1
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Tsedilina TR, Sharova E, Iakovets V, Skorodumova LO. Systematic review of SLC4A11, ZEB1, LOXHD1, and AGBL1 variants in the development of Fuchs' endothelial corneal dystrophy. Front Med (Lausanne) 2023; 10:1153122. [PMID: 37441688 PMCID: PMC10333596 DOI: 10.3389/fmed.2023.1153122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/30/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The pathogenic role of variants in TCF4 and COL8A2 in causing Fuchs' endothelial corneal dystrophy (FECD) is not controversial and has been confirmed by numerous studies. The causal role of other genes, SLC4A11, ZEB1, LOXHD1, and AGBL1, which have been reported to be associated with FECD, is more complicated and less obvious. We performed a systematic review of the variants in the above-mentioned genes in FECD cases, taking into account the currently available population frequency information, transcriptomic data, and the results of functional studies to assess their pathogenicity. Methods Search for articles published in 2005-2022 was performed manually between July 2022 and February 2023. We searched for original research articles in peer-reviewed journals, written in English. Variants in the genes of interest identified in patients with FECD were extracted for the analysis. We classified each presented variant by pathogenicity status according to the ACMG criteria implemented in the Varsome tool. Diagnosis, segregation data, presence of affected relatives, functional analysis results, and gene expression in the corneal endothelium were taken into account. Data on the expression of genes of interest in the corneal endothelium were extracted from articles in which transcriptome analysis was performed. The identification of at least one variant in a gene classified as pathogenic or significantly associated with FECD was required to confirm the causal role of the gene in FECD. Results The analysis included 34 articles with 102 unique ZEB1 variants, 20 articles with 64 SLC4A11 variants, six articles with 26 LOXHD1 variants, and five articles with four AGBL1 variants. Pathogenic status was confirmed for seven SLC4A11 variants found in FECD. No variants in ZEB1, LOXHD1, and AGBL1 genes were classified as pathogenic for FECD. According to the transcriptome data, AGBL1 and LOXHD1 were not expressed in the corneal endothelium. Functional evidence for the association of LOXHD1, and AGBL1 with FECD was conflicting. Conclusion Our analysis confirmed the causal role of SLC4A11 variants in the development of FECD. The causal role of ZEB1, LOXHD1, and AGBL1 variants in FECD has not been confirmed. Further evidence from familial cases and functional analysis is needed to confirm their causal roles in FECD.
Collapse
Affiliation(s)
- Tatiana Romanovna Tsedilina
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Elena Sharova
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Valeriia Iakovets
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Liubov Olegovna Skorodumova
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
3
|
Expression and Function of ZEB1 in the Cornea. Cells 2021; 10:cells10040925. [PMID: 33923743 PMCID: PMC8074155 DOI: 10.3390/cells10040925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is an important transcription factor for epithelial to mesenchymal transition (EMT) and in the regulation of cell differentiation and transformation. In the cornea, ZEB1 presents in all three layers: the epithelium, the stroma and the endothelium. Mutations of ZEB1 have been linked to multiple corneal genetic defects, particularly to the corneal dystrophies including keratoconus (KD), Fuchs endothelial corneal dystrophy (FECD), and posterior polymorphous corneal dystrophy (PPCD). Accumulating evidence indicates that dysfunction of ZEB1 may affect corneal stem cell homeostasis, and cause corneal cell apoptosis, stromal fibrosis, angiogenesis, squamous metaplasia. Understanding how ZEB1 regulates the initiation and progression of these disorders will help us in targeting ZEB1 for potential avenues to generate therapeutics to treat various ZEB1-related disorders.
Collapse
|
4
|
Skorodumova LO, Belodedova AV, Sharova EI, Malyugin BE. [Search for genetic markers for precise diagnostics of keratoconus]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:9-20. [PMID: 30816092 DOI: 10.18097/pbmc20196501009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Keratoconus is a chronic disorder of the cornea, characterized by its progressive thinning, stretching, and conical protrusion. Diagnostics of subclinical keratoconus, as well as its early stages (forme fruste), is a complex problem. The presence of these forms of keratoconus in a patient is one of the reasons for the development of keratectasia after laser refractive surgery. Currently, the role of genetic factors in keratoconus development has been proven. This indicates the possibility of diagnostics of subclinical and forme fruste keratoconus using genetic markers. Knowledge about the patient's genetic susceptibility to keratoconus would allow correcting the tactics of treatment of refractive anomalies and avoiding serious side effects. The studies of causal mutations indicate the genetic heterogeneity of keratoconus, which complicates the development of a diagnostic panel. Selection of candidate variants from the currently known ones based on clear criteria may be one of the approaches for diagnostic markers search. In this review, we have analyzed articles on keratoconus markers in order to form a list of candidate variants for genotyping in the Russian population. The selection criteria took into account the complexes of symptoms in which a marker was found, populations in which a particular marker was investigated, the presence and results of replication studies. The analysis included markers in VSX1, SOD1, ZEB1, LOX, CAST, DOCK9, TGFBI, HGF, MAP3K19, KCND3, COL4A3, COL4A4, COL5A1, FNDC3B, FOXO1, BANP-ZNF469, MPDZ-NF1B, WNT10A genes. Based on the results of the analysis, the following candidate variants were selected for genotyping in the Russian population of patients with keratoconus: rs1536482 and rs7044529 in the COL5A1 gene, rs5745752 and rs2286194 in the HGF gene, rs4954218 in the MAP3K19 gene, rs4839200 near the KCND3 gene, rs2721051 near the FOXO1 gene, rs1324183 between the MPDZ and the NF1B genes, and rs121908120 in the WNT10A gene.
Collapse
Affiliation(s)
- L O Skorodumova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - A V Belodedova
- Fyodorov Eye Microsurgery Complex Federal State Institution, Moscow, Russia
| | - E I Sharova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - B E Malyugin
- Fyodorov Eye Microsurgery Complex Federal State Institution, Moscow, Russia
| |
Collapse
|
5
|
Chung DWD, Frausto RF, Chiu S, Lin BR, Aldave AJ. Investigating the Molecular Basis of PPCD3: Characterization of ZEB1 Regulation of COL4A3 Expression. Invest Ophthalmol Vis Sci 2016; 57:4136-43. [PMID: 27537263 PMCID: PMC4991021 DOI: 10.1167/iovs.16-19533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the role of the zinc finger e-box binding homeobox 1 (ZEB1) transcription factor in posterior polymorphous corneal dystrophy 3 by demonstrating its ability to regulate type IV collagen gene transcription via binding to putative E2 box motifs. METHODS Putative E2 box motifs were identified by in silico analysis within the promoter region of collagen, type IV, alpha3 (COL4A3) and collagen, type IV, alpha4 (COL4A4). To test the ability of ZEB1 to bind to each identified E2 box, electrophoretic mobility shift assays were performed by incubating ZEB1-enriched nuclear extracts with DIG-labeled probes containing one of each of the identified E2 box motifs. Dual-luciferase reporter assays were performed to test the effects of ZEB1 on the luciferase activity of COL4A3 and cadherin 1 (CDH1) promoter constructs, and to determine the effect of a ZEB1 truncating mutation on CDH1 promoter activity. RESULTS ZEB1 exhibited binding to six of the nine COL4A3 E2 box probes, whereas no binding was observed for either of the two COL4A4 E2 box probes. ZEB1 overexpression resulted in reduced activity of the COL4A3 promoter construct containing all identified E2 box motifs, whereas a truncating ZEB1 mutation led to the loss of ZEB1-dependent repression of the CDH1 promoter. CONCLUSIONS COL4A3 gene expression is negatively regulated by ZEB1 binding to E2 box motifs in the COL4A3 promoter region. Therefore, the altered expression of type IV collagens, particularly COL4A3, in the corneal endothelium in individuals with PPCD3 is likely due to reduced transcriptional repression in the setting of a single functional ZEB1 allele.
Collapse
Affiliation(s)
- Duk-Won D. Chung
- Stein Eye Institute David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Ricardo F. Frausto
- Stein Eye Institute David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Stephan Chiu
- Stein Eye Institute David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Benjamin R. Lin
- Stein Eye Institute David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Anthony J. Aldave
- Stein Eye Institute David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
6
|
Chung DWD, Frausto RF, Ann LB, Jang MS, Aldave AJ. Functional impact of ZEB1 mutations associated with posterior polymorphous and Fuchs' endothelial corneal dystrophies. Invest Ophthalmol Vis Sci 2014; 55:6159-66. [PMID: 25190660 DOI: 10.1167/iovs.14-15247] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To assess the impact of zinc finger E-box binding homeobox 1 (ZEB1) gene mutations associated with posterior polymorphous corneal dystrophy 3 (PPCD3) and Fuchs' endothelial corneal dystrophy (FECD). METHODS Thirteen of the 27 previously reported ZEB1 truncating mutations associated with PPCD3 and the six previously reported ZEB1 missense mutations associated with FECD were generated and transiently transfected into a corneal endothelial cell line. Protein abundance was determined by immunoblotting, while intracellular localization was determined by fluorescence confocal microscopy. RESULTS Three of the 13 ZEB1 truncated mutants, and none of the missense mutants, showed significant decrease in mutant ZEB1 protein levels. Predominant nuclear localization was observed for truncated ZEB1 mutant proteins with a predicted molecular weight of less than 92 kilodaltons. The two largest mutant proteins that lacked a putative nuclear localization signal (NLS), p.(Ser638Cysfs*5) and p.(Gln884Argfs*37), primarily localized to the cytoplasm, while the NLS-containing mutant proteins, p.(Glu997Alafs*7) and p.(Glu1039Glyfs*6), primarily localized to the nucleus. All the missense ZEB1 mutant proteins were exclusively present in the nucleus. CONCLUSIONS ZEB1 truncating mutations result in a significant decrease and/or impaired nuclear localization of the encoded protein, indicating that ZEB1 haploinsufficiency in PPCD3 may result from decreased protein production and/or impaired cellular localization. Conversely, as the reported ZEB1 missense mutations do not significantly impact protein abundance or nuclear localization, the effect of these mutations on ZEB1 function and their relationship to FECD, if any, remain to be elucidated.
Collapse
Affiliation(s)
- Duk-Won D Chung
- The Jules Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Ricardo F Frausto
- The Jules Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Lydia B Ann
- The Jules Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Michelle S Jang
- The Jules Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Anthony J Aldave
- The Jules Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| |
Collapse
|
7
|
Jang MS, Roldan AN, Frausto RF, Aldave AJ. Posterior polymorphous corneal dystrophy 3 is associated with agenesis and hypoplasia of the corpus callosum. Vision Res 2014; 100:88-92. [PMID: 24780443 DOI: 10.1016/j.visres.2014.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/14/2014] [Accepted: 04/02/2014] [Indexed: 11/16/2022]
Abstract
Posterior polymorphous corneal dystrophy (PPCD) is a dominantly inherited disorder of the corneal endothelium that has been associated with mutations in the zinc-finger E-box binding homeobox 1 gene (ZEB1) gene in approximately one-third of affected families. While the corneal dystrophies have traditionally been considered isolated disorders of the corneal endothelium, we have recently identified two cases of maldevelopment of the corpus callosum in unrelated individuals with PPCD. The proband of the first family was diagnosed shortly after birth with agenesis of the corpus callosum and several other developmental abnormalities. Karyotype, FISH and whole genome copy number variant analyses were normal. She was subsequently diagnosed with PPCD, prompting screening of the ZEB1 gene, which identified a novel deletion (c.449delG; p.(Gly150Alafs*36)) present in the heterozygous state that was not identified in either unaffected parent. The proband of the second family was diagnosed several months after birth with thinning of the corpus callosum and PPCD. Whole genome copy number variant analysis revealed a 1.79 Mb duplication of 17q12 in the proband and her father and brother, neither of whom had PPCD. ZEB1 sequencing identified a novel deletion (c.1913-1914delCA; p.(Ser638Cysfs*5)) present in the heterozygous state, which was also identified in the proband's affected mother. Thus, we report the first two cases of the association of PPCD with a developmental abnormality of the brain, in this case maldevelopment of the corpus callosum.
Collapse
Affiliation(s)
- Michelle S Jang
- The Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ashley N Roldan
- The Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ricardo F Frausto
- The Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Anthony J Aldave
- The Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Aldave AJ, Ann LB, Frausto RF, Nguyen CK, Yu F, Raber IM. Classification of posterior polymorphous corneal dystrophy as a corneal ectatic disorder following confirmation of associated significant corneal steepening. JAMA Ophthalmol 2014; 131:1583-90. [PMID: 24113819 DOI: 10.1001/jamaophthalmol.2013.5036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE The identification of steep corneal curvatures in a significant percentage of patients with posterior polymorphous corneal dystrophy (PPCD) confirms this previously reported association and suggests a role for the ZEB1 protein in keratocyte function. OBJECTIVE To determine whether PPCD is characterized by significant corneal steepening. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study at university-based and private ophthalmology practices of 38 individuals (27 affected and 11 unaffected) from 23 families with PPCD. EXPOSURE Slitlamp examination and corneal topographic imaging were performed for individuals with PPCD and unaffected family members. Saliva or blood samples were obtained from each individual for DNA isolation and ZEB1 sequencing. Corneal ZEB1 expression was measured using immunohistochemistry. MAIN OUTCOMES AND MEASURES Percentage of individuals affected with PPCD and controls with an average keratometric value greater than 48.0 diopters (D) in each eye; the mean keratometric value averaged for both eyes of individuals with PPCD and controls; and the correlation of ZEB1 mutation with keratometric value. RESULTS ZEB1 coding region mutations were identified in 7 of the 27 affected individuals. Ten of the 38 individuals (26.3%) had average keratometric values greater than 48.0 D OU: 10 of 27 individuals with PPCD (37.0%; 6 of 7 individuals with ZEB1 mutations [85.7%] and 4 of 20 individuals without ZEB1 mutations [20.0%]) and 0 of 11 unaffected individuals (P = .04 for unaffected vs affected individuals; P = .004 for individuals with PPCD with vs without ZEB1 mutation). The mean keratometric value of each eye of affected individuals (48.2 D) was significantly greater than that of each eye of unaffected family members (44.1 D) (P = .03). Affected individuals with ZEB1 mutations demonstrated a mean keratometric value of 53.3 D, which was significantly greater than that of affected individuals without ZEB1 mutations (46.5 D; P = .004). Fluorescence immunohistochemistry demonstrated ZEB1 expression in keratocyte nuclei. CONCLUSIONS AND RELEVANCE Abnormally steep corneal curvatures are identified in 37% of all individuals with PPCD and 86% of affected individuals with PPCD secondary to ZEB1 mutations. ZEB1 is present in keratocyte nuclei, suggesting a role for ZEB1 in keratocyte function. Therefore, ZEB1 may play a role in both corneal stromal and endothelial development and function, and PPCD should be considered both an endothelial dystrophy and an ectatic disorder.
Collapse
Affiliation(s)
- Anthony J Aldave
- Jules Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles
| | - Lydia B Ann
- Jules Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles
| | - Ricardo F Frausto
- Jules Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles
| | - Catherine K Nguyen
- Jules Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles
| | - Fei Yu
- Jules Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles
| | | |
Collapse
|
9
|
Abstract
Fuchs' corneal dystrophy (FCD) is a common late-onset genetic disorder of the corneal endothelium. It causes loss of endothelial cell density and excrescences in the Descemet membrane, eventually progressing to corneal edema, necessitating corneal transplantation. The genetic basis of FCD is complex and heterogeneous, demonstrating variable expressivity and incomplete penetrance. To date, three causal genes, ZEB1, SLC4A11 and LOXHD1, have been identified, representing a small proportion of the total genetic load of FCD. An additional four loci have been localized, including a region on chromosome 18 that is potentially responsible for a large proportion of all FCD cases. The elucidation of the causal genes underlying these loci will begin to clarify the pathogenesis of FCD and pave the way for the emergence of nonsurgical treatments.
Collapse
Affiliation(s)
- Benjamin W Iliff
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
10
|
Abstract
The aim of this review was to provide an evidenced-based review of the genetic basis of the corneal endothelial dystrophies. A review of the English language peer-reviewed literature describing the molecular genetic basis of posterior polymorphous corneal dystrophy (PPCD), congenital hereditary endothelial dystrophy (CHED), Fuchs endothelial corneal dystrophy (FECD) and X-linked endothelial corneal dystrophy (XECD) was performed. Mutations in several genes have been implicated as playing a pathogenic role in the corneal endothelial dystrophies: VSX1 mutations in PPCD1; COL8A2 mutations in PPCD2 and FECD; ZEB1 mutations in PPCD3 and FECD; and SLC4A11 mutations in CHED2 and FECD. However, linkage, association and familial segregation analyses support a role of only one gene in each corneal endothelial dystrophy: ZEB1 in PPCD3, SLC4A11 in CHED2 and COL8A2 in FECD (early onset). In addition, insufficient evidence exists to consider the autosomal dominant form of CHED (CHED1) as distinct from PPCD. An accurate classification of the corneal endothelial dystrophies requires a critical review of the evidence to support the role of each suggested chromosomal locus, gene and genetic mutation associated with a corneal endothelial dystrophy. Only after the separation of evidence from opinion is performed can a critical examination of the molecular pathways that lead to endothelial dysfunction in each of these disorders be accurately performed.
Collapse
Key Words
- corneal dystrophy, Fuchs endothelial, 1
- corneal dystrophy, Fuchs endothelial, 2
- corneal dystrophy, Fuchs endothelial, early onset
- corneal dystrophy, Fuchs endothelial, late onset
- corneal dystrophy, posterior polymorphous, 1
- corneal dystrophy, posterior polymorphous, 2
- corneal dystrophy, posterior polymorphous, 3
- corneal endothelial dystrophy 1
- corneal endothelial dystrophy 2
Collapse
Affiliation(s)
- A J Aldave
- The Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095–7003, USA.
| | | | | |
Collapse
|
11
|
Vincent AL. Corneal dystrophies and genetics in the International Committee for Classification of Corneal Dystrophies era: a review. Clin Exp Ophthalmol 2013; 42:4-12. [PMID: 24433354 DOI: 10.1111/ceo.12149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/06/2013] [Indexed: 02/02/2023]
Abstract
Many of the corneal dystrophies have now been genetically characterized, and a system was established in 2008 by The International Committee for Classification of Corneal Dystrophies (IC3D) in an attempt to standardize the nomenclature. IC3D provided a classification system whereby all dystrophies can be categorized on the basis of the underlying genetic knowledge. Since that time, further work has established even more phenotypic and allelic heterogeneity than anticipated, particular for Fuchs endothelial corneal dystrophy and posterior polymorphous dystrophy. Using genome-wide association studies, a number of genes are now implicated both in normal corneal quantitative traits, such as central corneal thickness, as well as in disease. There is also a trend towards functional characterization of the genetic variants involved to elucidate the pathophysiology of these entities. This review article will provide an overview of the knowledge to date, with an emphasis on findings since the IC3D classification was published in 2008.
Collapse
Affiliation(s)
- Andrea L Vincent
- Department of Ophthalmology, National Eye Centre, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Aldave AJ, Han J, Frausto RF. Genetics of the corneal endothelial dystrophies: an evidence-based review. Clin Genet 2013; 84:109-19. [PMID: 23662738 DOI: 10.1111/cge.12191] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/27/2022]
Abstract
The aim of this review was to provide an evidenced-based review of the genetic basis of the corneal endothelial dystrophies. A review of the English language peer-reviewed literature describing the molecular genetic basis of posterior polymorphous corneal dystrophy (PPCD), congenital hereditary endothelial dystrophy (CHED), Fuchs endothelial corneal dystrophy (FECD) and X-linked endothelial corneal dystrophy (XECD) was performed. Mutations in several genes have been implicated as playing a pathogenic role in the corneal endothelial dystrophies: VSX1 mutations in PPCD1; COL8A2 mutations in PPCD2 and FECD; ZEB1 mutations in PPCD3 and FECD; and SLC4A11 mutations in CHED2 and FECD. However, linkage, association and familial segregation analyses support a role of only one gene in each corneal endothelial dystrophy: ZEB1 in PPCD3, SLC4A11 in CHED2 and COL8A2 in FECD (early onset). In addition, insufficient evidence exists to consider the autosomal dominant form of CHED (CHED1) as distinct from PPCD. An accurate classification of the corneal endothelial dystrophies requires a critical review of the evidence to support the role of each suggested chromosomal locus, gene and genetic mutation associated with a corneal endothelial dystrophy. Only after the separation of evidence from opinion is performed can a critical examination of the molecular pathways that lead to endothelial dysfunction in each of these disorders be accurately performed.
Collapse
Key Words
- corneal dystrophy, Fuchs endothelial, 1
- corneal dystrophy, Fuchs endothelial, 2
- corneal dystrophy, Fuchs endothelial, early onset
- corneal dystrophy, Fuchs endothelial, late onset
- corneal dystrophy, posterior polymorphous, 1
- corneal dystrophy, posterior polymorphous, 2
- corneal dystrophy, posterior polymorphous, 3
- corneal endothelial dystrophy 1
- corneal endothelial dystrophy 2
Collapse
Affiliation(s)
- A J Aldave
- The Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095–7003, USA.
| | | | | |
Collapse
|
13
|
Dehkordi FA, Rashki A, Bagheri N, Chaleshtori MH, Memarzadeh E, Salehi A, Ghatreh H, Zandi F, Yazdanpanahi N, Tabatabaiefar MA, Chaleshtori MH. Study of VSX1 mutations in patients with keratoconus in southwest Iran using PCR-single-strand conformation polymorphism/heteroduplex analysis and sequencing method. Acta Cytol 2013; 57:646-51. [PMID: 24107477 DOI: 10.1159/000353297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Keratoconus (KC) is an eye disorder in which the cornea is swollen, thinned and deformed. Despite extensive studies, the pathophysiological processes and genetic etiology of KC are unknown. The disease incidence is approximately 1 in 2,000, and it is the most common cause of corneal transplantation in the USA. Many genes are involved in the disease, but evidence suggests a major role for VSX1 in the etiology of KC. This study aimed to determine the frequency of mutations in exons 2, 3 and 4 of the VSX1 gene in Chaharmahal va Bakhtiari province in the southwest of Iran. STUDY DESIGN In this experimental study, mutations in 3 exons, namely exons 2, 3 and 4, of VSX1 were investigated in 50 patients with KC and 50 healthy control subjects. DNA was extracted using a standard phenol-chloroform method. PCR-single-strand conformational polymorphism/heteroduplex analysis was performed, followed by DNA sequencing to confirm the identified motility shifts. RESULTS H244R mutations were found in 1 patient and also in 1 healthy control subject. Furthermore, 12 polymorphisms were identified in patients with KC and 7 in healthy control subjects [rs6138482 and c.546A>G (rs12480307)]. CONCLUSION Our investigation showed that KC-related VSX1 mutations were found in a very small proportion of the studied patients from Iran. Further investigations on other genes are needed to clarify their roles in KC pathogenesis.
Collapse
|