1
|
Astley RA, Mursalin MH, Coburn PS, Livingston ET, Nightengale JW, Bagaruka E, Hunt JJ, Callegan MC. Ocular Bacterial Infections: A Ten-Year Survey and Review of Causative Organisms Based on the Oklahoma Experience. Microorganisms 2023; 11:1802. [PMID: 37512974 PMCID: PMC10386592 DOI: 10.3390/microorganisms11071802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular infections can be medical emergencies that result in permanent visual impairment or blindness and loss of quality of life. Bacteria are a major cause of ocular infections. Effective treatment of ocular infections requires knowledge of which bacteria are the likely cause of the infection. This survey of ocular bacterial isolates and review of ocular pathogens is based on a survey of a collection of isolates banked over a ten-year span at the Dean McGee Eye Institute in Oklahoma. These findings illustrate the diversity of bacteria isolated from the eye, ranging from common species to rare and unique species. At all sampled sites, staphylococci were the predominant bacteria isolated. Pseudomonads were the most common Gram-negative bacterial isolate, except in vitreous, where Serratia was the most common Gram-negative bacterial isolate. Here, we discuss the range of ocular infections that these species have been documented to cause and treatment options for these infections. Although a highly diverse spectrum of species has been isolated from the eye, the majority of infections are caused by Gram-positive species, and in most infections, empiric treatments are effective.
Collapse
Affiliation(s)
- Roger A Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Phillip S Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Erin T Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - James W Nightengale
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eddy Bagaruka
- Department of Biology, Oklahoma Christian University, Edmond, OK 73013, USA
| | - Jonathan J Hunt
- Department of Biology, Oklahoma Christian University, Edmond, OK 73013, USA
| | - Michelle C Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Zhu BP, Zhou J, Wang Z, Hu Y, Cai M, Yang L, Dai J, Hu Y. Interactions between intestinal morphology, digestion, inflammatory responses, and gut microbiota of juvenile channel catfish elicited by dietary enzymatic rice protein. FISH & SHELLFISH IMMUNOLOGY 2022; 127:155-165. [PMID: 35716969 DOI: 10.1016/j.fsi.2022.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The reduction of fishmeal in aquafeeds has been the concern of researchers. Replacing fishmeal with plant proteins affects intestinal function and inflammation, but the interaction between the intestinal responses and gut microbiota remains unclear. In this study, juvenile channel catfish (Ictalurus punctatus) was fed with four diets in which enzymatic rice protein (RP) replaced fishmeal at levels of 0 (FM), 2.5% (RP2.5), 5.0% (RP5.0), and 7.5% (RP7.5) for 8 weeks to solve the problem mentioned above. Quantification of intestinal morphology showed that 2.5% or 5.0% RP significantly increased villus length and goblet cell number, accompanied by higher activities of intestinal trypsin, alkaline phosphatase (AKP), and Na+/K+-ATPase (NKA) in RP2.5 group (P < 0.05). In contrast, 7.5% RP slightly damaged the intestinal mucosa and significantly reduced the activities of amylase, AKP, and NKA, as well as decreased serum complement 4 (C4) and immunoglobulin M (IgM). Noteworthy, RT-qPCR showed that 2.5% RP significantly down-regulated intestinal mRNA expression level of il8, while up-regulated mif, tlr4, tlr7, tgfβ3, and cldn2. In contrast, 7.5% RP up-regulated the mRNA expression levels of il1β, il8, and mif, while down-regulated cldn3d. Analysis of gut microbiota showed that 2.5% RP increased the relative abundance of Bacteroidetes and significantly activated potential functions of gut microbiota involved in carbohydrate metabolism. The 7.5% RP increased the diversity of the gut microbiota, accompanied by a significant increase in the relative abundance of conditionally pathogenic bacteria such as Vibrio, Serratia, and Aeromonas (classified as Proteobacteria). Notably, Vibrio was the biomarker species with the greatest difference between the FM and RP7.5 groups (genus level). Correlation analysis indicated that Vibrio may affect immunity through the C4 pathway and further lead to gut inflammation and digestive impairment. Taken above, these results indicated that RP could affect intestinal morphology, digestion, and inflammation, and interact with the composition and potential function of gut microbiota. The low RP supplement (2.5%) improved intestinal morphology and digestion, while high supplement (7.5%) disrupted gut microbiota homeostasis, resulting in damage to intestinal mucosa and inflammatory response.
Collapse
Affiliation(s)
- Bo-Paul Zhu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Jiancheng Zhou
- Dabeinong Fisheries Technology Group, Dabeinong Group, Wuhan, Hubei, 430000, China
| | - Ziqin Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yajun Hu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Minglang Cai
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Linlin Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jihong Dai
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yi Hu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
3
|
Bondaruk J, Jaksik R, Wang Z, Cogdell D, Lee S, Chen Y, Dinh KN, Majewski T, Zhang L, Cao S, Tian F, Yao H, Kuś P, Chen H, Weinstein JN, Navai N, Dinney C, Gao J, Theodorescu D, Logothetis C, Guo CC, Wang W, McConkey D, Wei P, Kimmel M, Czerniak B. The origin of bladder cancer from mucosal field effects. iScience 2022; 25:104551. [PMID: 35747385 PMCID: PMC9209726 DOI: 10.1016/j.isci.2022.104551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 12/30/2022] Open
Abstract
Whole-organ mapping was used to study molecular changes in the evolution of bladder cancer from field effects. We identified more than 100 dysregulated pathways, involving immunity, differentiation, and transformation, as initiators of carcinogenesis. Dysregulation of interleukins signified the involvement of inflammation in the incipient phases of the process. An aberrant methylation/expression of multiple HOX genes signified dysregulation of the differentiation program. We identified three types of mutations based on their geographic distribution. The most common were mutations restricted to individual mucosal samples that targeted uroprogenitor cells. Two types of mutations were associated with clonal expansion and involved large areas of mucosa. The α mutations occurred at low frequencies while the β mutations increased in frequency with disease progression. Modeling revealed that bladder carcinogenesis spans 10-15 years and can be divided into dormant and progressive phases. The progressive phase lasted 1-2 years and was driven by β mutations.
Collapse
Affiliation(s)
- Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujie Chen
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX, USA
| | - Khanh Ngoc Dinh
- Department of Statistics and the Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Shaolong Cao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paweł Kuś
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Romanowski EG, Yadav S, Stella NA, Yates KA, Romanowski JE, Dhaliwal DK, Shanks RMQ. Bacterial Keratitis: Similar Bacterial and Clinical Outcomes in Female versus Male New Zealand White Rabbits Infected with Serratia marcescens. Curr Eye Res 2021; 47:505-510. [PMID: 34854780 DOI: 10.1080/02713683.2021.2013897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Females and males respond differently to a number of systemic viral infections. Differences between females and males with respect to the severity of keratitis caused by Gram-negative bacteria such as Serratia marcescens are less well established. METHODS In this study, we injected female and male New Zealand White rabbit corneas with a keratitis isolate of S. marcescens and evaluated the eyes after 48 hours for a number of clinical and microbiological parameters. RESULTS No statistical differences in bacterial burden and corneal scores were recorded between female and male rabbits although there was a non-significant trend toward a higher frequency of female rabbits demonstrating hypopyons. CONCLUSIONS This data suggests that for experimental bacterial keratitis studies involving Gram-negative rods, a single sex or mixed group of rabbit is sufficient for evaluating pathology and bacterial burdens. This will reduce the number of animals used for subsequent studies.
Collapse
Affiliation(s)
- Eric G Romanowski
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sanya Yadav
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicholas A Stella
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kathleen A Yates
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John E Romanowski
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deepinder K Dhaliwal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Atta S, Perera C, Nayyar S, Kowalski RP, Jhanji V. An 18-Year Overview of Serratia marcescens Ocular Infection. Eye Contact Lens 2021; 47:471-475. [PMID: 34050088 DOI: 10.1097/icl.0000000000000803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Serratia marcescens is a frequent ocular bacterial pathogen implicated in keratitis, endophthalmitis, and conjunctivitis. We evaluated the risk factors and treatment outcomes of ocular infections due to S. marcescens. METHODS In this retrospective observational study, all S. marcescens-positive cases between February 2002 and February 2020 were reviewed for ocular risk factors that included log of minimal angle of resolution visual acuity (VA), medical management, and time to epithelial defect closure. RESULTS Fifty-one patients were identified (72.5% females, 46.8±23.3 years). Forty-six patients had complete medical records, and 5 had microbiology data available. The most prevalent ocular risk factors were, contact lens (CL) use (68.6%), corneal disease (52.9%), and history of ocular surgery (41.2%). Mean presenting VA was 1.3±1.0. About half of the patients presented with a central ulcer (49%, 25), large infiltrate (20.4±31.8 mm2 mean), and hypopyon (43.1%, 22). All cases were reported to be susceptible to ciprofloxacin. Defect closure occurred in 52.3±117.1 days and final VA was 0.86±0.88. Adjunctive treatments were required in 14 cases (27.5%). One patient underwent surgical intervention. Features associated with poor VA outcomes included, history of glaucoma (P=0.038), older age at presentation (P<0.001), presence of hypopyon (0.045), poor VA at presentation (0.0086), time to epithelial defect closure (0.0196), and large infiltrate size (P=0.0345). CONCLUSIONS S. marcescens keratitis and conjunctivitis is associated with CL use and history of ocular surface disease. Worse outcomes were associated with older age, infiltrate size, presence of hypopyon, worse initial VA, longer time to epithelial defect closure, and history of glaucoma.
Collapse
Affiliation(s)
- Sarah Atta
- Department of Ophthalmology (S.A., R.P.K., V.J.), University of Pittsburgh School of Medicine, Pittsburgh, PA; Department of Ophthalmology (C.P.), Stanford University School of Medicine, Stanford, CA; and The Charles T. Campbell Ophthalmic Microbiology Laboratory (S.N., R.P.K., V.J.), University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | | | | | | |
Collapse
|
6
|
The Rcs Stress Response System Regulator GumB Modulates Serratia marcescens-Induced Inflammation and Bacterial Proliferation in a Rabbit Keratitis Model and Cytotoxicity In Vitro. Infect Immun 2021; 89:e0011121. [PMID: 33820815 DOI: 10.1128/iai.00111-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, we tested the hypothesis that the conserved bacterial IgaA-family protein, GumB, mediates microbial pathogenesis associated with Serratia marcescens ocular infections through regulation of the Rcs stress response system. The role of the Rcs system and bacterial stress response systems for microbial keratitis is not known, and the role of IgaA proteins in mammalian pathogenesis models has only been tested with partial-function allele variants of Salmonella. Here, we observed that an Rcs-activated gumB mutant had a >50-fold reduction in proliferation compared to the wild type within rabbit corneas at 48 h and demonstrated a notable reduction in inflammation based on inflammatory signs, including the absence of hypopyons, and proinflammatory markers measured at the RNA and protein levels. The gumB mutant phenotypes could be complemented by wild-type gumB on a plasmid. We observed that bacteria with an inactivated Rcs stress response system induced high levels of ocular inflammation and restored corneal virulence to the gumB mutant. The high virulence of the ΔrcsB mutant was dependent upon the ShlA cytolysin transporter ShlB. Similar results were found for testing the cytotoxic effects of wild-type and mutant bacteria on a human corneal epithelial cell line in vitro. Together, these data indicate that GumB regulates virulence factor production through the Rcs system, and this overall stress response system is a key mediator of a bacterium's ability to induce vision-threatening keratitis.
Collapse
|
7
|
Konda N, Kaur I, Garg P, Chakrabarti S, Willcox MDP. Toll-like receptor gene polymorphisms in patients with keratitis. Cont Lens Anterior Eye 2020; 44:101352. [PMID: 32723620 DOI: 10.1016/j.clae.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To investigate differences in SNPs in TLR genes between people who had keratitis and controls in an Indian population. METHODS 145 cases of keratitis and 189 matched controls were recruited. DNA was extracted from peripheral blood. Single nucleotide polymorphisms (SNP) in TLR2 (n = 6), TLR4 (n = 15), TLR5 (n = 13) and TLR9 (n = 10) were analysed. The risk of developing keratitis was assessed based on allele, genotype and haplotype associations. RESULTS For all cases of keratitis, the TLR4 SNP rs4986791 TC genotype frequency was significantly higher in cases (p = 0.006, OR = 1.96, 95 % CI 1.19-3.2). Including cases of only microbial keratitis (MK) revealed that genotypes in TLR2 SNP rs5743706 TA (p = 0.0001; OR = 8.61; 95 % CI 2.59-28.56)), TLR4 SNP s4986791 TC (p = 0.002; OR = 2.65; 95 % CI 1.39-5.07) were significantly more common for MK, whereas the TLR5 SNP rs2241096 A allele (p = 0.00316, OR = 0.42, 95 % CI 0.2-0.9286) and GA genotype (p = 0.016; OR = 0.45; 95 % CI 0.23-0.86) was significantly less common in MK cases. The TLR2 SNP rs5743706 genotype TA was significantly less common in the sterile keratitis (SK) group (p = 0.004, OR = 0.43, 95 %CI 0.24-0.77). Haplotype analysis of MK compared to controls showed that TLR2 AT was more common in controls (p = 0.003); TLR4 ACAC was more common in cases (p = 0.004); TLR5 TGGCA was more common in controls (p = 0.001). CONCLUSION The present study revealed multiple associations between variants across TLR genes, which may have implications for understanding the underlying host factors, risk of developing keratitis and molecular pathogenesis in keratitis.
Collapse
Affiliation(s)
- Nagaraju Konda
- School of Optometry and Vision Science, University of New South Wales, Australia; Brien Holden Vision Institute, Sydney, Australia; School of Medical Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Prashant Garg
- The Cornea Institute, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Subhabrata Chakrabarti
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Australia.
| |
Collapse
|
8
|
Rius-Rocabert S, Llinares Pinel F, Pozuelo MJ, García A, Nistal-Villan E. Oncolytic bacteria: past, present and future. FEMS Microbiol Lett 2020; 366:5521890. [PMID: 31226708 DOI: 10.1093/femsle/fnz136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
More than a century ago, independent groups raised the possibility of using bacteria to selectively infect tumours. Such treatment induces an immune reaction that can cause tumour rejection and protect the patient against further recurrences. One of the first holistic approximations to use bacteria in cancer treatment was performed by William Coley, considered the father of immune-therapy, at the end of XIX century. Since then, many groups have used different bacteria to test their antitumour activity in animal models and patients. The basis for this reactivity implies that innate immune responses activated upon bacteria recognition, also react against the tumour. Different publications have addressed several aspects of oncolytic bacteria. In the present review, we will focus on revisiting the historical aspects using bacteria as oncolytic agents and how they led to the current clinical trials. In addition, we address the molecules present in oncolytic bacteria that induce specific toxic effects against the tumors as well as the activation of host immune responses in order to trigger antitumour immunity. Finally, we discuss future perspectives that could be considered in the different fields implicated in the implementation of this kind of therapy in order to improve the current use of bacteria as oncolytic agents.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Francisco Llinares Pinel
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Maria Jose Pozuelo
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Faculty of Pharmacy, San Pablo-CEU University, Boadilla del Monte, E-28668 Madrid, Spain
| | - Estanislao Nistal-Villan
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| |
Collapse
|
9
|
Wu MQ, Li C, Zhang LN, Lin J, He K, Niu YW, Che CY, Jiang N, Jiang JQ, Zhao GQ. High-mobility group box1 as an amplifier of immune response and target for treatment in Aspergillus fumigatus keratitis. Int J Ophthalmol 2020; 13:708-717. [PMID: 32420216 DOI: 10.18240/ijo.2020.05.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
AIM To determine the roles of high-mobility group box1 (HMGB1) in pro-inflammation, host immune response and its potential target for treatment in Aspergillus fumigatus (A.fumigatus) keratitis. METHODS Expression of HMGB1 was tested in C57BL/6 normal and infected corneas. Dual immunostaining tested co-expression of HMGB1 with TLR4 or LOX-1. C57BL/6 mice were pretreated with Box A or PBS and then infected. Clinical scores, polymerase chain reaction, ELISA, and MPO assay were used to assess the disease response. Flow cytometry were used to test the effect of Box A on reactive oxygen species (ROS) expression after A.fumigatus stimulation in polymorphonuclear neutrophilic leukocytes (PMN). C57BL/6 peritoneal macrophages were pretreated with Box B before A.fumigatus stimulation, and MIP-2, IL-1β, TNF-α, HMGB1 and LOX-1 were measured. Macrophages were pretreated with Box B or Box B combined with Poly(I) (an inhibitor of LOX-1) before stimulating with A.fumigatus, and MIP-2, IL-1β, TNF-α, LOX-1, p38-MAPK, p-p38-MAPK were measured. RESULTS HMGB1 levels were elevated in C57BL/6 mice after infection. HMGB1 co-expressed with TLR4, and LOX-1 in infiltrated cells. Box A vs PBS treated C57BL/6 mice had lower clinical scores and down-regulated corneal HMGB1, MIP-2, IL-1β expression and neutrophil influx. Box B treatment amplified expression of MIP-2, IL-1β, TNF-α, HMGB1 and LOX-1 that induced by A.fumigatus in macrophage. Compared to the treatment of Box B only, the protein expression of IL-1β, TNF-α showed inhibition of Box B combined with Poly(I), which also reduced the A.fumigatus-evoked protein level of LOX-1 and phosphorylation level of p38-MAPK. The production of A.fumigatus-stimulated ROS was significantly declined after Box A pretreatment in PMN. CONCLUSION Blocking HMGB1 reduces the disease response in C57BL/6 mice. HMGB1 can amplify the host immune response through p38-MAPK, and is a target for treatment of A.fumigatus keratitis.
Collapse
Affiliation(s)
- Meng-Qi Wu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Na Zhang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Kun He
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Ya-Wen Niu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jia-Qian Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
10
|
Hu X, Shi G, Liu H, Jiang X, Deng J, Zhu C, Yuan Y, Ke B. Microbial Contamination of Rigid Gas Permeable (RGP) Trial Lenses and Lens Cases in China. Curr Eye Res 2019; 45:550-555. [PMID: 31697186 DOI: 10.1080/02713683.2019.1687726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: This study aimed to evaluate the microbial contamination level and its influencing factors of rigid gas permeable (RGP) trial lenses and lens cases in China.Materials and Methods: A total of 107 RGP trial lenses and lens cases were collected from 7 main hospitals or optometric centers in China. Three sites including the lenses, case interiors and case screw tops were sampled for bacterial and fungal culture and identification. The contamination rates of these three sites and their relationship with lens care regimes were further analyzed.Results: The overall contamination rate was 73.8% for either lenses or cases, and 43.0% of lenses, 57.0% of case interiors and 65.4% of case screw tops respectively. The most frequently isolated microorganisms were Serratia spp., Burkholderia spp., Pandoraea spp., and Achromobacter spp. from all three sites. The contamination rate was positively related to the lens use frequency. Compared with dry-stored lenses, the contamination rate was significantly higher in wet-stored group (P < .001*). Inadequate disinfection and improper lens and case care regimes were also associated with higher contamination rates.Conclusions: Our study reported that the RGP trial lenses and cases used for fittings had a considerably high contamination rate. The safe use of RGP trial lenses and education of optometrists on the regular maintenance of trial lenses should be emphasized.
Collapse
Affiliation(s)
- Xiaojun Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Disease, Shanghai Jiaotong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Guangsen Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Disease, Shanghai Jiaotong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Hong Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaojiao Deng
- Itabashi Medical (Dalian) Co., Ltd., Dalian, Liaoning Province, China
| | - Chengcheng Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Disease, Shanghai Jiaotong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying Yuan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Disease, Shanghai Jiaotong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Disease, Shanghai Jiaotong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
11
|
Brothers KM, Callaghan JD, Stella NA, Bachinsky JM, AlHigaylan M, Lehner KL, Franks JM, Lathrop KL, Collins E, Schmitt DM, Horzempa J, Shanks RMQ. Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells. PLoS Pathog 2019; 15:e1007825. [PMID: 31220184 PMCID: PMC6586354 DOI: 10.1371/journal.ppat.1007825] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.
Collapse
Affiliation(s)
- Kimberly M. Brothers
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jake D. Callaghan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Julianna M. Bachinsky
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Mohammed AlHigaylan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Kara L. Lehner
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jonathan M. Franks
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Elliot Collins
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Deanna M. Schmitt
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
- * E-mail:
| |
Collapse
|
12
|
Gao N, Me R, Dai C, Seyoum B, Yu FSX. Opposing Effects of IL-1Ra and IL-36Ra on Innate Immune Response to Pseudomonas aeruginosa Infection in C57BL/6 Mouse Corneas. THE JOURNAL OF IMMUNOLOGY 2018; 201:688-699. [PMID: 29891552 DOI: 10.4049/jimmunol.1800046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa keratitis is characterized by severe corneal ulceration and may lead to blindness if not treated properly in a timely manner. Although the roles of the IL-1 subfamily of cytokines are well established, as a newly discovered subfamily, IL-36 cytokine regulation, immunological relevance, and relation with IL-1 cytokines in host defense remain largely unknown. In this study, we showed that P. aeruginosa infection induces the expression of IL-36α and IL-36γ, as well as IL-1β and secreted IL-1Ra (sIL-1Ra), but not IL-36Ra. Downregulation of IL-1Ra increases, whereas downregulation of IL-36Ra decreases the severity of P. aeruginosa keratitis. IL-1R and IL-36Ra downregulation have opposing effects on the expression of IL-1β, sIL-1Ra, IL-36γ, S100A8, and CXCL10 and on the infiltration of innate immune cells. Administration of recombinant IL-1Ra improved, whereas IL-36Ra worsened the outcome of P. aeruginosa keratitis. Local application of IL-36γ stimulated the expression of innate defense molecules S100A9, mouse β-defensin 3, but suppressed IL-1β expression in B6 mouse corneas. IL-36γ diminished the severity of P. aeruginosa keratitis, and its protective effects were abolished in the presence of S100A9 neutralizing Ab and partially affected by CXCL10 and CXCR3 neutralizations. Thus, our data reveal that IL-1Ra and IL-36Ra have opposing effects on the outcome of P. aeruginosa keratitis and suggest that IL-36 agonists may be used as an alternative therapeutic to IL-1β-neutralizing reagents in controlling microbial keratitis and other mucosal infections.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Rao Me
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Chenyang Dai
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250014, China; and
| | - Berhane Seyoum
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201
| | - Fu-Shin X Yu
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
13
|
Proteomics in the Study of Bacterial Keratitis. Proteomes 2015; 3:496-511. [PMID: 28248282 PMCID: PMC5217394 DOI: 10.3390/proteomes3040496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/13/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022] Open
Abstract
Bacterial keratitis is a serious ocular infection that can cause severe visual loss if treatment is not initiated at an early stage. It is most commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, or Serratia species. Depending on the invading organism, bacterial keratitis can progress rapidly, leading to corneal destruction and potential blindness. Common risk factors for bacterial keratitis include contact lens wear, ocular trauma, ocular surface disease, ocular surgery, lid deformity, chronic use of topical steroids, contaminated ocular medications or solutions, and systemic immunosuppression. The pathogenesis of bacterial keratitis, which depends on the bacterium-host interaction and the virulence of the invading bacterium, is complicated and not completely understood. This review highlights some of the proteomic technologies that have been used to identify virulence factors and the host response to infections of bacterial keratitis in order to understand the disease process and develop improved methods of diagnosis and treatment. Although work in this field is not abundant, proteomic technologies have provided valuable information toward our current knowledge of bacterial keratitis. More studies using global proteomic approaches are warranted because it is an important tool to identify novel targets for intervention and prevention of corneal damage caused by these virulent microorganisms.
Collapse
|
14
|
EepR Mediates Secreted-Protein Production, Desiccation Survival, and Proliferation in a Corneal Infection Model. Infect Immun 2015; 83:4373-82. [PMID: 26324535 DOI: 10.1128/iai.00466-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/25/2015] [Indexed: 02/08/2023] Open
Abstract
Serratia marcescens is a soil- and water-derived bacterium that secretes several host-directed factors and causes hospital infections and community-acquired ocular infections. The putative two-component regulatory system composed of EepR and EepS regulates hemolysis and swarming motility through transcriptional control of the swrW gene and pigment production through control of the pigA-pigN operon. Here, we identify and characterize a role for EepR in regulation of exoenzyme production, stress survival, cytotoxicity to human epithelial cells, and virulence. Genetic analysis supports the model that EepR is in a common pathway with the widely conserved cyclic-AMP receptor protein that regulates protease production. Together, these data introduce a novel regulator of host-pathogen interactions and secreted-protein production.
Collapse
|
15
|
Identification of SlpB, a Cytotoxic Protease from Serratia marcescens. Infect Immun 2015; 83:2907-16. [PMID: 25939509 DOI: 10.1128/iai.03096-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/27/2015] [Indexed: 12/28/2022] Open
Abstract
The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens.
Collapse
|
16
|
Hunt JJ, Astley R, Wheatley N, Wang JT, Callegan MC. TLR4 contributes to the host response to Klebsiella intraocular infection. Curr Eye Res 2014; 39:790-802. [PMID: 24588082 DOI: 10.3109/02713683.2014.883412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE/AIM Klebsiella pneumoniae causes a blinding infection called endogenous endophthalmitis. The role of innate immune recognition of K. pneumoniae in the eye during infection is not known. We hypothesized that intraocular recognition of K. pneumoniae was mediated by Toll-like receptor (TLR)-4 and may be dependent on MagA-regulated hypermucoviscosity. MATERIALS AND METHODS Experimental endophthalmitis was induced in C57BL/6J or TLR4(-/-) mice by intravitreal injection of 100 CFU of wild type or ΔmagA K. pneumoniae. Infection and inflammation were quantified by determining viable K. pneumoniae per eye, retinal responses via electroretinography, myeloperoxidase activity of infiltrating neutrophils and the proinflammatory cytokine and chemokine response. RESULTS C57BL/6J and TLR4(-/-) mice could not control intraocular wild-type K. pneumoniae growth. TLR4(-/-) mice were less able than C57BL/6J to control the intraocular growth of ΔmagA K. pneumoniae. Retinal function testing suggested that infection with ΔmagA K. pneumoniae resulted in less retinal function loss. There was a TLR4-dependent delay in initial neutrophil recruitment, regardless of the infecting organism. The proinflammatory cytokine/chemokine data supported these results. These findings were not due to an inability of TLR4(-/-) neutrophils to recognize or kill K. pneumoniae. CONCLUSIONS These studies suggest that TLR4 is important in the early intraocular recognition and host response to K. pneumoniae. However, the role of MagA in TLR4-mediated intraocular recognition and subsequent inflammation is less clear.
Collapse
|
17
|
Pearlman E, Sun Y, Roy S, Karmakar M, Hise AG, Szczotka-Flynn L, Ghannoum M, Chinnery HR, McMenamin PG, Rietsch A. Host defense at the ocular surface. Int Rev Immunol 2013; 32:4-18. [PMID: 23360155 DOI: 10.3109/08830185.2012.749400] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microbial infections of the cornea frequently cause painful, blinding and debilitating disease that is often difficult to treat and may require corneal transplantation. In addition, sterile corneal infiltrates that are associated with contact lens wear cause pain, visual impairment and photophobia. In this article, we review the role of Toll-Like Receptors (TLR) in bacterial keratitis and sterile corneal infiltrates, and describe the role of MD-2 regulation in LPS responsiveness by corneal epithelial cells. We conclude that both live bacteria and bacterial products activate Toll-Like Receptors in the cornea, which leads to chemokine production and neutrophil recruitment to the corneal stroma. While neutrophils are essential for bacterial killing, they also cause tissue damage that results in loss of corneal clarity. These disparate outcomes, therefore, represent a spectrum of disease severity based on this pathway, and further indicate that targeting the TLR pathway is a feasible approach to treating inflammation caused by live bacteria and microbial products. Further, as the P. aeruginosa type III secretion system (T3SS) also plays a critical role in disease pathogenesis by inducing neutrophil apoptosis and facilitating bacterial growth in the cornea, T3SS exotoxins are additional targets for therapy for P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|