1
|
Romani A, Melloni E, Lodi G, Bompan F, Foschi R, Zauli E, Pozza E, Secchiero P, Zauli G, Previati M, Voltan R. Role of miRNA in adult ocular tumorigenesis. Front Mol Biosci 2025; 12:1459761. [PMID: 40406621 PMCID: PMC12095013 DOI: 10.3389/fmolb.2025.1459761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 04/24/2025] [Indexed: 05/26/2025] Open
Abstract
In recent years, cancer research has made huge advances also thanks to the discovery of the role of non-coding RNAs in the control of tumorigenesis, tumor proliferation, migration and metastasis and therefore also in the diagnosis and therapy of tumors. This work aims to review the most recent literature involving the study of miRNAs in ocular tumors affecting adult patients. We will introduce the role of miRNAs in tumorigenesis, and we will focus on summarizing the studies on uveal intraocular melanomas in which a role of microRNAs has been demonstrated. Similarly, we will also cover observations on miRNAs and eyelid cancers, especially sebaceous gland carcinoma, and cancers of the conjunctiva and the retina, excluding retinoblastoma which is typically a pediatric-onset tumor. We will summarize specific miRNAs that could be considered as diagnostic molecules or as therapeutic targets against some ocular cancer diseases, indicating their potentialities and limitations, considering also their administration as nanomedicine for the eye.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisabetta Melloni
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- LTTA Centre, University of Ferrara, Ferrara, Italy
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Bompan
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Rebecca Foschi
- LTTA Centre, University of Ferrara, Ferrara, Italy
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Maurizio Previati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- LTTA Centre, University of Ferrara, Ferrara, Italy
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Hamdy NM, Barakat BM, El-Sisi MG, Shaker FH, Sallam AAM, Elazazy O, Darwish SF, Elmakromy GM, Ibrahim IH, Anwar MM. Comprehensive review and in silico analysis of the role of noncoding RNAs in retinoblastoma: A step-toward ncRNA precision. Int J Biol Macromol 2025; 311:144036. [PMID: 40345278 DOI: 10.1016/j.ijbiomac.2025.144036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Noncoding RNAs (ncRNAs) have greatly revolutionized our understanding of gene regulation and its main role in oncogenesis, particularly in retinoblastoma (RB), the most prevalent type of intraocular malignancy in children. Despite recent significant therapeutic advances, the prognosis for RB remains unclear owing to late diagnosis and resistance to conventional treatments. This review comprehensively explores the multiple roles of ncRNAs-microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI-interacting RNAs (piRNAs)-in RB pathogenesis. miRNA dysregulation serves as the initial cascade for modulating cell proliferation, apoptosis, and metastasis. Similarly, lncRNAs demonstrate dual behavior, functioning either as oncogenic drivers or tumor suppressors by interacting with several molecular targets and interacting with different signaling pathways, such as the PI3K/Akt and Wnt/β-catenin pathways. Additionally, circRNAs, owing to their persistent stability and unique ability to act as miRNA sponge main binding sites, affect various normal physiological processes, influencing tumor progression and chemoresistance. Emerging data also highlight the intricate crosstalk between piRNAs and other ncRNAs in retinal homeostasis and oncogenesis, with promising future implications for their utility as diagnostic biomarkers in liquid biopsy types. This comprehensive review consolidates the latest knowledge on the molecular mechanisms of noncoding RNAs (ncRNAs) in retinoblastoma (RB), along with in silico analysis of ncRNA-gene interactions, providing a guide for precision medical approaches. However, future research should aim to utilize ncRNAs as a vital clinical tool to improve the early diagnosis, prognosis, and targeted treatment of RB.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Bassant M Barakat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al Baha University, Al Baha 1988, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Fatma H Shaker
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gena M Elmakromy
- Internal Medicine Department, Faculty of Medicine, Badr University In Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
3
|
Fakeri M, Shakoul F, Yaghoubi SM, Koulaeizadeh S, Haghi M. Comprehensive insights into circular RNAs, miRNAs, and lncRNAs as biomarkers in retinoblastoma. Ophthalmic Genet 2025; 46:122-132. [PMID: 39849678 DOI: 10.1080/13816810.2025.2456607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Retinoblastoma (RB) is a common and potentially lethal cancer that primarily affects young children worldwide, with survival rates significantly varying between high- and low-income countries. This review aims to identify essential diagnostic markers for early diagnosis by investigating the molecular pathways associated with RB. The prevalence of RB cases is notably concentrated in Asia and Africa, contributing to a global survival rate estimate of less than 30%. Current management strategies involve complex, individualized treatment plans that consider cultural nuances, genetic abnormalities, staging, and the availability of medical resources. Recent studies suggest that circular RNAs (circRNAs) may serve as predictive and diagnostic biomarkers in the etiology of RB. This review examines the roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circRNAs in RB, with the goal of improving survival rates, particularly in low- and middle-income countries. A deeper understanding of the molecular pathways of RB may facilitate the development of personalized treatment plans and targeted therapies. Elevated expression of circRNAs has been observed in most patient cases, and studies indicate that reducing specific circRNA production can inhibit tumor cell development and progression. Investigating the roles and mechanisms of circular RNAs in RB holds promise for future treatment approaches.
Collapse
Affiliation(s)
- Mahsa Fakeri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fatemeh Shakoul
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shabnam Koulaeizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Xie Y, Wu F, Chen Z, Hou Y. Epithelial membrane protein 1 in human cancer: a potential diagnostic biomarker and therapeutic target. Biomark Med 2024; 18:995-1005. [PMID: 39469853 PMCID: PMC11633390 DOI: 10.1080/17520363.2024.2416887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Epithelial membrane protein 1 (EMP1) is a member of the small hydrophobic membrane protein subfamily. EMP1 is aberrantly expressed in various tumor tissues and governs multiple cellular behaviors (e.g., proliferation, differentiation, and migration). The resultant regulation of the cancer pathway is responsible for the metastasis of cancer cells and determines the risk of malignant tumor progression. This review provides an updated overview of EMP1 as either an oncogene or a tumor suppressor contingent on the cancer type and summarizes its upstream regulators and downstream target genes. This systematic review summarizes our current understanding of the role of EMP1 in malignant tumor development, including critical functional mechanisms and implications for its potential use as the biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Wu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
Zhou L, Tong Y, Ho BM, Li J, Chan HYE, Zhang T, Du L, He JN, Chen LJ, Tham CC, Yam JC, Pang CP, Chu WK. Etiology including epigenetic defects of retinoblastoma. Asia Pac J Ophthalmol (Phila) 2024; 13:100072. [PMID: 38789041 DOI: 10.1016/j.apjo.2024.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Retinoblastoma (RB), originating from the developing retina, is an aggressive intraocular malignant neoplasm in childhood. Biallelic loss of RB1 is conventionally considered a prerequisite for initiating RB development in most RB cases. Additional genetic mutations arising from genome instability following RB1 mutations are proposed to be required to promote RB development. Recent advancements in high throughput sequencing technologies allow a deeper and more comprehensive understanding of the etiology of RB that additional genetic alterations following RB1 biallelic loss are rare, yet epigenetic changes driven by RB1 loss emerge as a critical contributor promoting RB tumorigenesis. Multiple epigenetic regulators have been found to be dysregulated and to contribute to RB development, including noncoding RNAs, DNA methylations, RNA modifications, chromatin conformations, and histone modifications. A full understanding of the roles of genetic and epigenetic alterations in RB formation is crucial in facilitating the translation of these findings into effective treatment strategies for RB. In this review, we summarize current knowledge concerning genetic defects and epigenetic dysregulations in RB, aiming to help understand their links and roles in RB tumorigenesis.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yan Tong
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bo Man Ho
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiahui Li
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hoi Ying Emily Chan
- Medicine Programme Global Physician-Leadership Stream, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tian Zhang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Lin Du
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jing Na He
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Murakami Y, Kimura-Masuda K, Oda T, Matsumura I, Masuda Y, Ishihara R, Watanabe S, Kuroda Y, Kasamatsu T, Gotoh N, Takei H, Kobayashi N, Saitoh T, Murakami H, Handa H. MYC Causes Multiple Myeloma Progression via Attenuating TP53-Induced MicroRNA-34 Expression. Genes (Basel) 2022; 14:100. [PMID: 36672841 PMCID: PMC9859619 DOI: 10.3390/genes14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs and miRs) are small (19-25 base pairs) non-coding RNAs with the ability to modulate gene expression. Previously, we showed that the miR-34 family is downregulated in multiple myeloma (MM) as the cancer progressed. In this study, we aimed to clarify the mechanism of miRNA dysregulation in MM. We focused particularly on the interaction between MYC and the TP53-miR34 axis because there is a discrepancy between increased TP53 and decreased miR-34 expressions in MM. Using the nutlin-3 or Tet-on systems, we caused wild-type (WT) p53 protein accumulation in human MM cell lines (HMCLs) and observed upregulated miR-34 expression. Next, we found that treatment with an Myc inhibitor alone did not affect miR-34 expression levels, but when it was coupled with p53 accumulation, miR-34 expression increased. In contrast, forced MYC activation by the MYC-ER system reduced nutlin-3-induced miR-34 expression. We also observed that TP53 and MYC were negatively correlated with mature miR-34 expressions in the plasma cells of patients with MM. Our results suggest that MYC participates in the suppression of p53-dependent miRNA expressions. Because miRNA expression suppresses tumors, its inhibition leads to MM development and malignant transformation.
Collapse
Affiliation(s)
- Yuki Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Kei Kimura-Masuda
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Tsukasa Oda
- Laboratory of Mucosal Ecosystem Design, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8510, Japan
| | - Ikuko Matsumura
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi 371-8510, Japan
| | - Yuta Masuda
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
- Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Maebashi 371-0823, Japan
| | - Rei Ishihara
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Saki Watanabe
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Yuko Kuroda
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Nanami Gotoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Hisashi Takei
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi 371-8510, Japan
| | - Nobuhiko Kobayashi
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi 371-8510, Japan
| | - Takayuki Saitoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Hirokazu Murakami
- Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Maebashi 371-0823, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi 371-8510, Japan
| |
Collapse
|
7
|
Wen Y, Zhu M, Zhang X, Xiao H, Wei Y, Zhao P. Integrated analysis of multiple bioinformatics studies to identify microRNA-target gene-transcription factor regulatory networks in retinoblastoma. Transl Cancer Res 2022; 11:2225-2237. [PMID: 35966326 PMCID: PMC9372260 DOI: 10.21037/tcr-21-1748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Background In children, retinoblastoma (RB) is one of the most common primary malignant ocular tumors and has a poor prognosis and high mortality. To understand the molecular mechanisms of RB, we identified microRNAs (miRNAs), key genes and transcription factors (TFs) using bioinformatics analysis to build potential miRNA-gene-TF networks. Methods We collected three gene expression profiles and one miRNA expression profile from the Gene Expression Omnibus (GEO) database. We used the limma R package to identify overlapping differentially expressed genes (DEGs) and differentially expressed miRNAs in RB tissues compared to noncancer tissues. The robust rank aggregation (RRA) method was implemented to identify key genes among the DEGs. Then, miRNA-key gene-TF networks were built using the online tools TransmiR and miRTarBase. Next, we used RT-qPCR to confirm the results. Results We identified 180 DEGs in RB tissues compared to nontumor tissues using integrative analysis, among which 109 genes were upregulated and 71 were downregulated. Gene ontology (GO) analysis revealed that these DEGs were primarily involved with chromosome segregation, condensed chromosome and DNA replication origin binding. The most highly enriched pathways obtained in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were cell cycle, DNA replication, homologous recombination, P53 signaling pathway and pyrimidine metabolism. Furthermore, two key differentially expressed miRNAs (DEMs) were also established: let-7a and let-7b. Finally, the potential regulatory networks of miRNA-target gene-TFs were examined. Conclusions This study identified key genes and built miRNA-target gene-TF regulatory networks in RB, which will deepen our understanding of the molecular mechanisms involved in the development of RB. These key genes and miRNAs may be potential targets and biomarkers for RB diagnosis and therapy.
Collapse
Affiliation(s)
- Yanjun Wen
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Maolin Zhu
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Xuerui Zhang
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Haodong Xiao
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wei
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China.,Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Wan P, Chen Z, Huang M, Jiang H, Wu H, Zhong K, Ding G, Wang B. miR-200a-3p facilitates bladder cancer cell proliferation by targeting the A20 gene. Transl Androl Urol 2022; 10:4262-4274. [PMID: 34984191 PMCID: PMC8661264 DOI: 10.21037/tau-21-941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Background MicroRNAs (miRs) are endogenous, single-stranded, noncoding RNAs that are involved in various physiological processes, and the development and the progression of various types of cancer. Specifically, the role of miR-200a-3p has been implicated in various types of cancer in contributing to a diverse array of cancer types has been previously reported. The present study aimed to investigate the expression levels of miR-200a-3p in human bladder cancer, as well as its potential role in disease pathogenesis. Methods Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expression of has-mir-200a-3p and tumor necrosis factor α (TNF-α) induced protein 3 (A20) in tumor tissues and cell lines. Dual-luciferase reporter assay and combination with the expression intervention of hsa-mir-200a-3p and A20 in bladder cancer cell lines to clarify the binding relationship between hsa-mir-200a-3p and A20.After the expression intervention of hsa-mir-200a-3p and A20 in bladder cancer cells, the changes of cell proliferation, cell apoptosis, cell cycle, wound-healing ability and migration ability were detected by CCK8, flow cytometry, wound-healing and Transwell methods. Xenograft transplantation model was performed subcutaneously in nude mice by implantation of J82 and T24 cells, and then the bladder cancer growth curve was calculated from mice exposed to has-mir-200a-3p minic or minic-NC. Results Bladder cancer tissues demonstrated significantly upregulated miR-200a-3p expression levels. Moreover, increased miR-200a-3p expression was significantly associated with distant metastasis and advanced stage. In addition, compared with the miR-control (Ctr) group, miR-200a-3p overexpression promoted bladder cancer cell proliferation, migration, invasion, cell cycle, and release of inflammatory cytokines, but inhibited cell apoptosis. Mechanistically, A20 was identified as a target gene of miR-200a-3p in bladder cancer cell lines. Moreover, compared with the miR-Ctr group, the miR-200a-3p overexpression group exhibited significantly promoted tumor growth in vivo, and A20 overexpression blocked the promoting effect of miR-200a-3p on bladder cancer. Conclusions The results of the present study indicated that miR-200a-3p might serve act as an oncogene in human bladder cancer by targeting a novel the gene A20 gene; therefore, miR-200a-3p and A20 might serve could serve as novel therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Pei Wan
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Zhilin Chen
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Minzhi Huang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Huiming Jiang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Huajun Wu
- Department of Urology, Shangrao Municipal Hospital, Shangrao, China
| | - Kaihua Zhong
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Guodong Ding
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Bing Wang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| |
Collapse
|
9
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
10
|
Guo L, Bai Y, Ni T, Li Y, Cao R, Ji S, Li S. MicroRNA‑153‑3p suppresses retinoblastoma cell growth and invasion via targeting the IGF1R/Raf/MEK and IGF1R/PI3K/AKT signaling pathways. Int J Oncol 2021; 59:47. [PMID: 34036380 PMCID: PMC8143749 DOI: 10.3892/ijo.2021.5227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence has demonstrated that microRNAs (miRNAs or miRs) play significant roles in various types of human tumors, including retinoblastoma (RB). However, the biological role and regulatory mechanisms of miRNAs in RB remain to be fully elucidated. The present study was designed to identify the regulatory effects of miRNAs in RB and the underlying mechanisms. Differentially expressed miRNAs in RB tissue were screened out based on the Gene Expression Omnibus (GEO) dataset, GSE7072, which revealed that miR-153 in particular, displayed the highest fold change in expression. It was identified that miR-153 was significantly downregulated in RB tissues, and its downregulation was closely associated with a larger tumor base and differentiation. Functional analysis revealed that the overexpression of miR-153 inhibited RB cell proliferation, migration and invasion, and promoted the apoptosis of WERI-RB-1 and Y79 cells. In addition, insulin-like growth factor 1 receptor (IGF1R) was identified as a target of miR-153 in RB cells. More importantly, it was demonstrated that miR-153 upregulation inhibited the expression of its target gene, IGF1R, which inhibited the activation of the Raf/MEK and PI3K/AKT signaling pathways. Collectively, the present study demonstrates for the first time, to the best of our knowledge, that miR-153 functions as a tumor suppressor in RB by targeting the IGF1R/Raf/MEK and IGF1R/PI3K/AKT signaling pathways. Collectively, the findings presented herein demonstrate that miR-153 targets IGF1R and blocks the activation of the Raf/MEK and PI3K/AKT signaling pathway, thus preventing the progression of RB. Thus, this miRNA may serve as a novel prognostic biomarker and therapeutic target for RB.
Collapse
Affiliation(s)
- Long Guo
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Yu Bai
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Tianyu Ni
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Yuan Li
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Rong Cao
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Shuzhe Ji
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Shuzhen Li
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| |
Collapse
|
11
|
Zhang CJ, Xiang L, Chen XJ, Wang XY, Wu KC, Zhang BW, Chen DF, Jin GH, Zhang H, Chen YC, Liu WQ, Li ML, Ma Y, Jin ZB. Ablation of Mature miR-183 Leads to Retinal Dysfunction in Mice. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 32176259 PMCID: PMC7401733 DOI: 10.1167/iovs.61.3.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose The microRNA cluster miR-183C, which includes miR-183 and two other genes, is critical for multiple sensory systems. In mouse retina, removal of this cluster results in photoreceptor defects in polarization, phototransduction, and outer segment elongation. However, the individual roles of the three components of this cluster are not clearly known. We studied the separate role of mouse miR-183 in in vivo. Methods miR-183 knockout mice were generated using the CRISPR/Cas9 genome-editing system. Electroretinography were carried out to investigate the changes of retinal structures and function. miR-183 was overexpressed by subretinal adeno-associated virus (AAV) injection in vivo. Rnf217, a target of miR-183 was overexpressed by cell transfection of the photoreceptor-derived cell line 661W in vitro. RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the gene expression changes in AAV-injected mice and transfected cells. Results The miR-183 knockout mice showed progressively attenuated electroretinogram responses. Over- or under-expression of Rnf217, a direct target of miR-183, misregulated expression of cilia-related BBSome genes. Rnf217 overexpression also led to compromised electroretinography responses in WT mice, indicating that it may contribute to functional abnormalities in miR-183 knockout mice. Conclusions miR-183 is essential for mouse retinal function mediated directly and indirectly through Rnf217 and cilia-related genes. Our findings provide valuable insights into the explanation and analysis of the regulatory role of the individual miR-183 in miR-183C.
Collapse
|
12
|
Xu F, Liu G, Wang L, Wang X, Jin X, Bo W. miR-494 promotes progression of retinoblastoma via PTEN through PI3K/AKT signaling pathway. Oncol Lett 2020; 20:1952-1960. [PMID: 32724440 PMCID: PMC7377044 DOI: 10.3892/ol.2020.11749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has indicated that the dysregulation of microRNA (miRNA) occur in the pathogenesis of retinoblastoma (RB). Aim of the present study was to investigate the possible role of miR-494 (miR-494-3p) in RB. It was demonstrated that miR-494 expression was increased in RB tissue samples and cell lines. Also, it was prominently associated with clinicopathological features. Functional assays showed that RB cell proliferation, invasion and migration can be promoted by miR-494 overexpression. Besides, phosphatase and tensin homolog (PTEN) was verified as a possible target of miR-494 by a luciferase assay, western blot and qRT-PCR assay in RB. miR-494 and PTEN expression was negatively related in a correlation analysis on tumor tissues of 66 patients. In addition, PTEN was proved to reverse miR-494 effect on RB cell progression. Moreover, PI3K/AKT signaling pathway was validated to take part in RB progression. Taken together, the current study proposes that miR-494 might function as a tumor promoter and regulates RB progression through targeting PTEN.
Collapse
Affiliation(s)
- Fen Xu
- Department of Clinical Laboratory, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong 250200, P.R. China
| | - Guiqin Liu
- Department of Ophthalmology, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong 250200, P.R. China
| | - Lijuan Wang
- Department of Paediatrics, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Xiyan Wang
- Department of Anesthesiology, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Xiao Jin
- Department of Rehabilitation Medicine, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Wen Bo
- Department of Ophthalmology, Maternity and Child Health Care of Zaozhuang, Zaozhuang Ophthalmological Hospital, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
13
|
MiR-486-3p inhibits the proliferation, migration and invasion of retinoblastoma cells by targeting ECM1. Biosci Rep 2020; 40:224127. [PMID: 32401301 PMCID: PMC7273916 DOI: 10.1042/bsr20200392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022] Open
Abstract
It has been reported that miR-486-3p expression is decreased in retinoblastoma (RB) tumor tissues, however, its function in RB has been less reported. The present study aimed to explore the regulatory effects of miR-486-3p on RB cells. The expression of miR-486-3p in RB tissues and cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, proliferation, apoptosis, migration and invasion ability were determined by cell counting kit-8 (CCK-8) kit, clone formation assay, flow cytometry, scratch assay and transwell, respectively. Targetscan 7.2 and dual-luciferase reporter were used to verify target genes for miR-486-3p. The expressions of apoptosis-related proteins and ECM1 were detected by Western blot. The miR-486-3p expression was decreased in RB tissues and cells. In RB cells, overexpression of miR-486-3p inhibited cell proliferation, migration and invasion, while promoted apoptosis. Moreover, overexpression of miR-486-3p decreased Bcl-2 expression, while increased the expressions of Bax and Cleaved Caspase-3 (C caspase-3). ECM1 was the target gene of miR-486-3p, and miR-486-3p inhibited the expression of ECM1. Furthermore, ECM1 partially reversed the inhibitory effect of miR-486-3p on the proliferation, migration and invasion of RB cells. MiR-486-3p inhibited the proliferation, migration and invasion of RB by down-regulating ECM1.
Collapse
|
14
|
Tian R, Zou H, Wang LF, Song MJ, Liu L, Zhang H. Identification of microRNA-mRNA regulatory networks and pathways related to retinoblastoma across human and mouse. Int J Ophthalmol 2020; 13:535-544. [PMID: 32399402 PMCID: PMC7137714 DOI: 10.18240/ijo.2020.04.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the mRNA and pathways related to retinoblastoma (RB) genesis and development. METHODS Microarray datasets GSE29683 (human) and GSE29685 (mouse) were downloaded from NCBI GEO database. Homologous genes between the two species were identified using WGCNA, followed by protein-protein interaction (PPI) network construction and gene enrichment analysis. Disease-related miRNAs and pathways were retrieved from miR2Disease database and Comparative Toxicogenomics Database (CTD), respectively. RESULTS A total of 352 homologous genes were identified. Two pathways including "cell cycle" and "pathway in cancer" in CTD and enrichment analysis were identified and seven miRNAs (including hsa-miR-373, hsa-miR-34a, hsa-miR-129, hsa-miR-494, hsa-miR-503, hsa-let-7 and hsa-miR-518c) were associated with RB. miRNAs modulate "cell cycle" and "pathway in cancer" pathways via regulating 13 genes (including CCND1, CDC25C, E2F2, CDKN2D and TGFB2). CONCLUSION These results suggest that these miRNAs play crucial roles in RB genesis through "cell cycle" and "pathway in cancer" pathways by regulating their targets including CCND1, CDC25C, E2F2 and CDKN2D.
Collapse
Affiliation(s)
- Rui Tian
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - He Zou
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lu-Fei Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Mei-Jiao Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lu Liu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Hui Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
15
|
Sun J, Xi HY, Shao Q, Liu QH. Biomarkers in retinoblastoma. Int J Ophthalmol 2020; 13:325-341. [PMID: 32090044 DOI: 10.18240/ijo.2020.02.18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma (RB) is the most common intraocular malignancy of childhood caused by inactivation of the Rb genes. The prognosis of RB is better with an earlier diagnosis. Many diagnostic approaches and appropriate clinical treatments have been developed to improve clinical outcomes. However, limitations exist when utilizing current methods. Recently, many studies have identified identify new RB biomarkers which can be used in diagnosis, as prognostic indicators and may contribute to understanding the pathogenesis of RB and help determine specific treatment strategies. This review focuses on recent advances in the discovery of RB biomarkers and discusses their clinical utility and challenges from areas such as epigenetics, proteomics and radiogenomics.
Collapse
Affiliation(s)
- Jie Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hui-Yu Xi
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Ophthalmology, Xuzhou First People's Hospital of Xuzhou Medical University, Xuzhou Eye Research Institute, Xuzhou 221002, Jiangsu Province, China
| | - Qing Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qing-Huai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
16
|
Busch M, Klein S, Große-Kreul J, Scheiner O, Metz K, Stephan H, Dünker N. p53, miR-34a and EMP1-Newly Identified Targets of TFF3 Signaling in Y79 Retinoblastoma Cells. Int J Mol Sci 2019; 20:ijms20174129. [PMID: 31450568 PMCID: PMC6747266 DOI: 10.3390/ijms20174129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Trefoil factor family peptide 3 (TFF3) is supposed to have tumor suppressive functions in retinoblastoma (RB), but the functional pathway is not completely understood. In the study presented, we investigated the downstream pathway of TFF3 signaling in Y79 RB cells. Results from pG13-luciferase reporter assays and western blot analyses indicate induced p53 activity with an upregulation of miR-34a after TFF3 overexpression. Expression levels of the predicted miR-34a target epithelial membrane protein 1 (EMP1) are reduced after TFF3 overexpression. As revealed by WST-1 assay, BrdU, and DAPI cell counts viability and proliferation of Y79 cells significantly decrease following EMP1 knockdown, while apoptosis levels significantly increase. Opposite effects on Y79 cells’ growth could be shown after EMP1 overexpression. Caspase assays showed that EMP1 induced apoptosis after overexpression is at least partially caspase-3/7 dependent. Colony formation and soft agarose assays, testing for anchorage independent growth, revealed that EMP1 overexpressing Y79 cells have a significantly higher ability to form colonies. In in ovo chicken chorioallantoic membrane (CAM) assays inoculated EMP1 overexpressing Y79 cells form significantly larger CAM tumors. Moreover, miR-34a overexpression increases sensitivity of Y79 cells towards RB chemotherapeutics, however, without involvement of EMP1. In summary, the TFF3 signaling pathway in Y79 RB cells involves the activation of p53 with downstream induction of miR-34a and subsequent inhibition of EMP1.
Collapse
Affiliation(s)
- Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany.
| | - Stefan Klein
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jan Große-Kreul
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Oliver Scheiner
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Klaus Metz
- Institute of Pathology, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Harald Stephan
- Division of Haematology and Oncology, Children's Hospital, University of Duisburg-Essen, 45122 Essen, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
17
|
Zhong XP, Kan A, Ling YH, Lu LH, Mei J, Wei W, Li SH, Guo RP. NCKAP1 improves patient outcome and inhibits cell growth by enhancing Rb1/p53 activation in hepatocellular carcinoma. Cell Death Dis 2019; 10:369. [PMID: 31068575 PMCID: PMC6506474 DOI: 10.1038/s41419-019-1603-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 02/05/2023]
Abstract
In our previous report, we identified miR-34c-3p as an independent factor contributing to the carcinogenesis of hepatocellular carcinoma (HCC) by targeting NCK Associated Protein 1 (NCKAP1). NCKAP1 has been known to promote the malignancy of cancer cells by disrupting the structural stability of WAS protein family member 1 (WASF1) and is correlated with poor prognosis of patients in several cancer types. Our results, however, show that NCKAP1 is correlated with a favorable outcome in HCC patients. The underlying mechanism of this contradictory phenomenon is unknown. The current study was designed to explore the mechanism of NCKAP1 in HCC. As a result, clinicopathological correlations and results from in vivo and in vitro models indicated that NCKAP1 was a tumor suppressor gene. Cell cycle analysis suggested that NCKAP1 inhibit cells from entering G2/M phase. Western blot analysis showed that WASF1 was barely expressed in HCC cell lines compared to that of breast cancer cell lines, which serve as positive controls. Furthermore, Rb1 and p53 expression was upregulated in cell lines overexpressing NCKAP1. Expression of several cell cycle regulating proteins also varied in the HCC cell lines. In conclusion, although previous studies have identified NCKAP1 as a cell invasion promoter by binding to WASF1, we found that NCKAP1 is a tumor suppress gene that modulates the cell cycle of HCC cell lines by targeting Rb1/p53 regulation.
Collapse
Affiliation(s)
- Xiao-Ping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yi-Hong Ling
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Liang-He Lu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jie Mei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Shao-Hua Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Childhood blastomas, unlike adult cancers, originate from developing organs in which molecular and cellular features exhibit differentiation arrest and embryonic characteristics. Conventional cancer therapies, which rely on the generalized cytotoxic effect on rapidly dividing cells, may damage delicate organs in young children, leading to multiple late effects. Deep understanding of the biology of embryonal cancers is crucial in reshaping the cancer treatment paradigm for children. RECENT FINDINGS p53 plays a major physiological role in embryonic development, by controlling cell proliferation, differentiation and responses to cellular stress. Tumor suppressor function of p53 is commonly lost in adult cancers through genetic alterations. However, both somatic and germline p53 mutations are rare in childhood blastomas, suggesting that in these cancers, p53 may be inactivated through other mechanisms than mutation. In this review, we summarize current knowledge about p53 pathway inactivation in childhood blastomas (specifically neuroblastoma, retinoblastoma and Wilms' tumor) through various upstream mechanisms. Laboratory evidence and clinical trials of targeted therapies specific to exploiting p53 upstream regulators are discussed. SUMMARY Despite the low rate of inherent TP53 mutations, p53 pathway inactivation is a common denominator in childhood blastomas. Exploiting p53 and its regulators is likely to translate into more effective targeted therapies with minimal late effects for children. (see Video Abstract, Supplemental Digital Content 1, http://links.lww.com/COON/A23).
Collapse
Affiliation(s)
- Lixian Oh
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | - Hind Hafsi
- Institute of Advanced Biosciences, University of Grenoble-Alpes, La Tronche, France
| | - Pierre Hainaut
- Institute of Advanced Biosciences, University of Grenoble-Alpes, La Tronche, France
| | - Hany Ariffin
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Delsin LEA, Salomao KB, Pezuk JA, Brassesco MS. Expression profiles and prognostic value of miRNAs in retinoblastoma. J Cancer Res Clin Oncol 2019; 145:1-10. [PMID: 30350021 DOI: 10.1007/s00432-018-2773-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Current cure rates for retinoblastoma (RB) are very high in developed countries. Nonetheless, in less privileged places worldwide, delayed diagnosis and refusal to adhere to treatment still endure an obstacle to improve overall patient survival. Thus, the access to consistent biomarkers for diagnosis at an earlier stage may facilitate treatment and improve outcomes. Over recent years, much attention has been focused on miRNAs, key post-transcriptional regulators that when altered, largely contribute to carcinogenesis and tumor progression. Many of the ~ 2500 microRNAs described in humans have shown differential expression profiles in tumors. In this review, we summarize current data about the roles of miRNAs in RB along with their value as diagnostic/prognostic factors using electronic databases such as PubMed. We reviewed the importance of miRNA in RB biology and discussed their implications in clinic intervention. Several miRNAs have pointed out reliable diagnostic and prognostic molecular biomarkers. The emergence of targeted therapies has significantly improved cancer treatment. In the near future, the modulation of miRNAs will represent a good treatment strategy.
Collapse
Affiliation(s)
| | | | - Julia Alejandra Pezuk
- Anhanguera University of Sao Paulo, UNIAN, Av. Raimundo Pereira de Magalhaes 3305, Sao Paulo, SP, CEP 05145-200, Brazil.
| | - Maria Sol Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Wu Q, Sun X, Zheng G. VEGF overexpression is associated with optic nerve involvement and differentiation of retinoblastoma: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e13753. [PMID: 30572521 PMCID: PMC6319877 DOI: 10.1097/md.0000000000013753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/27/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of cancer. Although numerous studies have investigated the association between VEGF expression and pathogenesis of retinoblastoma, the results remained inconsistent. To illuminate the association, we performed a meta-analysis study. METHODS According to the PRISMA guideline, eligible studies were searched in the Medicine, Embase, Web of Science, Chinese National Knowledge Infrastructure, and Wanfang databases. Stata 14.0 software was used to calculate the relevant statistical parameters. RESULTS Seventeen studies with 296 controls and 470 patients with retinoblastoma were included from 17 eligible literatures. Overall, significant association between VEGF overexpression and susceptibility of retinoblastoma was observed in Chinese population (odds ratio [OR] = 21.67, 95% confidence interval [CI] = 13.96-33.62). Subgroup analysis based on control sample type showed that VEGF overexpression was significantly associated with the risk of retinoblastoma (Normal retina tissue, OR = 23.97, 95% CI = 9.67-59.42; retinoblastoma adjacent tissue, OR = 20.85, 95% CI = 12.64-34.37). Significant associations of VEGF overexpression with optic nerve involvement and differentiation of retinoblastoma were found (Optic nerve involvement, OR = 6.90, 95% CI = 4.01-11.88; Differentiation, OR = 0.18, 95% CI = 0.12-0.28). In addition, only 1 study was included to analyze the role of VEGF protein expression in the prognosis of retinoblastoma, and the result showed that VEGF expression was significantly associated with the prognosis of retinoblastoma, which should be verified in the future studies. CONCLUSIONS Our findings demonstrated that VEGF overexpression was significantly associated with the risk of retinoblastoma. Besides, the results suggested that VEGF overexpression might have a crucial effect on the optic nerve involvement and differentiation of retinoblastoma.
Collapse
|
21
|
Yang G, Fu Y, Lu X, Wang M, Dong H, Li Q. miR‑34a regulates the chemosensitivity of retinoblastoma cells via modulation of MAGE‑A/p53 signaling. Int J Oncol 2018; 54:177-187. [PMID: 30387834 DOI: 10.3892/ijo.2018.4613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/22/2018] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to explore the combined role of microRNA (miR)-34a, melanoma antigen-A (MAGE‑A) and p53 in altering the chemosensitivity of retinoblastoma (RB) cells. Human RB and adjacent tumor tissues, as well as human RB cell lines (HXO‑Rb44, SO‑Rb50, Y79 and WERI‑Rb-1) were used. In addition, four chemotherapeutic drugs, including carboplatin, etoposide, Adriamycin and vincristine, were used to treat the cell lines, in order to evaluate the sensitivity of RB cells. Furthermore, miR‑34a expression was detected by reverse transcription-quantitative polymerase chain reaction, and western blotting was implemented to quantify expression levels of MAGE‑A and p53. A luciferase reporter gene assay was used to validate the targeted association between miR‑34a and MAGE‑A. The results indicated that SO‑Rb50 cells exhibited the highest resistance to carboplatin, Adriamycin and vincristine (P<0.05), whereas HXO‑Rb44 cells revealed the highest inhibition rate in response to etoposide (P<0.05) out of the four cell lines. Furthermore, reduced miR‑34a expression and increased MAGE‑A expression significantly elevated the survival rate and viability of SO‑Rb50 cells following drug treatment (all P<0.05). miR‑34a was also demonstrated to directly target MAGE‑A, thereby significantly promoting the viability of RB cells and depressing apoptosis (P<0.05). p53, which was subjected to modulation by miR‑34a and MAGE‑A, also significantly reduced the proliferation rate of RB cells (P<0.05). In conclusion, the miR‑34a/MAGE‑A/p53 axis may be conducive to enhancing the efficacies of chemotherapeutic treatments for RB.
Collapse
Affiliation(s)
- Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yang Fu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaoyan Lu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Menghua Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongtao Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
22
|
Li L, Chen W, Wang Y, Tang L, Han M. Long non-coding RNA H19 regulates viability and metastasis, and is upregulated in retinoblastoma. Oncol Lett 2018; 15:8424-8432. [PMID: 29805578 PMCID: PMC5950605 DOI: 10.3892/ol.2018.8385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma is the most common type of intraocular pediatric malignant tumor, which typically affects children <6 years of age. However, the underlying molecular mechanisms of retinoblastoma progression remain unclear. The aim of the present study was to investigate the function of long non-coding RNA (lncRNA) H19 in retinoblastoma clinical samples and cell lines, using reverse transcription-quantitative polymerase chain reaction, western blotting, colony formation, MTT, fluorescence activated cell sorting, cell invasion and migration, and in vivo growth assays. The results demonstrated that H19 may serve a critical oncogenic function in the progression of retinoblastoma, as lncRNA H19 levels were markedly increased in retinoblastoma cells and tissues compared with corresponding controls. In addition, patients with retinoblastoma with increased lncRNA H19 expression experienced poorer survival time compared with those with decreased lncRNA H19 levels. Knockdown of lncRNA H19 significantly suppressed retinoblastoma cell proliferation, migration and invasion in vitro and in vivo. Furthermore, lncRNA H19 expression was also associated with multiple proteins, including cyclin-dependent kinase 1, B-cell lymphoma-associated X protein, apoptosis regulator, tumor protein p53, vimentin, cadherin 13 and matrix metallopeptidase 9. In conclusion, lncRNA H19 may serve an important function in tumorigenesis and may be a potential target for therapy and prognosis in retinoblastoma.
Collapse
Affiliation(s)
- Li Li
- Department of Vitreous and Retinal Diseases, Clinical College of Ophthalmology of Tianjin Medical University, Tianjin 300020, P.R. China
| | - Wei Chen
- Department of Vitreous and Retinal Diseases, Clinical College of Ophthalmology of Tianjin Medical University, Tianjin 300020, P.R. China
| | - Yuchuan Wang
- Department of Vitreous and Retinal Diseases, Clinical College of Ophthalmology of Tianjin Medical University, Tianjin 300020, P.R. China
| | - Luosheng Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Xiangya Medical College, Central-South University, Changsha, Hunan 410083, P.R. China
| | - Mei Han
- Department of Vitreous and Retinal Diseases, Clinical College of Ophthalmology of Tianjin Medical University, Tianjin 300020, P.R. China
| |
Collapse
|
23
|
A. Richard S. High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.4.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
24
|
Chen L, Yang C, Feng J, Liu X, Tian Y, Zhao L, Xie R, Liu C, Zhao S, Sun H. Clinical significance of miR-34a expression in thyroid diseases - an 18F-FDG PET-CT study. Cancer Manag Res 2017; 9:903-913. [PMID: 29290693 PMCID: PMC5735987 DOI: 10.2147/cmar.s143110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To evaluate the possible roles of miR-34a expression in thyroid lesions, to unravel the correlation between fluorodeoxyglucose (FDG) uptake and miR-34a expression and moreover, to discover the underlying mechanisms by which miR-34a regulates FDG avidity. Methods We retrospectively reviewed 75 patients with pathology-confirmed thyroid diseases who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) within 3 months before undergoing thyroid surgery and miR-34a analysis from June 2012 to July 2017. 18F-FDG uptake of thyroid lesions was also analyzed semiquantitatively using maximum standardized uptake value (SUVmax). The association between miR-34a expression and clinicopathological variables (age, sex, TNM stage, histopathology, lesion numbers, location and 18F-FDG avidity) was investigated. When there were multiple lesions in thyroid bed, only the one with the highest 18F-FDG uptake was analyzed. Next, we inhibited the miR-34a expression in TPC-1 cells and detected the expression of glucose transporter 1 (GLUT1) mRNA and protein. Results In the patients cohort, miR-34a was upregulated in those with malignant thyroid diseases compared with benign lesions. The expression of miR-34a was associated with tumor stages, histopathological types and SUVmax. There was an inverse relationship between miR-34a expression and SUVmax in patients with thyroid diseases (Spearman correlation coefficient = −0.553, P < 0.0001). With an SUVmax of 4.3 as the threshold, sensitivity and specificity of the prediction of miR-34a expression (low or high) were 70% and 94.3%, respectively. The area under the receiver operating characteristic curve was 0.843 (95% confidence interval: 0.749, 0.936; P = 0.001). Inhibiting miR-34a in TPC-1 cells significantly increased GLUT1 mRNA and protein expression. Conclusion miR-34a expression was upregulated in thyroid lesions, negatively correlated with SUVmax and can be predicted by FDG SUVmax. In addition, miR-34a may regulate FDG avidity via targeting GLUT1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chao Liu
- Department of Nuclear Medicine, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | | | | |
Collapse
|
25
|
Toraih EA, Aly NM, Abdallah HY, Al-Qahtani SA, Shaalan AA, Hussein MH, Fawzy MS. MicroRNA-target cross-talks: Key players in glioblastoma multiforme. Tumour Biol 2017; 39:1010428317726842. [PMID: 29110584 DOI: 10.1177/1010428317726842] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of microRNAs in brain cancer is still naive. Some act as oncogene and others as tumor suppressors. Discovery of efficient biomarkers is mandatory to debate that aggressive disease. Bioinformatically selected microRNAs and their targets were investigated to evaluate their putative signature as diagnostic and prognostic biomarkers in primary glioblastoma multiforme. Expression of a panel of seven microRNAs (hsa-miR-34a, hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, hsa-miR-326, and hsa-miR-375) and seven target genes ( E2F3, PI3KCA, TOM34, WNT5A, PDCD4, DFFA, and EGFR) in 43 glioblastoma multiforme specimens were profiled compared to non-cancer tissues via quantitative reverse transcription-polymerase chain reaction. Immunohistochemistry staining for three proteins (VEGFA, BAX, and BCL2) was performed. Gene enrichment analysis identified the biological regulatory functions of the gene panel in glioma pathway. MGMT ( O-6-methylguanine-DNA methyltransferase) promoter methylation was analyzed for molecular subtyping of tumor specimens. Our data demonstrated a significant upregulation of five microRNAs (hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, and hsa-miR-375), three genes ( E2F3, PI3KCA, and Wnt5a), two proteins (VEGFA and BCL2), and downregulation of hsa-miR-34a and three other genes ( DFFA, PDCD4, and EGFR) in brain cancer tissues. Receiver operating characteristic analysis revealed that miR-34a (area under the curve = 0.927) and miR-17 (area under the curve = 0.900) had the highest diagnostic performance, followed by miR-221 (area under the curve = 0.845), miR-21 (area under the curve = 0.836), WNT5A (area under the curve = 0.809), PDCD4 (area under the curve = 0.809), and PI3KCA (area under the curve = 0.800). MGMT promoter methylation status was associated with high miR-221 levels. Moreover, patients with VEGFA overexpression and downregulation of TOM34 and BAX had poor overall survival. Nevertheless, miR-17, miR-221, and miR-326 downregulation were significantly associated with high recurrence rate. Multivariate analysis by hierarchical clustering classified patients into four distinct groups based on gene panel signature. In conclusion, the explored microRNA-target dysregulation could pave the road toward developing potential therapeutic strategies for glioblastoma multiforme. Future translational and functional studies are highly recommended to better understand the complex bio-molecular signature of this difficult-to-treat tumor.
Collapse
Affiliation(s)
- Eman Ali Toraih
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nagwa Mahmoud Aly
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Saeed Awad Al-Qahtani
- 3 Department of Physiology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Aly Am Shaalan
- 4 Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,5 Department of Anatomy and Histology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | | - Manal Said Fawzy
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,7 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
26
|
MicroRNA-34a: A Key Regulator in the Hallmarks of Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3269379. [PMID: 29104726 PMCID: PMC5632457 DOI: 10.1155/2017/3269379] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/07/2017] [Accepted: 08/20/2017] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) incidence has increased over the past two decades. Recent studies reported microRNAs as promising biomarkers for early cancer detection, accurate prognosis, and molecular targets for future treatment. This study aimed to evaluate the expression levels of miR-34a and 11 of its bioinformatically selected target genes and proteins to test their potential dysregulation in RCC. Quantitative real-time PCR for miR-34a and its targets; MET oncogene; gene-regulating apoptosis (TP53INP2 and DFFA); cell proliferation (E2F3); and cell differentiation (SOX2 and TGFB3) as well as immunohistochemical assay for VEGFA, TP53, Bcl2, TGFB1, and Ki67 protein expression have been performed in 85 FFPE RCC tumor specimens. Clinicopathological parameter correlation and in silico network analysis have also implicated. We found RCC tissues displayed significantly higher miR-34a expression level than their corresponding noncancerous tissues, particularly in chromophobic subtype. MET and E2F3 were significantly upregulated, while TP53INP2 and SOX2 were downregulated. ROC analysis showed high diagnostic performance of miR-34a (AUC = 0.854), MET (AUC = 0.765), and E2F3 (AUC = 0.761). The advanced pathological grade was associated with strong TGFB1, VEGFA, and Ki67 protein expression and absent Tp53 staining. These findings indicate miR-34a along with its putative target genes could play a role in RCC tumorigenesis and progression.
Collapse
|
27
|
Golabchi K, Soleimani-Jelodar R, Aghadoost N, Momeni F, Moridikia A, Nahand JS, Masoudifar A, Razmjoo H, Mirzaei H. MicroRNAs in retinoblastoma: Potential diagnostic and therapeutic biomarkers. J Cell Physiol 2017; 233:3016-3023. [PMID: 28657205 DOI: 10.1002/jcp.26070] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022]
Abstract
Retinoblastoma (Rb) is known as one of important childhood malignancies which due to inactivation of the RB gene (tumor suppressor gene in various patients). The early detection of Rb could provide better treatment for Rb patients. Imaging techniques (e.g., MRI and CT) are known as one of effective diagnosis approaches for detection of patients with Rb. It has been shown that utilization of imaging techniques is associated with some limitations. Hence, identification of new diagnosis approaches might provide a better treatment for Rb patients. Identification of new biomarkers could contribute to better understanding of pathogenesis events involved in Rb and provide new insights into design better treatment approaches for these patients. Among the various biomarkers, microRNAs (miRNAs) have emerged as attractive tools for Rb detection. miRNAs are one classes of small non-coding RNAs which could anticipate in a variety of biological process via targeting sequence of cellular and molecular pathways. Deregulations of these molecules are associated with cancerous condition. Multiple lines of evidence indicated that deregulation of various miRNAs involved in various stages of Rb. Here, we summarized a variety of tissue-specific and circulating miRNAs involved in Rb pathogenesis which could be used as diagnostic, prognostic, and therapeutic biomarkers in Rb patients.
Collapse
Affiliation(s)
- Khodayar Golabchi
- Department of Ophthalmology, Faculty of Medicine, Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nazila Aghadoost
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Momeni
- General Practitioner,Medical Researcher, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdullah Moridikia
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hasan Razmjoo
- Department of Ophthalmology, Faculty of Medicine, Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Li J, Zhang Y, Wang X, Zhao R. microRNA-497 overexpression decreases proliferation, migration and invasion of human retinoblastoma cells via targeting vascular endothelial growth factor A. Oncol Lett 2017; 13:5021-5027. [PMID: 28588740 DOI: 10.3892/ol.2017.6083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/28/2017] [Indexed: 01/01/2023] Open
Abstract
The expression level and roles of microRNA-497 (miR-497) have been frequently reported in previous studies on cancer. However, its expression, function and associated molecular mechanisms in retinoblastoma remain unknown. In the present study, miR-497 expression levels in human retinoblastoma tissues, normal retinal tissues and retinoblastoma cell lines were determined using reverse transcription-quantitative polymerase chain reaction. In addition, a Cell Counting Kit-8 assay, cell migration assay, cell invasion assay, western blot analysis and Dual-Luciferase reporter assay were used to explore the expression, functions and molecular mechanisms of miR-497 in human retinoblastoma. It was demonstrated that miR-497 was significantly downregulated in retinoblastoma tissues and cell lines compared with normal retinal tissues. Ectopic expression of miR-497 decreased the proliferation, migration and invasion of retinoblastoma cells. Furthermore, VEGFA was verified as a potential direct target of miR-497 in vitro. Taken together, the results indicate that miR-497 functions as a tumor suppressor in the carcinogenesis and progression of retinoblastoma via targeting VEGFA. miR-497 should be investigated as a potential therapeutic target for the treatment of retinoblastoma.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Ophthalmology, Xi'an XD Group Hospital, Xi'an, Shaanxi 710077, P.R. China
| | - Yinghui Zhang
- Department of Ophthalmology, Xi'an XD Group Hospital, Xi'an, Shaanxi 710077, P.R. China
| | - Xiuchao Wang
- Department of Ophthalmology, Xi'an XD Group Hospital, Xi'an, Shaanxi 710077, P.R. China
| | - Ruibo Zhao
- Refractive Surgery Center, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
29
|
Singh U, Malik MA, Goswami S, Shukla S, Kaur J. Epigenetic regulation of human retinoblastoma. Tumour Biol 2016; 37:14427-14441. [PMID: 27639385 DOI: 10.1007/s13277-016-5308-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/05/2016] [Indexed: 01/05/2023] Open
Abstract
Retinoblastoma is a rare type of eye cancer of the retina that commonly occurs in early childhood and mostly affects the children before the age of 5. It occurs due to the mutations in the retinoblastoma gene (RB1) which inactivates both alleles of the RB1. RB1 was first identified as a tumor suppressor gene, which regulates cell cycle components and associated with retinoblastoma. Previously, genetic alteration was known as the major cause of its occurrence, but later, it is revealed that besides genetic changes, epigenetic changes also play a significant role in the disease. Initiation and progression of retinoblastoma could be due to independent or combined genetic and epigenetic events. Remarkable work has been done in understanding retinoblastoma pathogenesis in terms of genetic alterations, but not much in the context of epigenetic modification. Epigenetic modifications that silence tumor suppressor genes and activate oncogenes include DNA methylation, chromatin remodeling, histone modification and noncoding RNA-mediated gene silencing. Epigenetic changes can lead to altered gene function and transform normal cell into tumor cells. This review focuses on important epigenetic alteration which occurs in retinoblastoma and its current state of knowledge. The critical role of epigenetic regulation in retinoblastoma is now an emerging area, and better understanding of epigenetic changes in retinoblastoma will open the door for future therapy and diagnosis.
Collapse
Affiliation(s)
- Usha Singh
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Manzoor Ahmad Malik
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Goswami
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Shukla
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jasbir Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
30
|
MicroRNA-125b promotes tumor growth and suppresses apoptosis by targeting DRAM2 in retinoblastoma. Eye (Lond) 2016; 30:1630-1638. [PMID: 27518550 DOI: 10.1038/eye.2016.189] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/01/2016] [Indexed: 12/19/2022] Open
Abstract
PurposeIt is known that microRNAs (miRNAs) are a class of small, noncoding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms involving miRNAs in retinoblastoma (RB) remain largely unknown. The miRNA miR-125b is dysregulated in various human cancers such as breast cancer, human hepatocellular carcinoma, ovarian cancer, and colorectal cancer. However, the significance of miR-125b in RB has not been sufficiently investigated. Our objective was to explore the role of the miR-125b in RB.MethodsIn this study, we measured miR-125b levels using real-time polymerase chain reaction in human RB cell lines, including HXO-Rb44, Y79, SO-RB50, and the normal human retinal pigment epithelial cell line ARPE-19; a total of 38 pairs of primary RB tissues and adjacent noncancerous tissues were also measured. In addition, overexpression of miR-125b in RB cell lines was performed to determine the role of miR-125b in RB.ResultsWe found that miR-125b is significantly upregulated in RB, and closely associated with tumor cell proliferation and apoptosis. In addition, overexpression of miR-125b apparently promotes RB cell proliferation and migration in vitro. Gain-of-function in vitro experiments further showed that the miR-125b mimic significantly suppressed RB cell apoptosis. A subsequent dual-luciferase reporter assay identified the suppressor gene DRAM2 as direct target of miR-125b.ConclusionsOur data collectively demonstrate that miR-125b is a suppressor gene miRNA that can promote RB cell proliferation and migration by downregulating the suppressor gene DRAM2, indicating that miR-125b may represent a new potential diagnostic and therapeutic target for RB treatment.
Collapse
|
31
|
Liu L, Liu L, Shi J, Tan M, Xiong J, Li X, Hu Q, Yi Z, Mao D. MicroRNA-34b mediates hippocampal astrocyte apoptosis in a rat model of recurrent seizures. BMC Neurosci 2016; 17:56. [PMID: 27514646 PMCID: PMC4981991 DOI: 10.1186/s12868-016-0291-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/21/2016] [Indexed: 01/03/2023] Open
Abstract
Background Recurrent convulsions can cause irreversible astrocyte death, impede neuron regeneration, and further aggravate brain damage. MicroRNAs have been revealed as players in the progression of numerous diseases including cancer and Alzheimer’s disease. Particularly, microRNA has been found linked to seizure-induced neuronal death. In this study, a rat model of recurrent convulsions induced by flurothyl treatments was utilised to assess the alterations of microRNA expressions in hippocampus tissues. We also applied an in vitro model in which primary astrocytes were exposed to kainic acid to verify the targets of miR-34b-5p identified in the animal model. Results We discovered that miR-34b-5p, a member of the miR-34 family, increased significantly in flurothyl-treated rat hippocampus tissue. More surprisingly, this upregulation occurred concurrently with accumulating astrocyte apoptosis, indicating the involvement of miR-34b-5p in seizures caused astrocyte apoptosis. Results from the in vitro experiments further demonstrated that miR-34b-5p directly targeted Bcl-2 mRNA, translationally repressed Bcl-2 protein, and thus modulated cell apoptosis by influencing Bcl-2, Bax, and Caspase-3. Conclusion Our findings prove microRNAs play a role in mediating recurrent convulsions-induced astrocyte death and further indicate that miR-34b-5p could acts as a regulator for astrocyte apoptosis induced by recurrent seizures. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0291-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China
| | - Jiayun Shi
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China
| | - Menglin Tan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China
| | - Xingfang Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China
| | - Qingpeng Hu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China
| | - Zhuwen Yi
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China
| | - Ding'an Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
32
|
MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016; 37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.
Collapse
|
33
|
Abstract
Epigenetics is currently one of the most promising areas of study in the field of biomedical research. Scientists have dedicated their efforts to studying epigenetic mechanisms in cancer for centuries. Additionally, the field has expanded from simply studying DNA methylation to other areas, such as histone modification, non-coding RNA, histone variation, nucleosome location, and chromosome remodeling. In ocular tumors, a large amount of epigenetic exploration has expanded from single genes to the genome-wide level. Most importantly, because epigenetic changes are reversible, several epigenetic drugs have been developed for the treatment of cancer. Herein, we review the current understanding of epigenetic mechanisms in ocular tumors, including but not limited to retinoblastoma and uveal melanoma. Furthermore, the development of new pharmacological strategies is summarized.
Collapse
Affiliation(s)
- Xuyang Wen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Linna Lu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhang He
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
34
|
Benavente CA, Dyer MA. Genetics and epigenetics of human retinoblastoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:547-62. [PMID: 25621664 DOI: 10.1146/annurev-pathol-012414-040259] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinoblastoma is a pediatric tumor of the developing retina from which the genetic basis for cancer development was first described. Inactivation of both copies of the RB1 gene is the predominant initiating genetic lesion in retinoblastoma and is rate limiting for tumorigenesis. Recent whole-genome sequencing of retinoblastoma uncovered a tumor that had no coding-region mutations or focal chromosomal lesions other than in the RB1 gene, shifting the paradigm in the field. The retinoblastoma genome can be very stable; therefore, epigenetic deregulation of tumor-promoting pathways is required for tumorigenesis. This review highlights the genetic and epigenetic changes in retinoblastoma that have been reported, with special emphasis on recent whole-genome sequencing and epigenetic analyses that have identified novel candidate genes as potential therapeutic targets.
Collapse
Affiliation(s)
- Claudia A Benavente
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| | | |
Collapse
|
35
|
Raghunath A, Perumal E. Micro-RNAs and Their Roles in Eye Disorders. Ophthalmic Res 2015; 53:169-86. [DOI: 10.1159/000371853] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/04/2015] [Indexed: 11/19/2022]
|
36
|
Wu X, Zeng Y, Wu S, Zhong J, Wang Y, Xu J. MiR-204, down-regulated in retinoblastoma, regulates proliferation and invasion of human retinoblastoma cells by targeting CyclinD2 and MMP-9. FEBS Lett 2015; 589:645-650. [PMID: 25647033 DOI: 10.1016/j.febslet.2015.01.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/14/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Aberrant expression of miR-204 had been frequently reported in cancer studies; however, the mechanism of its function in retinoblastoma remained unknown. Here, we reported that miR-204 was frequently downregulated in retinoblastoma tissues and cell lines. Enforced expression of miR-204 inhibited retinoblastoma cells' proliferation and invasion. In vivo study indicated that restoration of miR-204 inhibited tumor growth. CyclinD2 and MMP-9 were identified as potential targets of miR-204. In addition, a reverse correlation between miR-204 and CyclinD2 or MMP-9 expression was noted in retinoblastoma tissues. Taken together, our results identified a crucial tumor suppressive role of miR-204 in the progression of retinoblastoma.
Collapse
Affiliation(s)
- XianJin Wu
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People's Republic of China
| | - Yong Zeng
- Orthopedic Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People's Republic of China
| | - ShaoKe Wu
- Orthopedic Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People's Republic of China
| | - JiXin Zhong
- Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People's Republic of China
| | - YuZhou Wang
- Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People's Republic of China
| | - JunFa Xu
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
37
|
Braoudaki M, Lambrou GI, Giannikou K, Milionis V, Stefanaki K, Birks DK, Prodromou N, Kolialexi A, Kattamis A, Spiliopoulou CA, Tzortzatou-Stathopoulou F, Kanavakis E. Microrna expression signatures predict patient progression and disease outcome in pediatric embryonal central nervous system neoplasms. J Hematol Oncol 2014; 7:96. [PMID: 25551588 PMCID: PMC4342799 DOI: 10.1186/s13045-014-0096-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
Background Although, substantial experimental evidence related to diagnosis and treatment of pediatric central nervous system (CNS) neoplasms have been demonstrated, the understanding of the etiology and pathogenesis of the disease remains scarce. Recent microRNA (miRNA)-based research reveals the involvement of miRNAs in various aspects of CNS development and proposes that they might compose key molecules underlying oncogenesis. The current study evaluated miRNA differential expression detected between pediatric embryonal brain tumors and normal controls to characterize candidate biomarkers related to diagnosis, prognosis and therapy. Methods Overall, 19 embryonal brain tumors; 15 Medulloblastomas (MBs) and 4 Atypical Teratoid/Rabdoid Tumors (AT/RTs) were studied. As controls, 13 samples were used; The First-Choice Human Brain Reference RNA and 12 samples from deceased children who underwent autopsy and were not present with any brain malignancy. RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed with the mirVANA miRNA isolation kit. The experimental approach included miRNA microarrays covering 1211 miRNAs. Quantitative Real-Time Polymerase Chain Reaction was performed to validate the expression profiles of miR-34a and miR-601 in all 32 samples initially screened with miRNA microarrays and in an additional independent cohort of 30 patients (21MBs and 9 AT/RTs). Moreover, meta-analyses was performed in total 27 embryonal tumor samples; 19 MBs, 8 ATRTs and 121 control samples. Twelve germinomas were also used as an independent validation cohort. All deregulated miRNAs were correlated to patients’ clinical characteristics and pathological measures. Results In several cases, there was a positive correlation between individual miRNA expression levels and laboratory or clinical characteristics. Based on that, miR-601 could serve as a putative tumor suppressor gene, whilst miR-34a as an oncogene. In general, miR-34a demonstrated oncogenic roles in all pediatric embryonal CNS neoplasms studied. Conclusions Deeper understanding of the aberrant miRNA expression in pediatric embryonal brain tumors might aid in the development of tumor-specific miRNA signatures, which could potentially afford promising biomarkers related to diagnosis, prognosis and patient targeted therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13045-014-0096-y) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Beta M, Khetan V, Chatterjee N, Suganeswari G, Rishi P, Biswas J, Krishnakumar S. EpCAM knockdown alters microRNA expression in retinoblastoma--functional implication of EpCAM regulated miRNA in tumor progression. PLoS One 2014; 9:e114800. [PMID: 25502397 PMCID: PMC4264963 DOI: 10.1371/journal.pone.0114800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/15/2014] [Indexed: 01/29/2023] Open
Abstract
The co-ordinated regulation of oncogenes along with miRNAs play crucial role in carcinogenesis. In retinoblastoma (RB), several miRNAs are known to be differentially expressed. Epithelial cell adhesion molecule (EpCAM) gene is involved in many epithelial cancers including, retinoblastoma (RB) tumorigenesis. EpCAM silencing effectively reduces the oncogenic miR-17-92 cluster. In order to investigate whether EpCAM has wider effect as an inducer or silencer of miRNAs, we performed a global microRNA expression profile in EpCAM siRNA knockdown Y79 cells. MicroRNA profiling in EpCAM silenced Y79 cells showed seventy-three significantly up regulated and thirty-six down regulated miRNAs. A subset of these miRNAs was also validated in tumors. Functional studies on Y79 and WERI-Rb-1 cells transfected with antagomirs against two miRNAs of miR-181c and miR-130b showed striking changes in tumor cell properties in RB cells. Treatment with anti-miR-181c and miR-130b showed significant decrease in cell viability and cell invasion. Increase in caspase-3 level was noticed in antagomir transfected cell lines indicating the induction of apoptosis. Possible genes altered by EpCAM influenced microRNAs were predicted by bioinformatic tools. Many of these belong to pathways implicated in cancer. The study shows significant influence of EpCAM on global microRNA expression. EpCAM regulated miR-181c and miR-130b may play significant roles in RB progression. EpCAM based targeted therapies may reduce carcinogenesis through several miRNAs and target genes.
Collapse
Affiliation(s)
- Madhu Beta
- L & T Ocular Pathology Department, Kamalanayan Bajaj Research Institute, Vision Research Foundation, No 18/41, College Road, Chennai- 600006, Tamil Nadu, India
| | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, No 18/41, College Road, Chennai-600 006, Tamil Nadu, India
| | - Nivedita Chatterjee
- L & T Ocular Pathology Department, Kamalanayan Bajaj Research Institute, Vision Research Foundation, No 18/41, College Road, Chennai- 600006, Tamil Nadu, India
| | - Ganesan Suganeswari
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, No 18/41, College Road, Chennai-600 006, Tamil Nadu, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, No 18/41, College Road, Chennai-600 006, Tamil Nadu, India
| | - Jyotirmay Biswas
- L & T Ocular Pathology Department, Kamalanayan Bajaj Research Institute, Vision Research Foundation, No 18/41, College Road, Chennai- 600006, Tamil Nadu, India
| | - Subramanian Krishnakumar
- L & T Ocular Pathology Department, Kamalanayan Bajaj Research Institute, Vision Research Foundation, No 18/41, College Road, Chennai- 600006, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
39
|
Shen F, Mo MH, Chen L, An S, Tan X, Fu Y, Rezaei K, Wang Z, Zhang L, Fu SW. MicroRNA-21 Down-regulates Rb1 Expression by Targeting PDCD4 in Retinoblastoma. J Cancer 2014; 5:804-12. [PMID: 25520758 PMCID: PMC4263991 DOI: 10.7150/jca.10456] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/28/2014] [Indexed: 12/31/2022] Open
Abstract
Retinoblastoma (RB) is a children's ocular cancer caused by mutated retinoblastoma 1 (Rb1) gene on both alleles. Rb1 and other related genes could be regulated by microRNAs (miRNA) via complementarily pairing with their target sites. MicroRNA-21 (miR-21) possesses the oncogenic potential to target several tumor suppressor genes, including PDCD4, and regulates tumor progression and metastasis. However, the mechanism of how miR-21 regulates PDCD4 is poorly understood in RB. We investigated the expression of miRNAs in RB cell lines and identified that miR-21 is one of the most deregulated miRNAs in RB. Using qRT-PCR, we verified the expression level of several miRNAs identified by independent microarray assays, and analyzed miRNA expression patterns in three RB cell lines, including Weri-Rb1, Y79 and RB355. We found that miR-19b, -21, -26a, -195 and -222 were highly expressed in all three cell lines, suggesting their potential role in RB tumorigenesis. Using the TargetScan program, we identified a list of potential target genes of these miRNAs, of which PDCD4 is one the targets of miR-21. In this study, we focused on the regulatory mechanism of miR-21 on PDCD4 in RB. We demonstrated an inverse correlation between miR-21 and PDCD4 expression in Weri-Rb1 and Y79 cells. These data suggest that miR-21 down-regulates Rb1 by targeting PDCD4 tumor suppressor. Therefore, miR-21 could serve as a therapeutic target for retinoblastoma.
Collapse
Affiliation(s)
- Fengmei Shen
- 1. Department of Ophthalmology, Xi'an Jiaotong University First Affiliated Hospital, Xi'an, China
| | - Meng-Hsuan Mo
- 2. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Liang Chen
- 2. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Shejuan An
- 2. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Xiaohui Tan
- 2. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yebo Fu
- 2. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Katayoon Rezaei
- 3. Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zuoren Wang
- 4. Department of Surgery, Xi'an Jiaotong University First Affiliated Hospital, Xi'an, China
| | - Lin Zhang
- 1. Department of Ophthalmology, Xi'an Jiaotong University First Affiliated Hospital, Xi'an, China
| | - Sidney W Fu
- 2. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
40
|
MicroRNA and diseases: therapeutic potential as new generation of drugs. Biochimie 2014; 104:12-26. [PMID: 24859535 DOI: 10.1016/j.biochi.2014.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/08/2014] [Indexed: 01/01/2023]
Abstract
MicroRNA (miRNA) is a small non-coding regulatory RNA of 21-25 nucleotides (nts) in length. miRNA works as a post-transcriptional regulator of a specific mRNA by inducing degradation or translation repression resulting in gene silencing. A large number of miRNA have been reported and many more are yet to be discovered. Aberrant expression of miRNA has been linked to numerous diseases. Attempts have been made to attenuate miRNA misregulation under pathophysiological conditions. Additionally, the potential use of miRNA in the diagnosis and treatment of diseases has been studied. Several preclinical and clinical results have been obtained, and miRNA-based therapeutics are still under investigations. In this review, the role of miRNA in a variety of pathological conditions has been summarized. Recent findings from preclinical and clinical investigations examining the role of miRNA as diagnostic markers, and their potential as drug candidates, are also highlighted. The current results summarized in this review may elucidate new dimensions of miRNA therapeutic and diagnostic techniques for biomedical academic and industry research.
Collapse
|
41
|
Yan B, Yao J, Tao ZF, Jiang Q. Epigenetics and ocular diseases: from basic biology to clinical study. J Cell Physiol 2014; 229:825-33. [PMID: 24318407 DOI: 10.1002/jcp.24522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
Epigenetics is an emerging field in ophthalmology and has opened a new avenue for understanding ocular development and ocular diseases related to aging and environment. Epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and deployment of non-coding RNAs, result in the heritable silencing of gene expression without any change in DNA sequence. Accumulating evidence suggests a potential link between gene expression, chromatin structure, non-coding RNAs, and cellular differentiation during ocular development. Disruption of the balance of epigenetic networks could become the etiology of several ocular diseases. Here, we summarized the current knowledge about epigenetic regulatory mechanisms in ocular development and diseases.
Collapse
Affiliation(s)
- Biao Yan
- Eye Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
42
|
Lei Q, Shen F, Wu J, Zhang W, Wang J, Zhang L. MiR-101, downregulated in retinoblastoma, functions as a tumor suppressor in human retinoblastoma cells by targeting EZH2. Oncol Rep 2014; 32:261-9. [PMID: 24807198 DOI: 10.3892/or.2014.3167] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/29/2014] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence indicates that microRNAs are involved in multiple processes in cancer development and progression, and several miRNAs have emerged as candidate components of oncogene or tumor-suppressor networks in retinoblastoma. miR-101 has been identified as a tumor suppressor in several types of human cancer. However, the specific function of miR-101 in retinoblastoma remains unclear. In the present study, we found that the expression of miR-101 in retinoblastoma tissues was much lower than that in the normal controls. In addition, downregulation of miR-101 more frequently occurred in retinoblastoma specimens with adverse clinicopathological and histopathological features. In addition, miR-101 inhibited cell viability and progression in retinoblastoma cells by promoting cell apoptosis and arresting the cell cycle. Finally, we found that miR-101 directly inhibited EZH2 expression by targeting its 3'-UTR, and EZH2 was upregulated and inversely correlated with miR-101 expression in the retinoblastoma tissues. Thus, for the first time, we provide convincing evidence that downregulation of miR-101 is associated with tumor aggressiveness in retinoblastoma and inhibits cell growth and proliferation of retinoblastoma cells by targeting EZH2. In conclusion, all the evidence supports the tumor-suppressor role of miR-101 in human retinoblastoma.
Collapse
Affiliation(s)
- Qiong Lei
- Department of Ophthalmology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710062, P.R. China
| | - Fengmei Shen
- Department of Ophthalmology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710062, P.R. China
| | - Jie Wu
- Department of Ophthalmology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710062, P.R. China
| | - Weishan Zhang
- Department of Ophthalmology, No.1 Hospital of Xi'an, Xi'an, Shaanxi 710062, P.R. China
| | - Jiahui Wang
- Department of Ophthalmology, No.1 Hospital of Xi'an, Xi'an, Shaanxi 710062, P.R. China
| | - Lin Zhang
- Department of Ophthalmology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710062, P.R. China
| |
Collapse
|
43
|
Tang R, Li J, Yue M, Liu Z, Feng S, Tang S, Wang T. A correlation analysis of miRNA‑34a and its predicted target genes in leukemia. Mol Med Rep 2014; 9:1283-8. [PMID: 24504520 DOI: 10.3892/mmr.2014.1931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 01/21/2014] [Indexed: 11/05/2022] Open
Abstract
microRNA‑34a (miRNA‑34a) plays an important role in the pathogenesis of leukemia. This study aimed to explore its role in the proliferation of HL‑60 cells and the correlation with some of its predicted target genes: the cyclin‑dependent kinase 4 (CDK4), the oncogene MYB and the silent information regulator 1 (SIRT1). We first analyzed the expression of miR‑34a, CDK4, MYB and SIRT1 in peripheral blood samples from acute leukemia (AL) patients and healthy controls, and conducted a correlation analysis. HL‑60 cells were then transfected with miR‑34a and control 'scramble̓ miRNA, and quantitative RT‑PCR and western blotting were used to analyze the effects of the interfering sequence in HL‑60 cells. The expression of miR‑34a was significantly reduced in AL patients compared to healthy controls (P<0.01), and negatively correlated with the expression of CDK4 and MYB. Sub‑group analysis revealed that the expression of MYB was significantly lower in AL children <3 years old compared to those >3 years. Following the transfection of HL‑60 cells with miR‑34a, the mRNA level of CDK4, MYB and SIRT1 decreased by 53.2, 43.3 and 33.5%, respectively, compared to the control, similarly to the respective changes in protein levels. This study showed that the expression of miR‑34a negatively correlates with the expression of CDK4 and MYB in pediatric patients with acute leukemia. miRNA‑34a downregulates the expression of the CDK4, MYB and SIRT1 genes in vitro; it may thus represent a novel therapeutic target for acute leukemia.
Collapse
Affiliation(s)
- Ruihong Tang
- Department of Hematology, Capital Institute of Pediatrics‑Affiliated Children's Hospital, Beijing 100020, P.R. China
| | - Juanjuan Li
- Department of Hematology, Capital Institute of Pediatrics‑Affiliated Children's Hospital, Beijing 100020, P.R. China
| | - Mei Yue
- Department of Hematology, Capital Institute of Pediatrics‑Affiliated Children's Hospital, Beijing 100020, P.R. China
| | - Ziqin Liu
- Department of Hematology, Capital Institute of Pediatrics‑Affiliated Children's Hospital, Beijing 100020, P.R. China
| | - Shunqiao Feng
- Department of Hematology, Capital Institute of Pediatrics‑Affiliated Children's Hospital, Beijing 100020, P.R. China
| | - Suoqin Tang
- Department of Pediatrics, PLA General Hospital, Beijing 100853, P.R. China
| | - Tianyou Wang
- Department of Hematology, Capital Institute of Pediatrics‑Affiliated Children's Hospital, Beijing 100020, P.R. China
| |
Collapse
|
44
|
Ng WL, Chen G, Wang M, Wang H, Story M, Shay JW, Zhang X, Wang J, Amin ARMR, Hu B, Cucinotta FA, Wang Y. OCT4 as a target of miR-34a stimulates p63 but inhibits p53 to promote human cell transformation. Cell Death Dis 2014; 5:e1024. [PMID: 24457968 PMCID: PMC4040665 DOI: 10.1038/cddis.2013.563] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/14/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023]
Abstract
Human cell transformation is a key step for oncogenic development, which involves multiple pathways; however, the mechanism remains unclear. To test our hypothesis whether cell oncogenic transformation shares some mechanisms with the process of reprogramming non-stem cells to induced pluripotent stem cells (iPSC), we studied the relationship among the key factors for promoting or inhibiting iPSC in radiation-transformed human epithelial cell lines derived from different tissues (lung, breast and colon). We unexpectedly found that p63 and OCT4 were highly expressed (accompanied by low expressed p53 and miR-34a) in all transformed cell lines examined when compared with their non-transformed counterparts. We further elucidated the relationship of these factors: the 3p strand of miR-34a directly targeted OCT4 by binding to the 3′ untranslated region (3′-UTR) of OCT4 and, OCT4, in turn, stimulated p63 but inhibited p53 expression by binding to a specific region of the p63 or p53 promoter. Moreover, we revealed that the effects of OCT4 on promoting cell oncogenic transformation were by affecting p63 and p53. These results support that a positive loop exists in human cells: OCT4 upregulation as a consequence of inhibition of miR-34a, promotes p63 but suppresses p53 expression, which further stimulates OCT4 upregulation by downregulating miR-34a. This functional loop contributes significantly to cell transformation and, most likely, also to the iPSC process.
Collapse
Affiliation(s)
- W L Ng
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - G Chen
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M Wang
- Division of Space Life Sciences, Universities Space Research Association, Houston, TX, USA
| | - H Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M Story
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - J W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - X Zhang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - J Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - A R M R Amin
- Department of Hematology and Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - B Hu
- 1] Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA [2] Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - F A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, USA
| | - Y Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
45
|
Liu K, Huang J, Xie M, Yu Y, Zhu S, Kang R, Cao L, Tang D, Duan X. MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell. Autophagy 2014; 10:442-52. [PMID: 24418846 DOI: 10.4161/auto.27418] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MIR34A (microRNA 34a) is a tumor suppressor gene, but how it regulates chemotherapy response and resistance is not completely understood. Here, we show that the microRNA MIR34A-dependent high mobility group box 1 (HMGB1) downregulation inhibits autophagy and enhances chemotherapy-induced apoptosis in the retinoblastoma cell. HMGB1 is a multifaceted protein with a key role in autophagy, a self-degradative, homeostatic process with a context-specific role in cancer. MIR34A inhibits HMGB1 expression through a direct MIR34A-binding site within the HMGB1 3' untranslated region. MIR34A inhibition of HMGB1 leads to a decrease in autophagy under starvation conditions or chemotherapy treatment. Inhibition of autophagy promotes oxidative injury and DNA damage and increases subsequent CASP3 activity, CASP3 cleavage, and PARP1 [poly (ADP-ribose) polymerase 1] cleavage, which are important to the apoptotic process. Finally, upregulation of MIR34A, knockdown of HMGB1, or inhibition of autophagy (e.g., knockdown of ATG5 and BECN1) restores chemosensitivity and enhances tumor cell death in the retinoblastoma cell. These data provide new insights into the mechanisms governing the regulation of HMGB1 expression by microRNA and their possible contribution to autophagy and drug resistance.
Collapse
Affiliation(s)
- Ke Liu
- Department of Ophthalmology; The Second Xiangya Hospital; Central South University; Hunan, China
| | - Jun Huang
- Department of Orthopedics; The Second Xiangya Hospital; Central South University; Hunan, China
| | - Min Xie
- Department of Pediatrics; Xiangya Hospital; Central South University; Changsha, Hunan China
| | - Yan Yu
- Department of Pediatrics; Xiangya Hospital; Central South University; Changsha, Hunan China
| | - Shan Zhu
- Department of Pediatrics; Xiangya Hospital; Central South University; Changsha, Hunan China
| | - Rui Kang
- Department of Surgery; Hillman Cancer Center; University of Pittsburgh Cancer Institute; Pittsburgh, PA USA
| | - Lizhi Cao
- Department of Pediatrics; Xiangya Hospital; Central South University; Changsha, Hunan China
| | - Daolin Tang
- Department of Surgery; Hillman Cancer Center; University of Pittsburgh Cancer Institute; Pittsburgh, PA USA
| | - Xuanchu Duan
- Department of Ophthalmology; The Second Xiangya Hospital; Central South University; Hunan, China
| |
Collapse
|
46
|
ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:354-67. [PMID: 24287119 PMCID: PMC4357785 DOI: 10.1016/j.gpb.2013.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 09/14/2013] [Accepted: 11/14/2013] [Indexed: 02/08/2023]
Abstract
We aimed to shed new light on the roles of microRNAs (miRNAs) in liver cancer using an integrative in silico bioinformatics analysis. A new protocol for target prediction and functional analysis is presented and applied to the 26 highly differentially deregulated miRNAs in hepatocellular carcinoma. This framework comprises: (1) the overlap of prediction results by four out of five target prediction tools, including TargetScan, PicTar, miRanda, DIANA-microT and miRDB (combining machine-learning, alignment, interaction energy and statistical tests in order to minimize false positives), (2) evidence from previous microarray analysis on the expression of these targets, (3) gene ontology (GO) and pathway enrichment analysis of the miRNA targets and their pathways and (4) linking these results to oncogenesis and cancer hallmarks. This yielded new insights into the roles of miRNAs in cancer hallmarks. Here we presented several key targets and hundreds of new targets that are significantly enriched in many new cancer-related hallmarks. In addition, we also revealed some known and new oncogenic pathways for liver cancer. These included the famous MAPK, TGFβ and cell cycle pathways. New insights were also provided into Wnt signaling, prostate cancer, axon guidance and oocyte meiosis pathways. These signaling and developmental pathways crosstalk to regulate stem cell transformation and implicate a role of miRNAs in hepatic stem cell deregulation and cancer development. By analyzing their complete interactome, we proposed new categorization for some of these miRNAs as either tumor-suppressors or oncomiRs with dual roles. Therefore some of these miRNAs may be addressed as therapeutic targets or used as therapeutic agents. Such dual roles thus expand the view of miRNAs as active maintainers of cellular homeostasis.
Collapse
Affiliation(s)
- Mahmoud ElHefnawi
- Centre of Excellence for Advanced Sciences, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt.
| | - Bangli Soliman
- Centre of Excellence for Advanced Sciences, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| | - Nourhan Abu-Shahba
- Stem Cells Research Group, Centre of Excellence for Advanced Sciences, Medical Molecular Genetics Department, National Research Centre, Cairo 12622, Egypt
| | - Marwa Amer
- Biology Department, American University in Cairo (AUC), New Cairo 11211, Egypt; Faculty of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City 16432, Egypt
| |
Collapse
|
47
|
MicroRNAs-449a and -449b exhibit tumor suppressive effects in retinoblastoma. Biochem Biophys Res Commun 2013; 440:599-603. [DOI: 10.1016/j.bbrc.2013.09.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/22/2013] [Indexed: 01/08/2023]
|
48
|
Thériault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: a review. Clin Exp Ophthalmol 2013; 42:33-52. [PMID: 24433356 DOI: 10.1111/ceo.12132] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/07/2013] [Indexed: 12/13/2022]
Abstract
Retinoblastoma is a paediatric ocular tumour that continues to reveal much about the genetic basis of cancer development. Study of genomic aberrations in retinoblastoma tumours has exposed important mechanisms of cancer development and identified oncogenes and tumour suppressors that offer potential points of therapeutic intervention. The recent development of next-generation genomic technologies has allowed further refinement of the genomic landscape of retinoblastoma at high resolution. In a relatively short period of time, a wealth of genetic and epigenetic data has emerged on a small number of tumour samples. These data highlight the inherent molecular complexity of this cancer despite the fact that most retinoblastomas are initiated by the inactivation of a single tumour suppressor gene. This review outlines the current understanding of the genomic, genetic and epigenetic changes in retinoblastoma, highlighting recent genome-wide analyses that have identified exciting candidate genes worthy of further validation as potential prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Brigitte L Thériault
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
49
|
Beta M, Venkatesan N, Vasudevan M, Vetrivel U, Khetan V, Krishnakumar S. Identification and Insilico Analysis of Retinoblastoma Serum microRNA Profile and Gene Targets Towards Prediction of Novel Serum Biomarkers. Bioinform Biol Insights 2013; 7:21-34. [PMID: 23400111 PMCID: PMC3547501 DOI: 10.4137/bbi.s10501] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Retinoblastoma (RB) is a malignant tumor of the retina seen in children, and potential non invasive biomarkers are in need for rapid diagnosis and for prognosticating the therapy. This study was undertaken to identify the differentially expressed miRNAs in the serum of children with RB in comparison with the normal age matched serum, to analyze its concurrence with the existing RB tumor miRNA profile, to identify its novel gene targets specific to RB, and to study the expression of a few of the identified oncogenic miRNAs in the advanced stage primary RB patient’s serum sample. MiRNA profiling was performed on 14 pooled serum from children with advanced RB and 14 normal age matched serum samples, wherein 21 miRNAs were found to be upregulated (fold change ≤ −2.0, P ≤ 0.05) and 24 to be downregulated (fold change ≥ +2.0, P ≤ 0.05). Furthermore, intersection of 59 significantly deregulated miRNAs identified from RB tumor profiles with that of miRNAs detected in serum profile revealed that 33 miRNAs had followed a similar deregulation pattern in RB serum. Later we validated a few of the miRNAs (miRNA 17-92) identified by microarray in the RB patient serum samples (n = 20) by using qRT-PCR. Expression of the oncogenic miRNAs, miR-17, miR-18a, and miR-20a by qRT-PCR was significant in the serum samples exploring the potential of serum miRNAs identification as noninvasive diagnosis. Moreover, from miRNA gene target prediction, key regulatory genes of cell proliferation, apoptosis, and positive and negative regulatory networks involved in RB progression were identified in the gene expression profile of RB tumors. Therefore, these identified miRNAs and their corresponding target genes could give insights on potential biomarkers and key events involved in the RB pathway.
Collapse
Affiliation(s)
- Madhu Beta
- L & T Ocular Pathology Department, Kamalnayan Bajaj Research Institute, Vision Research Foundation, Sankara Nethralaya, Tamil Nadu, India. ; Shanmugha Arts, Science, Technology & Research Academy (SASTRA University), Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
50
|
Reis AHO, Vargas FR, Lemos B. More epigenetic hits than meets the eye: microRNAs and genes associated with the tumorigenesis of retinoblastoma. Front Genet 2012; 3:284. [PMID: 23233862 PMCID: PMC3516829 DOI: 10.3389/fgene.2012.00284] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/21/2012] [Indexed: 12/29/2022] Open
Abstract
Retinoblastoma (RB), a childhood neoplasia of the retinoblasts, can occur unilaterally or bilaterally, with one or multiple foci per eye. RB is associated with somatic loss of function of both alleles of the tumor suppressor gene RB1. Hereditary forms emerge due to germline loss of function mutations in RB1 alleles. RB has long been the prototypic “model” cancer ever since Knudson's “two-hit” hypothesis. However, a simple two-hit model for RB is challenged by an increasing number of studies documenting additional hits that contribute to RB development. Here we review the genetics and epigenetics of RB with a focus on the role of small non-coding RNAs (microRNAs) and on novel findings indicating the relevance of DNA methylation in the development and prognosis of this neoplasia. Studies point to an elaborated landscape of genetic and epigenetic complexity, in which a number of events and pahtways play crucial roles in the origin and prognosis of RB. These include roles for microRNAs, inprinted loci, and parent-of-origin contributions to RB1 regulation and RB progression. This complexity is also manifested in the structure of the RB1 locus itself: it includes numerous repetitive DNA segments and retrotransposon insertion elements, some of which are actively transcribed from the RB1 locus. Altogether, we conclude that RB1 loss of function represents the tip of an iceberg of events that determine RB development, progression, severity, and disease risk. Comprehensive assessment of personalized RB risk will require genetic and epigenetic evaluations beyond RB1 protein coding sequences.
Collapse
Affiliation(s)
- Adriana H O Reis
- Genetics Program, Instituto Nacional de Câncer Rio de Janeiro, Brazil
| | | | | |
Collapse
|