1
|
Françon A, Jonet L, Behar-Cohen F, Torriglia A. Repeated exposure to low doses of light induces retinal damage in vivo in a wavelength-dependent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117605. [PMID: 39742645 DOI: 10.1016/j.ecoenv.2024.117605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
The exposure of the general population to artificial light at night has dramatically increased in recent decades. Current standards for domestic lighting are based on acute exposure to light and consider blue wavelengths to be responsible for phototoxicity. However, meta-analyses pointed out the role of lifelong light exposure in the onset of age-related macular degeneration, suggesting a cumulative effect of light exposure. Here, we investigate the retinal phototoxicity of a repeated exposure to light emitting diodes of different spectral compositions in 6-week-old albino rats. Rats were exposed twice a day for 15 days to retinal doses that were safe in acute exposure (0.1 and 0.2 J/cm² for blue and white lights, 0.2 J/cm² for green light and 0.05 J/cm² for red light). We show that rats repeatedly exposed to blue and white lights display irreversible retinal damage, characterized by a degradation of the global retinal structure, a significant photoreceptor loss, and an increase of stress and inflammation markers. We highlight the role of green wavelengths in the phototoxicity of white light and show the protective effect of the addition of red light to mitigate the phototoxicity of blue light. All of this points out the need to rethink the current phototoxicity standards by taking into account the cumulative effect of the exposure to light and the role of the different parts of the emission spectrum.
Collapse
Affiliation(s)
- Anaïs Françon
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine Paris 75006, France
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine Paris 75006, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine Paris 75006, France; Assistance Publique, Hôpitaux de Paris, Hôpital Cochin, Ophtalmopole, 27, rue du Faubourg Saint-Jacques Paris 75014, France
| | - Alicia Torriglia
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine Paris 75006, France.
| |
Collapse
|
2
|
Schusteff RA, Slavin KV, Roth S. 5-Aminolevulonic Acid, a New Tumor Contrast Agent: Anesthesia Considerations in Patients Undergoing Craniotomy. J Neurosurg Anesthesiol 2024; 36:294-302. [DOI: 10.1097/ana.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2025]
Abstract
5-aminolevulinic acid (ALA) is used during resection of malignant gliomas due to its fluorescence properties and has been shown to render resection more effective than resection without ALA guidance. The aim of this narrative review is to categorize the adverse effects of ALA relevant to anesthesia providers. Intraoperative hypotension, porphyria-related side effects, alterations in blood chemistry and coagulation, photosensitivity, and increased levels of liver enzymes have all been reported. We also sought to examine the impact of dosage and timing of oral administration on efficacy of ALA and on these side effects. Twenty-seven studies met our inclusion criteria of patients undergoing craniotomy for glioma resection using ALA and occurrence of at least one adverse effect. The results of these studies showed that there was heterogeneity in levels of intraoperative hypotension, with some reporting an incidence as high as 32%, and that hypotension was associated with antihypertensive medication use. Clinical symptoms of porphyria, such as gastrointestinal disturbance, were less commonly reported. Photosensitivity of the skin after 5-ALA administration was well documented particularly in patients exposed to light; however, adverse effects on the eye were not adequately studied. Elevation in liver enzymes was a common finding postoperatively but was often clinically insignificant. The timing of oral administration presents practical issues for the preoperative management of patients undergoing resection with ALA. We provide guidance for perioperative management of patients who receive ALA for brain tumor resection. Controlled studies with adequate statistical power are required to further understand and prevent the adverse effects of ALA.
Collapse
Affiliation(s)
- Rachel A. Schusteff
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| | - Konstantin V. Slavin
- Department of Neurosurgery, University of Illinois at Chicago College of Medicine, and Neurology Section, Jesse Brown Veterans Administration Medical Center, Chicago, IL
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| |
Collapse
|
3
|
Ostrin LA, Schill AW. Response to Letter to the Editor. Ophthalmic Physiol Opt 2024; 44:674-677. [PMID: 38429892 DOI: 10.1111/opo.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Affiliation(s)
- Lisa A Ostrin
- University of Houston College of Optometry, Houston, Texas, USA
| | | |
Collapse
|
4
|
Gofas-Salas E, Lee DMW, Rondeau C, Grieve K, Rossi EA, Paques M, Gocho K. Comparison between Two Adaptive Optics Methods for Imaging of Individual Retinal Pigmented Epithelial Cells. Diagnostics (Basel) 2024; 14:768. [PMID: 38611681 PMCID: PMC11012195 DOI: 10.3390/diagnostics14070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The Retinal Pigment Epithelium (RPE) plays a prominent role in diseases such as age-related macular degeneration, but imaging individual RPE cells is challenging due to their high absorption and low autofluorescence emission. The RPE lies beneath the highly reflective photoreceptor layer (PR) and contains absorptive pigments, preventing direct backscattered light detection when the PR layer is intact. Here, we used near-infrared autofluorescence adaptive optics scanning laser ophthalmoscopy (NIRAF AOSLO) and transscleral flood imaging (TFI) in the same healthy eyes to cross-validate these approaches. Both methods revealed a consistent RPE mosaic pattern and appeared to reflect a distribution of fluorophores consistent with findings from histological studies. Interestingly, even in apparently healthy RPE, we observed dynamic changes over months, suggesting ongoing cellular activity or alterations in fluorophore distribution. These findings emphasize the value of NIRAF AOSLO and TFI in understanding RPE morphology and dynamics.
Collapse
Affiliation(s)
- Elena Gofas-Salas
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Daniel M. W. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
| | | | - Kate Grieve
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Ethan A. Rossi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Michel Paques
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Kiyoko Gocho
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| |
Collapse
|
5
|
Ostrin LA, Schill AW. Red light instruments for myopia exceed safety limits. Ophthalmic Physiol Opt 2024; 44:241-248. [PMID: 38180093 PMCID: PMC10922340 DOI: 10.1111/opo.13272] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE Low-level red light (LLRL) therapy has recently emerged as a myopia treatment in children, with several studies reporting significant reduction in axial elongation and myopia progression. The goal of this study was to characterise the output and determine the thermal and photochemical maximum permissible exposure (MPE) of LLRL devices for myopia control. METHODS Two LLRL devices, a Sky-n1201a and a Future Vision, were examined. Optical power measurements were made using an integrating sphere radiometer through a 7-mm diameter aperture, in accordance with ANSI Z136.1-2014, sections 3.2.3-3.2.4. Retinal spot sizes of the devices were obtained using a model eye and high-resolution beam profiler. Corneal irradiance, retinal irradiance and MPE were calculated for an eye positioned at the oculars of each device. RESULTS Both devices were confirmed to be Class 1 laser products. Findings showed that the Sky-n1201a delivers laser light as a point source with a 654-nm wavelength, 0.2 mW power (Ø 7 mm aperture, 10-cm distance), 1.17 mW/cm2 corneal irradiance and 7.2 W/cm2 retinal irradiance (Ø 2 mm pupil). The MPE for photochemical damage is 0.55-7.0 s for 2-7 mm pupils and for thermal damage is 0.41-10 s for 4.25-7 mm pupils. Future Vision delivers the laser as an extended source subtending 0.75 × 0.325°. It has a 652-nm wavelength, 0.06 mW power (Ø 7 mm aperture, 10 cm distance), 0.624 mW/cm2 corneal irradiance and 0.08 W/cm2 retinal irradiance (Ø 2 mm pupil). MPE for photochemical damage is 50-625 s for 2-7 mm pupils. DISCUSSION For both of the LLRL devices evaluated here, 3 min of continuous viewing approached or surpassed the MPE, putting the retina at risk of photochemical and thermal damage. Clinicians should be cautious with the use of LLRL therapy for myopia in children until safety standards can be confirmed.
Collapse
Affiliation(s)
- Lisa A Ostrin
- University of Houston College of Optometry, Houston, Texas., USA
| | | |
Collapse
|
6
|
Zhang J, Sabarinathan R, Bubel T, Jia W, Williams DR, Hunter JJ. Spectral Dependence of Light Exposure on Retinal Pigment Epithelium Disruption in Living Primate Retina. Invest Ophthalmol Vis Sci 2024; 65:43. [PMID: 38416456 PMCID: PMC10910637 DOI: 10.1167/iovs.65.2.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024] Open
Abstract
Purpose RPE disruption with light exposures below or close to the American National Standards Institute (ANSI) photochemical maximum permissible exposure (MPE) have been observed, but these findings were limited to two wavelengths. We have extended the measurements across the visible spectrum. Methods Retinal imaging with fluorescence adaptive optics scanning light ophthalmoscopy (FAOSLO) was used to provide an in vivo measure of RPE disruption at a cellular level. The threshold retinal radiant exposures (RREs) for RPE disruption (localized detectable change in the fluorescence image) were determined at 460, 476, 488, 530, 543, 561, 594, 632, and 671 nm (uniform 0.5° square exposure) using multiples locations in 4 macaques. Results FAOSLO is sensitive in detecting RPE disruption. The visible light action spectrum dependence for RPE disruption with continuous wave (CW) extended field exposures was determined. It has a shallower slope than the current ANSI blue-light hazard MPE. At all wavelengths beyond 530 nm, the disruption threshold is below the ANSI blue-light hazard MPE. There is reciprocity of exposure irradiance and duration for exposures at 460 and 594 nm. Conclusions We measured with FAOSLO the action spectrum dependence for photochemical RPE disruption across the visible light spectrum. Using this in vivo measure of phototoxicity provided by FAOSLO, we find that thresholds are lower than previously measured. The wavelength dependence in our data is considerably shallower than the spectral dependence of the traditional ANSI blue-light hazard, emphasizing the need for more caution with increasing wavelength than expected.
Collapse
Affiliation(s)
- Jie Zhang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Robotrak Technologies, Nanjing, Jiangsu, China
| | - Ranjani Sabarinathan
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Tracy Bubel
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Wuao Jia
- The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
8
|
Doyle HK, Herbeck SR, Boehm AE, Vanston JE, Ng R, Tuten WS, Roorda A. Boosting 2-photon vision with adaptive optics. J Vis 2023; 23:4. [PMID: 37801322 PMCID: PMC10561787 DOI: 10.1167/jov.23.12.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
The 2-photon effect in vision occurs when two photons of the same wavelength are absorbed by cone photopigment in the retina and create a visual sensation matching the appearance of light close to half their wavelength. This effect is especially salient for infrared light, where humans are mostly insensitive to 1-photon isomerizations and thus any perception is dominated by 2-photon isomerizations. This phenomenon can be made more readily visible using short-pulsed lasers, which increase the likelihood of 2-photon excitation by making photon arrivals at the retina more concentrated in time. Adaptive optics provides another avenue for enhancing the 2-photon effect by focusing light more tightly at the retina, thereby increasing the spatial concentration of incident photons. This article makes three contributions. First, we demonstrate through color-matching experiments that an adaptive optics correction can provide a 25-fold increase in the luminance of the 2-photon effect-a boost equivalent to reducing pulse width by 96%. Second, we provide image-based evidence that the 2-photon effect occurs at the photoreceptor level. Third, we use our results to compute the specifications for a system that could utilize 2-photon vision and adaptive optics to image and stimulate the retina using a single infrared wavelength and reach luminance levels comparable to conventional displays.
Collapse
Affiliation(s)
- Hannah K Doyle
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Sofie R Herbeck
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Alexandra E Boehm
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - John E Vanston
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Ren Ng
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
9
|
Birtel J, Bauer T, Pauleikhoff L, Rüber T, Gliem M, Charbel Issa P. Fundus autofluorescence imaging using red excitation light. Sci Rep 2023; 13:9916. [PMID: 37336979 DOI: 10.1038/s41598-023-36217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Retinal disease accounts significantly for visual impairment and blindness. An important role in the pathophysiology of retinal disease and aging is attributed to lipofuscin, a complex of fluorescent metabolites. Fundus autofluorescence (AF) imaging allows non-invasive mapping of lipofuscin and is a key technology to diagnose and monitor retinal disease. However, currently used short-wavelength (SW) excitation light has several limitations, including glare and discomfort during image acquisition, reduced image quality in case of lens opacities, limited visualization of the central retina, and potential retinal light toxicity. Here, we establish a novel imaging modality which uses red excitation light (R-AF) and overcomes these drawbacks. R-AF images are high-quality, high-contrast fundus images and image interpretation may build on clinical experience due to similar appearance of pathology as on SW-AF images. Additionally, R-AF images may uncover disease features that previously remained undetected. The R-AF signal increases with higher abundance of lipofuscin and does not depend on photopigment bleaching or on the amount of macular pigment. Improved patient comfort, limited effect of cataract on image quality, and lack of safety concerns qualify R-AF for routine clinical monitoring, e.g. for patients with age-related macular degeneration, Stargardt disease, or for quantitative analysis of AF signal intensity.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurenz Pauleikhoff
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Charbel Issa
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK.
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Yan B, Viswanathan S, Brodie SE, Deng WT, Coleman KE, Hauswirth WW, Nirenberg S. A clinically viable approach to restoring visual function using optogenetic gene therapy. Mol Ther Methods Clin Dev 2023; 29:406-417. [PMID: 37251979 PMCID: PMC10213293 DOI: 10.1016/j.omtm.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Optogenetic gene therapies offer a promising strategy for restoring vision to patients with retinal degenerative diseases, such as retinitis pigmentosa (RP). Several clinical trials have begun in this area using different vectors and optogenetic proteins (Clinical Identifiers: NCT02556736, NCT03326336, NCT04945772, and NCT04278131). Here we present preclinical efficacy and safety data for the NCT04278131 trial, which uses an AAV2 vector and Chronos as the optogenetic protein. Efficacy was assessed in mice in a dose-dependent manner using electroretinograms (ERGs). Safety was assessed in rats, nonhuman primates, and mice, using several tests, including immunohistochemical analyses and cell counts (rats), electroretinograms (nonhuman primates), and ocular toxicology assays (mice). The results showed that Chronos-expressing vectors were efficacious over a broad range of vector doses and stimulating light intensities, and were well tolerated: no test article-related findings were observed in the anatomical and electrophysiological assays performed.
Collapse
Affiliation(s)
- Boyuan Yan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Bionic Sight, Inc., New York, NY 10065, USA
| | - Suresh Viswanathan
- Department of Biological and Vision Sciences, College of Optometry, State University of New York, New York, NY 10036, USA
| | - Scott E. Brodie
- Department of Ophthalmology, NYU Langone Health, New York, NY 10017, USA
| | - Wen-Tao Deng
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Kirsten E. Coleman
- Powel Gene Therapy Center Toxicology Core, University of Florida, Gainesville, FL 32610, USA
| | - William W. Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Bionic Sight, Inc., New York, NY 10065, USA
| | - Sheila Nirenberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Bionic Sight, Inc., New York, NY 10065, USA
| |
Collapse
|
11
|
Yan B, Nirenberg S. An Engineering Platform for Clinical Application of Optogenetic Therapy in Retinal Degenerative Diseases. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:296-305. [PMID: 37250684 PMCID: PMC10217532 DOI: 10.1109/jtehm.2023.3275103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Optogenetics is a new approach for controlling neural circuits with numerous applications in both basic and clinical science. In retinal degenerative diseases, the photoreceptors die, but inner retinal cells remain largely intact. By expressing light sensitive proteins in the remaining cells, optogenetics has the potential to offer a novel approach to restoring vision. In the past several years, optogenetics has advanced into an early clinical stage, and promising results have been reported. At the current stage, there is an urgent need to develop hardware and software for clinical training, testing, and rehabilitation in optogenetic therapy, which is beyond the capability of existing ophthalmic equipment. In this paper, we present an engineering platform consisting of hardware and software utilities, which allow clinicians to interactively work with patients to explore and assess their vision in optogenetic treatment, providing the basis for prosthetic design, customization, and prescription. This approach is also applicable to other therapies that utilize light activation of neurons, such as photoswitches.Clinical and Translational Impact Statement-The engineering platform allows clinicians to conduct training, testing, and rehabilitation in optogenetic gene therapy for retinal degenerative diseases, providing the basis for prosthetic design, customization, and prescription.
Collapse
Affiliation(s)
- Boyuan Yan
- Department of Physiology and Biophysics, Weill Cornell MedicineCornell UniversityNew YorkNY10065USA
- Bionic Sight Inc.New YorkNY10065USA
| | - Sheila Nirenberg
- Department of Physiology and Biophysics, Weill Cornell MedicineCornell UniversityNew YorkNY10065USA
- Bionic Sight Inc.New YorkNY10065USA
| |
Collapse
|
12
|
Williams DR, Burns SA, Miller DT, Roorda A. Evolution of adaptive optics retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:1307-1338. [PMID: 36950228 PMCID: PMC10026580 DOI: 10.1364/boe.485371] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/02/2023]
Abstract
This review describes the progress that has been achieved since adaptive optics (AO) was incorporated into the ophthalmoscope a quarter of a century ago, transforming our ability to image the retina at a cellular spatial scale inside the living eye. The review starts with a comprehensive tabulation of AO papers in the field and then describes the technological advances that have occurred, notably through combining AO with other imaging modalities including confocal, fluorescence, phase contrast, and optical coherence tomography. These advances have made possible many scientific discoveries from the first maps of the topography of the trichromatic cone mosaic to exquisitely sensitive measures of optical and structural changes in photoreceptors in response to light. The future evolution of this technology is poised to offer an increasing array of tools to measure and monitor in vivo retinal structure and function with improved resolution and control.
Collapse
Affiliation(s)
- David R. Williams
- The Institute of Optics and the Center for
Visual Science, University of Rochester,
Rochester NY, USA
| | - Stephen A. Burns
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Donald T. Miller
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and
Vision Science, University of California at Berkeley, Berkeley CA, USA
| |
Collapse
|
13
|
Huynh KT, Walters S, Foley EK, Hunter JJ. Separate lifetime signatures of macaque S cones, M/L cones, and rods observed with adaptive optics fluorescence lifetime ophthalmoscopy. Sci Rep 2023; 13:2456. [PMID: 36774443 PMCID: PMC9922306 DOI: 10.1038/s41598-023-28877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/25/2023] [Indexed: 02/13/2023] Open
Abstract
In the retina, several molecules involved in metabolism, the visual cycle, and other roles exhibit intrinsic fluorescence. The overall properties of retinal fluorescence depend on changes to the composition of these molecules and their environmental interactions due to transient functional shifts, especially in disease. This behooves the understanding of the origins and deviations of these properties within the multilayered retina at high lateral and axial resolution. Of particular interest is the fluorescence lifetime, a potential biomarker of function and disease independent of fluorescence intensity that can be measured in the retina with adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO). This work demonstrates the utility of the phasor method of analysis, an alternate approach to traditional multiexponential fitting, to evaluate photoreceptor two-photon excited AOFLIO data and separate them based on functional differences. Phasor analysis on fluorescence lifetime decay data allowed the repeatable segregation of S from M/L cones, likely from differences in functional or metabolic demands. Furthermore, it is possible to track the lifetime changes in S cones after photodamage. Phasor analysis increases the sensitivity of AOFLIO to functional differences between cells and has the potential to improve our understanding of pathways involved in normal and diseased conditions at the cellular scale throughout the retina.
Collapse
Affiliation(s)
- Khang T Huynh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA.
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA.
| | - Sarah Walters
- Currently with IDEX Health & Science, West Henrietta, NY, 14586, USA
- The Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Emma K Foley
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Jennifer J Hunter
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
- The Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
14
|
Abstract
The eye, the photoreceptive organ used to perceive the external environment, is of great importance to humans. It has been proven that some diseases in humans are accompanied by fundus changes; therefore, the health status of people may be interpreted from retinal images. However, the human eye is not a perfect refractive system for the existence of ocular aberrations. These aberrations not only affect the ability of human visual discrimination and recognition, but restrict the observation of the fine structures of human eye and reduce the possibility of exploring the mechanisms of eye disease. Adaptive optics (AO) is a technique that corrects optical wavefront aberrations. Once integrated into ophthalmoscopes, AO enables retinal imaging at the cellular level. This paper illustrates the principle of AO in correcting wavefront aberrations in human eyes, and then reviews the applications and advances of AO in ophthalmology, including the adaptive optics fundus camera (AO-FC), the adaptive optics scanning laser ophthalmoscope (AO-SLO), the adaptive optics optical coherence tomography (AO-OCT), and their combined multimodal imaging technologies. The future development trend of AO in ophthalmology is also prospected.
Collapse
|
15
|
Tang JAH, Granger CE, Kunala K, Parkins K, Huynh KT, Bowles-Johnson K, Yang Q, Hunter JJ. Adaptive optics fluorescence lifetime imaging ophthalmoscopy of in vivo human retinal pigment epithelium. BIOMEDICAL OPTICS EXPRESS 2022; 13:1737-1754. [PMID: 35414970 PMCID: PMC8973160 DOI: 10.1364/boe.451628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 05/18/2023]
Abstract
The intrinsic fluorescence properties of lipofuscin - naturally occurring granules that accumulate in the retinal pigment epithelium - are a potential biomarker for the health of the eye. A new modality is described here which combines adaptive optics technology with fluorescence lifetime detection, allowing for the investigation of functional and compositional differences within the eye and between subjects. This new adaptive optics fluorescence lifetime imaging ophthalmoscope was demonstrated in 6 subjects. Repeated measurements between visits had a minimum intraclass correlation coefficient of 0.59 Although the light levels were well below maximum permissible exposures, the safety of the imaging paradigm was tested using clinical measures; no concerns were raised. This new technology allows for in vivo adaptive optics fluorescence lifetime imaging of the human RPE mosaic.
Collapse
Affiliation(s)
- Janet A. H. Tang
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Contributed equally
| | - Charles E. Granger
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Contributed equally
| | - Karteek Kunala
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Kristen Bowles-Johnson
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Jennifer J. Hunter
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
16
|
Różanowska MB, Różanowski B. Photodegradation of Lipofuscin in Suspension and in ARPE-19 Cells and the Similarity of Fluorescence of the Photodegradation Product with Oxidized Docosahexaenoate. Int J Mol Sci 2022; 23:ijms23020922. [PMID: 35055111 PMCID: PMC8778276 DOI: 10.3390/ijms23020922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal lipofuscin accumulates with age in the retinal pigment epithelium (RPE), where its fluorescence properties are used to assess retinal health. It was observed that there is a decrease in lipofuscin fluorescence above the age of 75 years and in the early stages of age-related macular degeneration (AMD). The purpose of this study was to investigate the response of lipofuscin isolated from human RPE and lipofuscin-laden cells to visible light, and to determine whether an abundant component of lipofuscin, docosahexaenoate (DHA), can contribute to lipofuscin fluorescence upon oxidation. Exposure of lipofuscin to visible light leads to a decrease in its long-wavelength fluorescence at about 610 nm, with a concomitant increase in the short-wavelength fluorescence. The emission spectrum of photodegraded lipofuscin exhibits similarity with that of oxidized DHA. Exposure of lipofuscin-laden cells to light leads to a loss of lipofuscin granules from cells, while retaining cell viability. The spectral changes in fluorescence in lipofuscin-laden cells resemble those seen during photodegradation of isolated lipofuscin. Our results demonstrate that fluorescence emission spectra, together with quantitation of the intensity of long-wavelength fluorescence, can serve as a marker useful for lipofuscin quantification and for monitoring its oxidation, and hence useful for screening the retina for increased oxidative damage and early AMD-related changes.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: ; Tel.: +44-2920875057
| | - Bartosz Różanowski
- Institute of Biology, Pedagogical University of Kraków, 30-084 Kraków, Poland;
| |
Collapse
|
17
|
Altera A, Barone V, Kondova I, Langermans JAM, Gentile M, Pin C, Nicoletti C, Bertelli E. Light-Induced Smooth Endoplasmic Reticulum Rearrangement in a Unique Interlaced Compartmental Pattern in Macaca mulatta RPE. Invest Ophthalmol Vis Sci 2021; 62:32. [PMID: 34967853 PMCID: PMC8727310 DOI: 10.1167/iovs.62.15.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose To investigate light-induced modifications of the smooth endoplasmic reticulum of the RPE in primates. Methods Eyes of three terminally anesthetized Rhesus monkeys were exposed to 5000 lux for 10 minutes or kept in the dark. Transmission electron microscopy and electron tomography were conducted on small fragments of retina sampled from different regions of the retina. Results RPE cells smooth endoplasmic reticulum shows a previously unknown arrangement characterized by an interlaced compartmental pattern (ICP). Electron tomograms and 3D-modelling demonstrated that the smooth endoplasmic reticulum with an ICP (ICPSER) consisted of four parallel, independent and interwoven networks of tubules arranged as interconnected coiled coils. Its architecture realized a compact labyrinthine structure of tightly packed tubules stabilized by intertubular filamentous tethers. On average, the ICPSER is present in about 14.6% of RPE cells. Although ICPSER was preferentially found in cells located in the peripheral and in the para/perifoveal retina, ICPSER cells significantly increased in number upon light exposure in the para/perifovea and in the fovea. Conclusions An ICPSER is apparently a unique feature to primate RPE. Its rapid appearance in the area centralis of the retina upon light exposure suggests a function related to the foveate structure of primate retina or to the diurnal habits of animals that may require additional protection from photo-oxidation or enhanced requests of visual pigments regeneration.
Collapse
Affiliation(s)
- Annalisa Altera
- Department of Life Sciences, University of Siena, Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ivanela Kondova
- Division of Pathology and Microbiology, Animal Science Department, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Jan A M Langermans
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department Population Health Sciences, Division Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - Carmen Pin
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
18
|
Patil MA, Kompella UB. Noninvasive monitoring of suprachoroidal, subretinal, and intravitreal implants using confocal scanning laser ophthalmoscope (cSLO) and optical coherence tomography (OCT). Int J Pharm 2021; 606:120887. [PMID: 34271155 PMCID: PMC8429194 DOI: 10.1016/j.ijpharm.2021.120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
To address the need for noninvasive monitoring of injectable preformed drug delivery implants in the eye, we developed noninvasive methods to monitor such implants in different locations within the eye. Cylindrical polymeric poly(lactide-co-glycolide) or metal implants were injected into isolated bovine eyes at suprachoroidal, subretinal, and intravitreal locations and imaged noninvasively using the cSLO and OCT modes of a Heidelberg Spectralis HRA + OCT instrument after adjusting for the corneal curvature. Length and diameter of implants were obtained using cSLO images for all three locations, and the volume was calculated. Additionally, implant volume for suprachoroidal and subretinal location was estimated by integrating the cross-sectional bleb area over the implant length in multiple OCT images or using the maximum thickness of the implant based on thickness map along with length in cSLO image. Simultaneous cSLO and OCT imaging identified implants in different regions of the eye. Image-based measurements of implant dimensions mostly correlated well with the values prior to injection using blade micrometer. The accuracy (82-112%) and precision (1-19%) for noninvasive measurement of length was better than the diameter (accuracy 69-130%; precision 3-38%) using cSLO image for both types of implants. The accuracy for the measurement of volume of both types of implants from all three intraocular locations was better with cSLO imaging (42-152%) compared to those obtained using OCT cross-sectional bleb area integration (117-556%) or cSLO and thickness map (32-279%) methods. Suprachoroidal, subretinal, and intravitreal implants can be monitored for length, diameter, and volume using cSLO and OCT imaging. Such measurements may be useful in noninvasively monitoring implant degradation and drug release in the eye.
Collapse
Affiliation(s)
- Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
19
|
Kim HJ, Montenegro D, Zhao J, Sparrow JR. Bisretinoids of the Retina: Photo-Oxidation, Iron-Catalyzed Oxidation, and Disease Consequences. Antioxidants (Basel) 2021; 10:antiox10091382. [PMID: 34573014 PMCID: PMC8467448 DOI: 10.3390/antiox10091382] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023] Open
Abstract
The retina and, in particular, retinal pigment epithelial cells are unusual for being encumbered by exposure to visible light, while being oxygen-rich, and also amassing photoreactive molecules. These fluorophores (bisretinoids) are generated as a byproduct of the activity of vitamin A aldehyde-the chromophore necessary for vision. Bisretinoids form in photoreceptor cells due to random reactions of two molecules of vitamin A aldehyde with phosphatidylethanolamine; bisretinoids are subsequently transferred to retinal pigment epithelial (RPE) cells, where they accumulate in the lysosomal compartment with age. Bisretinoids can generate reactive oxygen species by both energy and electron transfer, and they become photo-oxidized and photolyzed in the process. While these fluorescent molecules are accrued by RPE cells of all healthy eyes, they are also implicated in retinal disease.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
| | - Diego Montenegro
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
| | - Jin Zhao
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
- Department of Pathology and Cell Biology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-9944
| |
Collapse
|
20
|
Wynne N, Carroll J, Duncan JL. Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). Prog Retin Eye Res 2021; 83:100920. [PMID: 33161127 PMCID: PMC8639282 DOI: 10.1016/j.preteyeres.2020.100920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) allows visualization of the living human retina with exquisite single-cell resolution. This technology has improved our understanding of normal retinal structure and revealed pathophysiological details of a number of retinal diseases. Despite the remarkable capabilities of AOSLO, it has not seen the widespread commercial adoption and mainstream clinical success of other modalities developed in a similar time frame. Nevertheless, continued advancements in AOSLO hardware and software have expanded use to a broader range of patients. Current devices enable imaging of a number of different retinal cell types, with recent improvements in stimulus and detection schemes enabling monitoring of retinal function, microscopic structural changes, and even subcellular activity. This has positioned AOSLO for use in clinical trials, primarily as exploratory outcome measures or biomarkers that can be used to monitor disease progression or therapeutic response. AOSLO metrics could facilitate patient selection for such trials, to refine inclusion criteria or to guide the choice of therapy, depending on the presence, absence, or functional viability of specific cell types. Here we explore the potential of AOSLO retinal imaging by reviewing clinical applications as well as some of the pitfalls and barriers to more widespread clinical adoption.
Collapse
Affiliation(s)
- Niamh Wynne
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA.
| |
Collapse
|
21
|
Kim HJ, Sparrow JR. Bisretinoid phospholipid and vitamin A aldehyde: shining a light. J Lipid Res 2021; 62:100042. [PMID: 32371567 PMCID: PMC7933493 DOI: 10.1194/jlr.tr120000742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin A aldehyde covalently bound to opsin protein is embedded in a phospholipid-rich membrane that supports photon absorption and phototransduction in photoreceptor cell outer segments. Following absorption of a photon, the 11-cis-retinal chromophore of visual pigment in photoreceptor cells isomerizes to all-trans-retinal. To maintain photosensitivity 11-cis-retinal must be replaced. At the same time, however, all-trans-retinal has to be handled so as to prevent nonspecific aldehyde activity. Some molecules of retinaldehyde upon release from opsin are efficiently reduced to retinol. Other molecules are released into the lipid phase of the disc membrane where they form a conjugate [N-retinylidene-PE (NRPE)] through a Schiff base linkage with PE. The reversible formation of NRPE serves as a transient sink for retinaldehyde that is intended to return retinaldehyde to the visual cycle. However, if instead of hydrolyzing to PE and retinaldehyde, NRPE reacts with a second molecule of retinaldehyde, a synthetic pathway is initiated that leads to the formation of multiple species of unwanted bisretinoid fluorophores. We report on recently identified members of the bisretinoid family, some of which differ with respect to the acyl chains associated with the glycerol backbone. We discuss processing of the lipid moieties of these fluorophores in lysosomes of retinal pigment epithelial cells, their fluorescence characters, and new findings related to light- and iron-associated oxidation of bisretinoids.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Akyol E, Hagag AM, Sivaprasad S, Lotery AJ. Adaptive optics: principles and applications in ophthalmology. Eye (Lond) 2021; 35:244-264. [PMID: 33257798 PMCID: PMC7852593 DOI: 10.1038/s41433-020-01286-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022] Open
Abstract
This is a comprehensive review of the principles and applications of adaptive optics (AO) in ophthalmology. It has been combined with flood illumination ophthalmoscopy, scanning laser ophthalmoscopy, as well as optical coherence tomography to image photoreceptors, retinal pigment epithelium (RPE), retinal ganglion cells, lamina cribrosa and the retinal vasculature. In this review, we highlight the clinical studies that have utilised AO to understand disease mechanisms. However, there are some limitations to using AO in a clinical setting including the cost of running an AO imaging service, the time needed to scan patients, the lack of normative databases and the very small size of area imaged. However, it is undoubtedly an exceptional research tool that enables visualisation of the retina at a cellular level.
Collapse
Affiliation(s)
- Engin Akyol
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ahmed M Hagag
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Andrew J Lotery
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
23
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Borrelli E, Costanzo E, Parravano M, Viggiano P, Varano M, Giorno P, Marchese A, Sacconi R, Mastropasqua L, Bandello F, Querques G. Impact of Bleaching on Photoreceptors in Different Intermediate AMD Phenotypes. Transl Vis Sci Technol 2019; 8:5. [PMID: 31737429 PMCID: PMC6855373 DOI: 10.1167/tvst.8.6.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
Purpose To investigate photoreceptors' structural changes after photobleaching exposure in intermediate age-related macular degeneration (iAMD) eyes with and without reticular pseudodrusen (RPD). Methods In this prospective, cross-sectional study, were enrolled iAMD patients and healthy controls. Patients and controls underwent repeated imaging with spectral-domain optical coherence tomography (SD-OCT), at baseline and at three intervals after bleaching, during the subsequent recovery in darkness. Structural changes in photoreceptors were investigated in the foveal region and in four perifoveal areas. Results Twenty eyes of 20 iAMD patients (12 with RPD and 8 without RPD) and 15 age-matched healthy controls were enrolled. At baseline, the photoreceptor outer segment (OS) volume was significantly reduced in iAMD eyes with RPD compared with controls, in the foveal and perifoveal regions. In healthy subjects, a precocious increase in OS volume was observed after bleaching in the foveal region, and a rapid recovery to baseline values was recorded. In the perifoveal regions, an increase in OS volume was observed 10 minutes after light onset. In contrast, in iAMD subjects with RPD an altered response to photobleaching, in the foveal and superior and inferior perifoveal regions, was recorded. Conclusions Our imaging evidences support the hypothesis that dark adaptation is more altered in eyes with RPD. The structural modifications may explain the functional increased damage of the retinal pigment epithelium and photoreceptors reported in eyes with RPD. Translational Relevance OCT imaging may be used to assess dark adaptation in AMD eyes.
Collapse
Affiliation(s)
- Enrico Borrelli
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| | | | | | - Pasquale Viggiano
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, University G. D'Annunzio Chieti-Pescara, Chieti, Italy
| | | | | | | | - Riccardo Sacconi
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| | - Leonardo Mastropasqua
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, University G. D'Annunzio Chieti-Pescara, Chieti, Italy
| | - Francesco Bandello
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| | - Giuseppe Querques
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| |
Collapse
|
25
|
Xiao M, Dai C, Li L, Zhou C, Wang F. Evaluation of Retinal Pigment Epithelium and Choroidal Neovascularization in Rats Using Laser-Scanning Optical-Resolution Photoacoustic Microscopy. Ophthalmic Res 2019; 63:271-283. [PMID: 31665740 DOI: 10.1159/000502800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/19/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE To demonstrate the value of the laser-scanning optical-resolution (LSOR)-photoacoustic (PA) microscopy (PAM) system and the conventional multimodal imaging techniques in the evaluation of laser-induced retinal injury and choroidal neovascularization (CNV) in rats. METHODS Different degrees of retinal injury were induced using laser photocoagulation. We compared the LSOR-PAM system with conventional imaging techniques in evaluating retinal injury with or without CNV. Six additional rats, treated with an anti-VEGF antibody or immunoglobulin G immediately after photocoagulation, were imaged 7 and 14 days after injection, and CNV lesion areas were compared. RESULTS In the retinal injury model, fundus autofluorescence showed well-defined hyperreflection, while the lesion displayed abundant PA signals demonstrating nonuniform melanin distribution in retinal pigment epithelium (RPE). RPE was detected with higher contrast in the PAM B-scan image than optical coherence tomography (OCT). Additionally, the CNV lesion was present with multiple PA signal intensities which distinctly characterized the location and area of CNV as found in fundus fluorescein angiography. Furthermore, the decreased PA signals extending from the CNV lesion were similar to those of the vascular bud in ex vivo imaging, which was invisible in other in vivo images. When treated with anti-VEGF agents, statistically significant differences can be demonstrated by PAM similar to other modalities. CONCLUSIONS LSOR-PAM can detect the melanin distribution of RPE in laser-induced retinal injury and CNV in rats. PAM imaging provides a potential new tool to evaluate the vitality and functionality of RPE in vivo as well as to monitor the development and treatment of CNV.
Collapse
Affiliation(s)
- Meichun Xiao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Dai
- College of Science, Shanghai Institute of Technology, Shanghai, China
| | - Lin Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanqing Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China, .,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China,
| |
Collapse
|
26
|
Wahl DJ, Ju MJ, Jian Y, Sarunic MV. Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence. BIOMEDICAL OPTICS EXPRESS 2019; 10:4859-4873. [PMID: 31565530 PMCID: PMC6757458 DOI: 10.1364/boe.10.004859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 05/02/2023]
Abstract
Two-photon excited fluorescence (TPEF) imaging of the retina is a developing technique that provides non-invasive compound-specific measurements from the retina. In this report, we demonstrate high-resolution TPEF imaging of the mouse retina using sensorless adaptive optics (SAO) and optical coherence tomography (OCT). A single near-infrared light source was used for simultaneous multi-modal imaging with OCT and TPEF. The image-based SAO could be performed using the en face OCT or the TPEF for aberration correction. Our results demonstrate OCT and TPEF for angiography. Also, we demonstrate non-invasive cellular-resolution imaging of fluorescently labelled cells and the Retinal Pigment Epithelium (RPE) mosaic.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
27
|
Jayabalan GS, Bille JF, Mao XW, Gimbel HV, Rauser ME, Wenz F, Fan JT. Retinal safety evaluation of two-photon laser scanning in rats. BIOMEDICAL OPTICS EXPRESS 2019; 10:3217-3231. [PMID: 31467775 PMCID: PMC6706040 DOI: 10.1364/boe.10.003217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 05/03/2023]
Abstract
Safe use of retinal imaging with two-photon excitation in human eyes is crucial, as the effects of ultrashort pulsed lasers on the retina are relatively unknown. At the time of the study, the laser safety standards were inadequate due to the lack of biological data. This article addresses the feasibility of two-photon retinal imaging with respect to laser safety. In this study, rat retinas were evaluated at various laser exposure levels and with different laser parameters to determine the effects of laser-induced optical damage. The results were experimentally verified using confocal reflectance imaging, two-photon fluorescein angiography, immunohistochemistry, and correlated to the IEC 60825-1 laser safety standard.
Collapse
Affiliation(s)
- Gopal Swamy Jayabalan
- Clinic for Radiotherapy and Radiation Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Loma Linda University Eye Institute, Loma Linda, CA 92354, USA
| | - Josef F. Bille
- Clinic for Radiotherapy and Radiation Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Xiao Wen Mao
- Department of basic sciences, Loma Linda University, CA 92350, USA
| | | | | | - Frederik Wenz
- Clinic for Radiotherapy and Radiation Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Joseph T. Fan
- Loma Linda University Eye Institute, Loma Linda, CA 92354, USA
- Department of basic sciences, Loma Linda University, CA 92350, USA
| |
Collapse
|
28
|
AbdelAl O, Ashraf M, Sampani K, Sun JK. "For Mass Eye and Ear Special Issue" Adaptive Optics in the Evaluation of Diabetic Retinopathy. Semin Ophthalmol 2019; 34:189-197. [PMID: 31188056 DOI: 10.1080/08820538.2019.1620794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinal imaging is a fundamental tool for clinical and research efforts in the evaluation and management of diabetic retinopathy. Adaptive optics (AO) is an imaging technique that enables correction of over 90% of the optical aberrations of an individual eye induced primarily by the tear film, cornea and lens. The two major tasks of any AO system are to measure the optical imperfections of the eye and to then compensate for these aberrations to generate a corrected wavefront of reflected light from the eye. AO scanning laser ophthalmoscopy (AOSLO) provides a theoretical lateral resolution limit of 1.4 μm, allowing the study of microscopic features of the retinal vascular and neural tissue. AOSLO studies have revealed irregularities of the photoreceptor mosaic, vascular loss, and details of vascular lesions in diabetic eyes that may provide new insight into development, regression, and response to therapy of diabetic eye disease.
Collapse
Affiliation(s)
- Omar AbdelAl
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Mohammed Ashraf
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Konstantina Sampani
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Jennifer K Sun
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
29
|
Qin J, Rinella N, Zhang Q, Zhou H, Wong J, Deiner M, Roorda A, Porco TC, Wang RK, Schwartz DM, Duncan JL. OCT Angiography and Cone Photoreceptor Imaging in Geographic Atrophy. Invest Ophthalmol Vis Sci 2019; 59:5985-5992. [PMID: 30572343 PMCID: PMC6306079 DOI: 10.1167/iovs.18-25032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To compare cone spacing and choriocapillaris (CC) perfusion adjacent to geographic atrophy (GA) in patients with age-related macular degeneration (AMD) and age-similar normal eyes. Methods Subjects were imaged using adaptive optics scanning laser ophthalmoscopy (AOSLO), fundus autofluorescence (FAF), and swept-source optical coherence tomography angiography. The GA border was identified using FAF images; CC flow void was analyzed in 1° regions extending from the GA border. A grader masked to CC perfusion selected regions of interest (ROIs) with unambiguous cone mosaics in AOSLO images. At each ROI, cone spacing and CC flow void were converted to Z-scores (standard deviations from the mean of 12 normal eyes aged 50 to 81 years for cone spacing, and 60 normal eyes age 51 to 88 years for CC flow void). Results Excluding regions of GA and drusen, CC flow void in eight eyes of six patients with AMD was significantly greater than in four age-similar normal eyes (exact permutation test, P = 0.024). CC flow void was negatively correlated with distance from the GA margin (r = -0.35; 95% confidence interval [CI], -0.53 to -0.12). Increased cone spacing was significantly correlated with CC flow void (r = 0.33; 95% CI, 0.12 to 0.59). Cone spacing was increased in 39% of ROIs, while CC flow void was increased in 96% of ROIs. Conclusions In eyes with GA due to AMD, CC hypoperfusion was significantly correlated with, and more extensive than, cone photoreceptor loss. The results suggest that reduced CC perfusion contributes to the development of GA.
Collapse
Affiliation(s)
- Jia Qin
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Nicholas Rinella
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Hao Zhou
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Jessica Wong
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Michael Deiner
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, California, United States
| | - Travis C Porco
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Daniel M Schwartz
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California, United States
| |
Collapse
|
30
|
Birtel J, Salvetti AP, Jolly JK, Xue K, Gliem M, Müller PL, Holz FG, MacLaren RE, Charbel Issa P. Near-Infrared Autofluorescence in Choroideremia: Anatomic and Functional Correlations. Am J Ophthalmol 2019; 199:19-27. [PMID: 30713139 DOI: 10.1016/j.ajo.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate near-infrared fundus autofluorescence (NIR-AF) characteristics in patients with choroideremia and to correlate these with anatomic and functional parameters. DESIGN Retrospective, observational case series. METHODS In this multicenter study, 43 consecutive choroideremia patients (79 eyes) underwent multimodal retinal imaging, including near-infrared fundus autofluorescence (NIR-AF), blue autofluorescence (B-AF), optical coherence tomography (OCT), fundus photography, and functional testing including fundus-controlled microperimetry. RESULTS All eyes could be categorized into 3 groups based on patterns of NIR-AF over the island of surviving retinal pigment epithelium: Group 1 (preserved NIR-AF centrally), Group 2 (only disrupted NIR-AF), or Group 3 (absence of NIR-AF). Group 1 eyes showed areas of NIR-AF that matched the areas of B-AF islands (R2 = 0.94, slope 0.84 ± 0.04) while Group 2 eyes showed significantly smaller areas of NIR-AF compared with B-AF (R2 = 0.08; slope 0.02 ± 0.01). The 3 groups differed significantly in terms of residual B-AF island size (P < .0001), length of foveal ellipsoid zone (P = .03), foveal thickness (P = .04), and foveal sensitivity (P = .01). Visual acuity (P = .07) and central retinal thickness (P = .06) did not differ statistically. The length of the ellipsoid zone line was similar to the horizontal diameter of NIR-AF in Group 1 (R2 = 0.97, slope 0.96 ± 0.04), while Group 2 eyes showed broader ellipsoid zone than NIR-AF (R2 = 0.60, slope 0.19 ± 0.03). CONCLUSIONS Choroideremia patients can be stratified into 3 groups based on NIR-AF imaging, which showed morphologic and functional changes correlating with different stages of retinal pigment epithelium degeneration. NIR-AF could be a marker for disease staging in choroideremia, and could be used for patient selection or as an outcome parameter in interventional trials.
Collapse
Affiliation(s)
- Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Anna Paola Salvetti
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jasleen K Jolly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Kanmin Xue
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Charbel Issa
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
31
|
Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. Adaptive optics imaging of the human retina. Prog Retin Eye Res 2019; 68:1-30. [PMID: 30165239 PMCID: PMC6347528 DOI: 10.1016/j.preteyeres.2018.08.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
Adaptive Optics (AO) retinal imaging has provided revolutionary tools to scientists and clinicians for studying retinal structure and function in the living eye. From animal models to clinical patients, AO imaging is changing the way scientists are approaching the study of the retina. By providing cellular and subcellular details without the need for histology, it is now possible to perform large scale studies as well as to understand how an individual retina changes over time. Because AO retinal imaging is non-invasive and when performed with near-IR wavelengths both safe and easily tolerated by patients, it holds promise for being incorporated into clinical trials providing cell specific approaches to monitoring diseases and therapeutic interventions. AO is being used to enhance the ability of OCT, fluorescence imaging, and reflectance imaging. By incorporating imaging that is sensitive to differences in the scattering properties of retinal tissue, it is especially sensitive to disease, which can drastically impact retinal tissue properties. This review examines human AO retinal imaging with a concentration on the use of the Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO). It first covers the background and the overall approaches to human AO retinal imaging, and the technology involved, and then concentrates on using AO retinal imaging to study the structure and function of the retina.
Collapse
Affiliation(s)
- Stephen A Burns
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States.
| | - Ann E Elsner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Kaitlyn A Sapoznik
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Raymond L Warner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Thomas J Gast
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
32
|
Commiskey PW, Heisel CJ, Paulus YM. Non-Therapeutic Laser Retinal Injury. INTERNATIONAL JOURNAL OF OPHTHALMIC RESEARCH 2019; 5:321-335. [PMID: 32923732 PMCID: PMC7486027 DOI: 10.17554/j.issn.2409-5680.2019.05.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND: As lasers have become an increasingly important component of commercial, industrial, military, and medical applications, reported incidents of non-therapeutic laser eye injuries have increased. The retina is particularly vulnerable due to the focusing power and optical transparency of the eye. Continued innovations in laser technology will likely mean that lasers will play an increasingly important and ubiquitous role throughout the world. Critical evaluation should thus be paid to ensure that non-therapeutic injuries are minimized, recognized, and treated appropriately. METHODS: A comprehensive literature review on the PubMed database was conducted to present case reports and case series representative of the variety of laser eye injuries in different injury circumstances, tissue types, and biological damage mechanisms. RESULTS: A general summary of non-therapeutic laser retina injuries is presented, including information about growth of the industry, increasingly accessible online markets, inconsistent international regulation, laser classifications, laser wavelengths, and laser power, mechanisms of tissue injury, and a demonstration of the variety of settings in which injury may occur. Finally, 68 cases found in the literature are summarized to illustrate the presentations and outcomes of these patients. CONCLUSIONS: As non-therapeutic laser eye injuries increase in frequency, there is a greater need for public health, policy, diagnosis, and treatment of these types of injuries.
Collapse
Affiliation(s)
- Patrick W Commiskey
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, the United State
| | - Curtis J Heisel
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, the United State
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, the United State.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, the United State
| |
Collapse
|
33
|
Schwarz C, Sharma R, Cheong SK, Keller M, Williams DR, Hunter JJ. Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared. Invest Ophthalmol Vis Sci 2018; 59:5973-5984. [PMID: 30556839 PMCID: PMC6298064 DOI: 10.1167/iovs.18-25383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose Infrared ultrashort pulse lasers are becoming increasingly popular for applications in the living eye. However, safety standards are not yet well established. Here we investigate retinal damage close to threshold for this pulse regime in the living macaque eye. Methods Retinal radiant exposures between 214 and 856 J/cm2 were delivered to the photoreceptor layer with an ultrashort pulse laser (730 nm, 55 fs, 80 MHz) through a two-photon adaptive optics scanning light ophthalmoscope. Retinal exposures were followed up immediately after and over several weeks with high-resolution reflectance and two-photon excited fluorescence ophthalmoscopy, providing structural and functional information. Results Retinal radiant exposures of 856 J/cm2 resulted in permanent S cone damage. Immediately after the exposure, the affected cones emitted about 2.6 times less two-photon excited fluorescence (TPEF) and showed an altered TPEF time course. Several weeks after the initial exposure, S cone outer and inner segments had disappeared. The space was filled by rods in the peripheral retina and cones near the fovea. Conclusion Interestingly, S cones are the receptor class with the lowest sensitivity in the near-infrared but are known to be particularly susceptible to ultraviolet and blue light. This effect of selective S cone damage after intense infrared ultrashort pulse laser exposure may be due to nonlinear absorption and distinct from pure thermal and mechanical mechanisms often associated with ultrashort pulse lasers.
Collapse
Affiliation(s)
- Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Robin Sharma
- Facebook Reality Labs, Redmond, Washington, United States
| | - Soon Keen Cheong
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Matthew Keller
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- College of Natural Science, Michigan State University, East Lansing, Michigan, United States
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| |
Collapse
|
34
|
Nafar Z, Wen R, Jiao S. Visible-light optical coherence tomography-based multimodal system for quantitative fundus autofluorescence imaging. Exp Biol Med (Maywood) 2018; 243:1265-1274. [PMID: 30472882 PMCID: PMC6348593 DOI: 10.1177/1535370218813529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT Quantitative fundus autofluorescence imaging with simultaneous visible-light optical coherence tomography-based multimodal technology has potential significant impact on the diagnosis and monitoring the progression of retinal diseases.
Collapse
Affiliation(s)
- Zahra Nafar
- Department of Biomedical Engineering, Florida International
University, Miami, FL 33174, USA
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami Miller School
of Medicine, Miami, FL 33136, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International
University, Miami, FL 33174, USA
| |
Collapse
|
35
|
Grieve K, Gofas-Salas E, Ferguson RD, Sahel JA, Paques M, Rossi EA. In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation. BIOMEDICAL OPTICS EXPRESS 2018; 9:5946-5961. [PMID: 31065405 PMCID: PMC6490976 DOI: 10.1364/boe.9.005946] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 05/06/2023]
Abstract
We demonstrate near-infrared autofluorescence (NIRAF) imaging of retinal pigment epithelial (RPE) cells in vivo in healthy volunteers and patients using a 757 nm excitation source in adaptive optics scanning laser ophthalmoscopy (AOSLO). NIRAF excited at 757 nm and collected in an emission band from 778 to 810 nm produced a robust NIRAF signal, presumably arising from melanin, and revealed the typical hexagonal mosaic of RPE cells at most eccentricities imaged within the macula of normal eyes. Several patterns of altered NIRAF structure were seen in patients, including disruption of the NIRAF over a drusen, diffuse hyper NIRAF signal with loss of individual cell delineation in a case of non-neovascular age-related macular degeneration (AMD), and increased visibility of the RPE mosaic under an area showing loss of photoreceptors. In some participants, a superposed cone mosaic was clearly visible in the fluorescence channel at eccentricities between 2 and 6° from the fovea. This was reproducible in these participants and existed despite the use of emission filters with an optical attenuation density of 12 at the excitation wavelength, minimizing the possibility that this was due to bleed through of the excitation light. This cone signal may be a consequence of cone waveguiding on either the ingoing excitation light and/or the outgoing NIRAF emitted by fluorophores within the RPE and/or choroid and warrants further investigation. NIRAF imaging at 757 nm offers efficient signal excitation and detection, revealing structural alterations in retinal disease with good contrast and shows promise as a tool for monitoring future therapies at the level of single RPE cells.
Collapse
Affiliation(s)
- Kate Grieve
- Vision Institute and Quinze Vingts National Ophthalmology Hospital, PARIS group, 28 rue de Charenton, 75712, Paris, France
| | - Elena Gofas-Salas
- Vision Institute and Quinze Vingts National Ophthalmology Hospital, PARIS group, 28 rue de Charenton, 75712, Paris, France
- DOTA, ONERA, Université Paris Saclay F-91123 Palaisea, France
| | | | - José Alain Sahel
- Vision Institute and Quinze Vingts National Ophthalmology Hospital, PARIS group, 28 rue de Charenton, 75712, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michel Paques
- Vision Institute and Quinze Vingts National Ophthalmology Hospital, PARIS group, 28 rue de Charenton, 75712, Paris, France
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
| |
Collapse
|
36
|
Mozaffari S, Jaedicke V, LaRocca F, Tiruveedhula P, Roorda A. Versatile multi-detector scheme for adaptive optics scanning laser ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:5477-5488. [PMID: 30460141 PMCID: PMC6238903 DOI: 10.1364/boe.9.005477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a powerful tool for imaging the retina at high spatial and temporal resolution. In this paper, we present a multi-detector scheme for AOSLO which has two main configurations: pixel reassignment and offset aperture imaging. In this detection scheme, the single element detector of the standard AOSLO is replaced by a fiber bundle which couples the detected light into multiple detectors. The pixel reassignment configuration enables high resolution imaging with an increased light collection. The increase in signal-to-noise ratio (SNR) from this configuration can improve the accuracy of motion registration techniques. The offset aperture imaging configuration enhances the detection of multiply scattered light, which improves the contrast of retinal vasculature and inner retinal layers similar to methods such as nonconfocal split-detector imaging and multi-offset aperture imaging.
Collapse
Affiliation(s)
- Sanam Mozaffari
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
- Contributed equally to this work
| | - Volker Jaedicke
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
- Contributed equally to this work
| | - Francesco LaRocca
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
| | - Pavan Tiruveedhula
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
| |
Collapse
|
37
|
Abstract
Cells are subject to metabolic sources of oxidizing species and to the need to regulate Fe, a redox-active metal. Retinal pigment epithelial (RPE) cells have to contend with an additional, unique source of oxidative stress: photooxidative insult from bisretinoids that accumulate as lipofuscin. Here we report that Fe can interact with bisretinoids in RPE to promote cell damage. These findings inform disease processes in both Fe-related and bisretinoid-associated retinal degeneration. The link between Fe and bisretinoid oxidation also highlights opportunities for repurposed and combination therapies. This could include visual cycle inhibitors as a treatment for maculopathy associated with elevated retinal Fe, and Fe chelation to aid in suppressing the damaging effects of bisretinoids in juvenile and age-related macular degeneration. Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino Abca4−/− and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino Abca4−/−. In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.
Collapse
|
38
|
Cheong SK, Strazzeri JM, Williams DR, Merigan WH. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice. PLoS One 2018; 13:e0194947. [PMID: 29596518 PMCID: PMC5875792 DOI: 10.1371/journal.pone.0194947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/13/2018] [Indexed: 12/05/2022] Open
Abstract
Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain.
Collapse
Affiliation(s)
- Soon Keen Cheong
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| | - Jennifer M. Strazzeri
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States of America
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Institute of Optics, University of Rochester, Rochester, New York, United States of America
| | - William H. Merigan
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
39
|
Mahbub SB, Plöschner M, Gosnell ME, Anwer AG, Goldys EM. Statistically strong label-free quantitative identification of native fluorophores in a biological sample. Sci Rep 2017; 7:15792. [PMID: 29150629 PMCID: PMC5693869 DOI: 10.1038/s41598-017-15952-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022] Open
Abstract
Bioimaging using endogenous cell fluorescence, without any external biomarkers makes it possible to explore cells and tissues in their original native state, also in vivo. In order to be informative, this label-free method requires careful multispectral or hyperspectral recording of autofluorescence images followed by unsupervised extraction (unmixing) of biochemical signatures. The unmixing is difficult due to the scarcity of biochemically pure regions in cells and also because autofluorescence is weak compared with signals from labelled cells, typically leading to low signal to noise ratio. Here, we solve the problem of unsupervised hyperspectral unmixing of cellular autofluorescence by introducing the Robust Dependent Component Analysis (RoDECA). This approach provides sophisticated and statistically robust quantitative biochemical analysis of cellular autofluorescence images. We validate our method on artificial images, where the addition of varying known level of noise has allowed us to quantify the accuracy of our RoDECA analysis in a way that can be applied to real biological datasets. The same unsupervised statistical minimisation is then applied to imaging of mouse retinal photoreceptor cells where we establish the identity of key endogenous fluorophores (free NADH, FAD and lipofuscin) and derive the corresponding molecular abundance maps. The pre-processing methodology of image datasets is also presented, which is essential for the spectral unmixing analysis, but mostly overlooked in the previous studies.
Collapse
Affiliation(s)
- Saabah B Mahbub
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia.
| | - Martin Plöschner
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia
| | - Martin E Gosnell
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia
- Quantitative Pty Ltd, ABN 17165684186, 116-118 Great Western Highway, Mt. Victoria, NSW, 2786, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, 2109, NSW, Australia.
| |
Collapse
|
40
|
Cooper RF, Tuten WS, Dubra A, Brainard DH, Morgan JIW. Non-invasive assessment of human cone photoreceptor function. BIOMEDICAL OPTICS EXPRESS 2017; 8:5098-5112. [PMID: 29188106 PMCID: PMC5695956 DOI: 10.1364/boe.8.005098] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 05/18/2023]
Abstract
Vision begins when light isomerizes the photopigments within photoreceptors. Noninvasive cellular-scale observation of the structure of the human photoreceptor mosaic is made possible through the use of adaptive optics (AO) enhanced ophthalmoscopes, but establishing noninvasive objective measures of photoreceptor function on a similar scale has been more difficult. AO ophthalmoscope images acquired with near-infrared light show that individual cone photoreceptor reflectance can change in response to a visible stimulus. Here we show that the intrinsic response depends on stimulus wavelength and intensity, and that its action spectrum is well-matched to the spectral sensitivity of cone-mediated vision. Our results demonstrate that the cone reflectance response is mediated by photoisomerization, thus making it a direct measure of photoreceptor function.
Collapse
Affiliation(s)
- Robert F. Cooper
- Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
- Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - William S. Tuten
- Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
- Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfredo Dubra
- Ophthalmology, Stanford University, Stanford, CA, USA
| | | | - Jessica I. W. Morgan
- Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Cooper RF, Wilk MA, Tarima S, Carroll J. Evaluating Descriptive Metrics of the Human Cone Mosaic. Invest Ophthalmol Vis Sci 2017; 57:2992-3001. [PMID: 27273598 PMCID: PMC4898203 DOI: 10.1167/iovs.16-19072] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To evaluate how metrics used to describe the cone mosaic change in response to simulated photoreceptor undersampling (i.e., cell loss or misidentification). METHODS Using an adaptive optics ophthalmoscope, we acquired images of the cone mosaic from the center of fixation to 10° along the temporal, superior, inferior, and nasal meridians in 20 healthy subjects. Regions of interest (n = 1780) were extracted at regular intervals along each meridian. Cone mosaic geometry was assessed using a variety of metrics - density, density recovery profile distance (DRPD), nearest neighbor distance (NND), intercell distance (ICD), farthest neighbor distance (FND), percentage of six-sided Voronoi cells, nearest neighbor regularity (NNR), number of neighbors regularity (NoNR), and Voronoi cell area regularity (VCAR). The "performance" of each metric was evaluated by determining the level of simulated loss necessary to obtain 80% statistical power. RESULTS Of the metrics assessed, NND and DRPD were the least sensitive to undersampling, classifying mosaics that lost 50% of their coordinates as indistinguishable from normal. The NoNR was the most sensitive, detecting a significant deviation from normal with only a 10% cell loss. CONCLUSIONS The robustness of cone spacing metrics makes them unsuitable for reliably detecting small deviations from normal or for tracking small changes in the mosaic over time. In contrast, regularity metrics are more sensitive to diffuse loss and, therefore, better suited for detecting such changes, provided the fraction of misidentified cells is minimal. Combining metrics with a variety of sensitivities may provide a more complete picture of the integrity of the photoreceptor mosaic.
Collapse
Affiliation(s)
- Robert F Cooper
- Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States
| | - Melissa A Wilk
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sergey Tarima
- Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joseph Carroll
- Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States 2Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States 4Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, U
| |
Collapse
|
42
|
CLINICAL ENDPOINTS FOR THE STUDY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retina 2017; 36:1806-22. [PMID: 27652913 DOI: 10.1097/iae.0000000000001283] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To summarize the recent literature describing the application of modern technologies in the study of patients with geographic atrophy (GA) secondary to age-related macular degeneration. METHODS Review of the literature describing the terms and definitions used to describe GA, imaging modalities used to capture and measure GA, and the tests of visual function and functional deficits that occur in patients with GA. RESULTS In this paper, we describe the evolution of the definitions used to describe GA. We compare imaging modalities used in the characterization of GA, report on the sensitivity and specificity of the techniques where data exist, and describe the correlations between these various modes of capturing the presence of GA. We review the functional tests that have been used in patients with GA, and critically examine their ability to detect and quantify visual deficits. CONCLUSION Ophthalmologists and retina specialists now have a wide range of assessments available for the functional and anatomic characterization of GA in patients with age-related macular degeneration. To date, studies have been limited by their unimodal approach, and we recommend that future studies of GA use multimodal imaging. We also suggest strategies for the optimal functional testing of patients with GA.
Collapse
|
43
|
Schwarz C, Sharma R, Fischer WS, Chung M, Palczewska G, Palczewski K, Williams DR, Hunter JJ. Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans. BIOMEDICAL OPTICS EXPRESS 2016; 7:5148-5169. [PMID: 28018732 PMCID: PMC5175559 DOI: 10.1364/boe.7.005148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 05/18/2023]
Abstract
Two-photon ophthalmoscopy has potential for in vivo assessment of function of normal and diseased retina. However, light safety of the sub-100 fs laser typically used is a major concern and safety standards are not well established. To test the feasibility of safe in vivo two-photon excitation fluorescence (TPEF) imaging of photoreceptors in humans, we examined the effects of ultrashort pulsed light and the required light levels with a variety of clinical and high resolution imaging methods in macaques. The only measure that revealed a significant effect due to exposure to pulsed light within existing safety standards was infrared autofluorescence (IRAF) intensity. No other structural or functional alterations were detected by other imaging techniques for any of the exposures. Photoreceptors and retinal pigment epithelium appeared normal in adaptive optics images. No effect of repeated exposures on TPEF time course was detected, suggesting that visual cycle function was maintained. If IRAF reduction is hazardous, it is the only hurdle to applying two-photon retinal imaging in humans. To date, no harmful effects of IRAF reduction have been detected.
Collapse
Affiliation(s)
- Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Robin Sharma
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | | | - Mina Chung
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | | | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
- The Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
44
|
Tam J, Liu J, Dubra A, Fariss R. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy. Invest Ophthalmol Vis Sci 2016; 57:4376-84. [PMID: 27564519 PMCID: PMC5015921 DOI: 10.1167/iovs.16-19503] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. METHODS A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. RESULTS The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. CONCLUSIONS Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells.
Collapse
Affiliation(s)
- Johnny Tam
- Ophthalmic Genetics and Visual Function Branch National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jianfei Liu
- Ophthalmic Genetics and Visual Function Branch National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Alfredo Dubra
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
45
|
Alexander NS, Palczewska G, Stremplewski P, Wojtkowski M, Kern TS, Palczewski K. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina. BIOMEDICAL OPTICS EXPRESS 2016; 7:2671-91. [PMID: 27446697 PMCID: PMC4948621 DOI: 10.1364/boe.7.002671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/11/2016] [Accepted: 06/11/2016] [Indexed: 05/18/2023]
Abstract
Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [Palczewska G., Nat Med.20, 785 (2014) Sharma R., Biomed. Opt. Express4, 1285 (2013)].
Collapse
Affiliation(s)
- Nathan S Alexander
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | | | - Patrycjusz Stremplewski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Maciej Wojtkowski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Timothy S Kern
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Polgenix Inc., 11000 Cedar Ave, Cleveland, Ohio 44106, USA;
| |
Collapse
|
46
|
Morgan JIW. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay. Ophthalmic Physiol Opt 2016; 36:218-39. [PMID: 27112222 PMCID: PMC4963017 DOI: 10.1111/opo.12289] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/20/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. RECENT FINDINGS Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. SUMMARY Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come.
Collapse
Affiliation(s)
- Jessica I W Morgan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
47
|
Merino D, Loza-Alvarez P. Adaptive optics scanning laser ophthalmoscope imaging: technology update. Clin Ophthalmol 2016; 10:743-55. [PMID: 27175057 PMCID: PMC4854423 DOI: 10.2147/opth.s64458] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it.
Collapse
Affiliation(s)
- David Merino
- The Institute of Photonic Sciences (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- The Institute of Photonic Sciences (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| |
Collapse
|
48
|
Maintaining ocular safety with light exposure, focusing on devices for optogenetic stimulation. Vision Res 2016; 121:57-71. [PMID: 26882975 DOI: 10.1016/j.visres.2016.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/23/2022]
Abstract
Optogenetics methods are rapidly being developed as therapeutic tools for treating neurological diseases, in particular, retinal degenerative diseases. A critical component of the development is testing the safety of the light stimulation used to activate the optogenetic proteins. While the stimulation needs to be sufficient to produce neural responses in the targeted retinal cell class, it also needs to be below photochemical and photothermal limits known to cause ocular damage. The maximal permissible exposure is determined by a variety of factors, including wavelength, exposure duration, visual angle, pupil size, pulse width, pulse pattern, and repetition frequency. In this paper, we develop utilities to systematically and efficiently assess the contributions of these parameters in relation to the limits, following directly from the 2014 American National Standards Institute (ANSI). We also provide an array of stimulus protocols that fall within the bounds of both safety and effectiveness. Additional verification of safety is provided with a case study in rats using one of these protocols.
Collapse
|
49
|
Cooper RF, Lombardo M, Carroll J, Sloan KR, Lombardo G. Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images. Vis Neurosci 2016; 33:E005. [PMID: 27484961 PMCID: PMC5068353 DOI: 10.1017/s0952523816000018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ability to noninvasively image the cone photoreceptor mosaic holds significant potential as a diagnostic for retinal disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the organization of the mosaic. Here we evaluated previously-described and newly-developed (Fourier- and Radon-based) methods of measuring cone orientation in simulated and real images of the parafoveal cone mosaic. The proposed algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm provides an accurate description of photoreceptor orientation. Despite high agreement between algorithms, each performed differently in response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three algorithms. Conversely, when there is good image quality but unreliable cone identification, the Radon algorithm performed best. Finally, in cases where the cone coordinate reliability was excellent, the method previously described by Pum and colleagues performed best. These descriptors are complementary to conventional descriptive metrics of the cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology.
Collapse
Affiliation(s)
- Robert F. Cooper
- Department of Biomedical Engineering, Marquette University, 1250 W Wisconsin Ave, 53223 Milwaukee, WI, United States
| | - Marco Lombardo
- Fondazione G.B. Bietti IRCCS, Via Livenza 3, 00198 Rome, Italy
| | - Joseph Carroll
- Department of Ophthalmology, Medical College of Wisconsin, 8701 Watertown Plank Road, 53226 Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, 53226 Milwaukee, WI, United States
| | - Kenneth R. Sloan
- Department of Computer and Information Sciences, University of Alabama at Birmingham, 1300 University Boulevard, 35294 Birmingham, AL, United States
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, 700 S. 18th Street, 35294 Birmingham, AL, United States
| | - Giuseppe Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici (CNR-IPCF), Viale Stagno D’Alcontres 37, 98158 Messina, Italy
- Vision Engineering Italy srl, Via Adda 7, 00198 Rome, Italy
| |
Collapse
|
50
|
Abstract
This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.
Collapse
|