. CONCLUSIONS Cadm1 is an abundant component of the lens fiber cell membrane. Although not essential for lens transparency, Cadm1 has an indispensable role in establishing and maintaining the characteristic three-dimensional architecture of the lens fiber cell mass.
Collapse
Affiliation(s)
- Alicia De Maria
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
26
|
Nowak RB, Fischer RS, Zoltoski RK, Kuszak JR, Fowler VM. Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens. ACTA ACUST UNITED AC 2009; 186:915-28. [PMID: 19752024 PMCID: PMC2753162 DOI: 10.1083/jcb.200905065] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased gammaTM levels, loss of F-actin from membranes, and disrupted distribution of beta2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and gammaTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin-actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry.
Collapse
Affiliation(s)
- Roberta B Nowak
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
27
|
De Maria A, Shi Y, Kumar NM, Bassnett S. Calpain expression and activity during lens fiber cell differentiation. J Biol Chem 2009; 284:13542-13550. [PMID: 19269960 PMCID: PMC2679455 DOI: 10.1074/jbc.m900561200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/05/2009] [Indexed: 12/28/2022] Open
Abstract
In animal models, the dysregulated activity of calcium-activated proteases, calpains, contributes directly to cataract formation. However, the physiological role of calpains in the healthy lens is not well defined. In this study, we examined the expression pattern of calpains in the mouse lens. Real time PCR and Western blotting data indicated that calpain 1, 2, 3, and 7 were expressed in lens fiber cells. Using controlled lysis, depth-dependent expression profiles for each calpain were obtained. These indicated that, unlike calpain 1, 2, and 7, which were most abundant in cells near the lens surface, calpain 3 expression was strongest in the deep cortical region of the lens. We detected calpain activities in vitro and showed that calpains were active in vivo by microinjecting fluorogenic calpain substrates into cortical fiber cells. To identify endogenous calpain substrates, membrane/cytoskeleton preparations were treated with recombinant calpain, and cleaved products were identified by two-dimensional difference electrophoresis/mass spectrometry. Among the calpain substrates identified by this approach was alphaII-spectrin. An antibody that specifically recognized calpain-cleaved spectrin was used to demonstrate that spectrin is cleaved in vivo, late in fiber cell differentiation, at or about the time that lens organelles are degraded. The generation of the calpain-specific spectrin cleavage product was not observed in lens tissue from calpain 3-null mice, indicating that calpain 3 is uniquely activated during lens fiber differentiation. Our data suggest a role for calpains in the remodeling of the membrane cytoskeleton that occurs with fiber cell maturation.
Collapse
Affiliation(s)
- Alicia De Maria
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110
| | - Yanrong Shi
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110
| | - Nalin M Kumar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Steven Bassnett
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110.
| |
Collapse
|
28
|
Lens intermediate filaments. Exp Eye Res 2008; 88:165-72. [PMID: 19071112 DOI: 10.1016/j.exer.2008.11.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 12/12/2022]
Abstract
The ocular lens assembles two separate intermediate filament systems sequentially with differentiation. Canonical 8-11 nm IFs composed of Vimentin are assembled in lens epithelial cells and younger fiber cells, while the fiber cell-specific beaded filaments are switched on as fiber cell elongation initiates. Some of the key features of both filament systems are reviewed.
Collapse
|
29
|
Differentiation-dependent modification and subcellular distribution of aquaporin-0 suggests multiple functional roles in the rat lens. Differentiation 2008; 77:70-83. [PMID: 19281766 DOI: 10.1016/j.diff.2008.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/21/2022]
Abstract
Using immunohistochemistry and mass spectrometry, differentiation-dependent changes in the subcellular distribution and processing of aquaporin-0 (AQP0) have been mapped in the rat lens. Sections labelled with C-terminal tail AQP0 antibodies yielded two concentric rings of labelling with minimal signal in the lens core. The rings were separated by a transient zone of decreased labelling located prior to the transition of differentiating fiber (DF) cells into mature denucleated fiber (MF) cells. Mass spectrometry showed that the loss of core labelling was due to AQP0 cleavage, while the transient loss of labelling was more likely caused by masking of the antibody epitope. AQP0 subcellular distribution changed with radial distance into the lens. In peripheral DF cells, AQP0 was found throughout both broad and narrow side membranes. In deeper-lying DF cells, AQP0 aggregated into plaque-like structures located on the broad sides. This shift occurred prior to the transient loss of AQP0 signal, and coincided with formation of broad-side membrane invaginations between adjacent fiber cells to which filensin, a known binding partner of AQP0, was also localized. After nuclei loss, AQP0 was once again distributed throughout MF cell membranes. In the absence of protein synthesis, the observed subcellular redistribution of AQP0 in DF and subsequent cleavage of AQP0 in MF are suggestive of a switch in the function of AQP0 from a water channel to a junctional protein.
Collapse
|
30
|
Yoon KH, Blankenship T, Shibata B, Fitzgerald PG. Resisting the effects of aging: a function for the fiber cell beaded filament. Invest Ophthalmol Vis Sci 2008; 49:1030-6. [PMID: 18326727 DOI: 10.1167/iovs.07-1149] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The beaded filament is a cytoskeletal structure that has been found only in the lens fiber cell. It includes phakosin and filensin, two divergent members of the intermediate filament family of proteins that are also unique to the fiber cell. The authors sought to determine what function the beaded filament fulfills in the lens. METHODS Light microscopy and electron microscopy were used to characterize structural changes that occurred in previously generated phakosin and filensin knockout mice. Immunocytochemistry and electron microscopy were used to define the distribution of phakosin, filensin, and beaded filaments. RESULTS In phakosin and filensin knockout mice, initial lens development and the early phases of fiber cell differentiation proceed in a manner largely indistinguishable from that of wild type. Fiber cells elongate, undergo organelle elimination, and, in the organelle-free zone, develop the unique paddlelike extensions that characterize cells in this region. Subsequent to those stages, however, fiber cells undergo loss of the differentiated fiber cell phenotype and loss of the long-range stacking that characterizes fiber cells and that has been considered essential for clarity. CONCLUSIONS The beaded filament is not required for the generation of the differentiated fiber cell phenotype but is required to maintain that differentiated state and the long range order that characterizes the lens at the tissue level.
Collapse
Affiliation(s)
- Kyoung-Hye Yoon
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
31
|
Cheng C, Xia CH, Li L, White TW, Niimi J, Gong X. Gap junction communication influences intercellular protein distribution in the lens. Exp Eye Res 2008; 86:966-74. [PMID: 18462719 DOI: 10.1016/j.exer.2008.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/12/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
Abstract
Lens transparency and high refractive index presumably depend on the appropriate arrangement and distribution of lens proteins among lens fiber cells. Intercellular gap junction channels formed by alpha3 and alpha8 connexins are known to transport small molecules, ions and water, but not proteins, in the lens. Mosaic expression of green fluorescent protein (GFP) in the lens is a useful marker for monitoring macromolecule distribution between fiber cells and for constructing three-dimensional images of living lens cells. In alpha3(-/-) alpha8(-/-) double knockout (DKO) lenses, three-dimensional images of GFP-positive cells demonstrate the changes of epithelial cell surfaces and insufficient elongation of inner fiber cells. Uniform distribution of GFP between inner lens fiber cells is observed in both wild-type and alpha3(-/-) lenses. In contrast, uniform GFP distribution is slightly delayed in alpha8(-/-) lenses and is abolished in DKO lenses. Without endogenous wild-type alpha3 and alpha8 connexins, knock-in alpha3 connexin (expressed under the alpha8 gene promoter) restores the uniform distribution of GFP protein in the lens. Thus, the presence of either alpha3 or alpha8 connexins seems sufficient to support the uniform distribution of GFP between differentiated lens fiber cells. Although the mechanism that drives GFP transport between fiber cells remains unknown, this work reveals that gap junction communication plays a novel role in the regulation of intercellular protein distribution in the lens.
Collapse
Affiliation(s)
- Catherine Cheng
- UC Berkeley/UCSF Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yuen J, Li Y, Shapiro LG, Clark JI, Arnett E, Sage EH, Brinkley JF. Automated, computerized, feature-based phenotype analysis of slit lamp images of the mouse lens. Exp Eye Res 2008; 86:562-75. [PMID: 18304532 DOI: 10.1016/j.exer.2007.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/27/2007] [Accepted: 11/28/2007] [Indexed: 11/19/2022]
Abstract
Longitudinal studies of a variety of transgenic mouse models for lens development can create substantial challenges in database management and analysis. We report a novel, automated, feature-based informatics approach to screening lens phenotypes in a large database of slit lamp images. Digital slit lamp images of normal and abnormal lenses in eyes of wild type (wt), SC1 null and SPARC null transgenic mice were recorded for quantitative evaluation of their structural phenotype. The images were processed to improve the contrast of structural features that corresponded to rings of opacity and fluctuations in scattering intensity in the lenses. Measurable attributes were assigned to the features in the lens images and given as an output vector of 46 dimensions. Characteristic patterns were correlated with the structural phenotype of each mutant and wt lens and a statistical fit for each phenotype was defined. The genotype was identified correctly in nearly 85% of the slit lamp images on the basis of an automated computer analysis of the lens structural phenotype. The automated computer algorithm has the potential to evaluate a large database of slit lamp images and distinguish mouse genotypes on the basis of lens phenotypes objectively using a neural network analysis of the structural features observed in the slit lamp images. The neural network approach is a promising technology for objective evaluation of genotype/phenotype relationships based on structural features and light scattering in lenses. Further improvements in the automated method can be expected to simplify and increase the accuracy and efficiency of the feature based analysis of structural phenotypes linked to genetic variation.
Collapse
Affiliation(s)
- Jenny Yuen
- Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Rao PV, Ho T, Skiba NP, Maddala R. Characterization of lens fiber cell triton insoluble fraction reveals ERM (ezrin, radixin, moesin) proteins as major cytoskeletal-associated proteins. Biochem Biophys Res Commun 2008; 368:508-14. [PMID: 18261459 DOI: 10.1016/j.bbrc.2008.01.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 01/18/2008] [Indexed: 11/29/2022]
Abstract
To understand lens fiber cell elongation- and differentiation-associated cytoskeletal remodeling, here we identified and characterized the major protein components of lens fiber cell Triton X-100 insoluble fraction by mass spectrometry and immunoblot analysis. This analysis identified spectrin, filensin, vimentin, tubulin, phakinin, and beta-actin as major cytoskeletal proteins in the lens fibers. Importantly, ezrin, radixin, and moesin (ERM), heat-shock cognate protein 70, and beta/gamma-crystallins were identified as major cytoskeletal-associated proteins. ERM proteins were confirmed to exist as active phosphorylated forms that exhibited intense distribution in the organelle free-zone fibers. Furthermore, ERM protein phosphorylation was found to be dramatically reduced in Rho GTPase-targeted transgenic mouse lenses. These data identify the ERM proteins, which cross-link the plasma membrane and actin, as major and stable cytoskeletal-associated proteins in lens fibers, and indicate a potential role(s) for the ERMs in fiber cell actin cytoskeletal and membrane organization.
Collapse
Affiliation(s)
- P Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Box 3802, Durham, NC 27710, USA
| | | | | | | |
Collapse
|