1
|
Shah R, Spektor TM, Weisenberger DJ, Ding H, Patil R, Amador C, Song XY, Chun ST, Inzalaco J, Turjman S, Ghiam S, Jeong-Kim J, Tolstoff S, Yampolsky SV, Sawant OB, Rabinowitz YS, Maguen E, Hamrah P, Svendsen CN, Saghizadeh M, Ljubimova JY, Kramerov AA, Ljubimov AV. Reversal of dual epigenetic repression of non-canonical Wnt-5a normalises diabetic corneal epithelial wound healing and stem cells. Diabetologia 2023; 66:1943-1958. [PMID: 37460827 PMCID: PMC10474199 DOI: 10.1007/s00125-023-05960-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
AIMS/HYPOTHESIS Diabetes is associated with epigenetic modifications including DNA methylation and miRNA changes. Diabetic complications in the cornea can cause persistent epithelial defects and impaired wound healing due to limbal epithelial stem cell (LESC) dysfunction. In this study, we aimed to uncover epigenetic alterations in diabetic vs non-diabetic human limbal epithelial cells (LEC) enriched in LESC and identify new diabetic markers that can be targeted for therapy to normalise corneal epithelial wound healing and stem cell expression. METHODS Human LEC were isolated, or organ-cultured corneas were obtained, from autopsy eyes from non-diabetic (59.87±20.89 years) and diabetic (71.93±9.29 years) donors. The groups were not statistically different in age. DNA was extracted from LEC for methylation analysis using Illumina Infinium 850K MethylationEPIC BeadChip and protein was extracted for Wnt phospho array analysis. Wound healing was studied using a scratch assay in LEC or 1-heptanol wounds in organ-cultured corneas. Organ-cultured corneas and LEC were transfected with WNT5A siRNA, miR-203a mimic or miR-203a inhibitor or were treated with recombinant Wnt-5a (200 ng/ml), DNA methylation inhibitor zebularine (1-20 µmol/l) or biodegradable nanobioconjugates (NBCs) based on polymalic acid scaffold containing antisense oligonucleotide (AON) to miR-203a or a control scrambled AON (15-20 µmol/l). RESULTS There was significant differential DNA methylation between diabetic and non-diabetic LEC. WNT5A promoter was hypermethylated in diabetic LEC accompanied with markedly decreased Wnt-5a protein. Treatment of diabetic LEC and organ-cultured corneas with exogenous Wnt-5a accelerated wound healing by 1.4-fold (p<0.05) and 37% (p<0.05), respectively, and increased LESC and diabetic marker expression. Wnt-5a treatment in diabetic LEC increased the phosphorylation of members of the Ca2+-dependent non-canonical pathway (phospholipase Cγ1 and protein kinase Cβ; by 1.15-fold [p<0.05] and 1.36-fold [p<0.05], respectively). In diabetic LEC, zebularine treatment increased the levels of Wnt-5a by 1.37-fold (p<0.01)and stimulated wound healing in a dose-dependent manner with a 1.6-fold (p<0.01) increase by 24 h. Moreover, zebularine also improved wound healing by 30% (p<0.01) in diabetic organ-cultured corneas and increased LESC and diabetic marker expression. Transfection of these cells with WNT5A siRNA abrogated wound healing stimulation by zebularine, suggesting that its effect was primarily due to inhibition of WNT5A hypermethylation. Treatment of diabetic LEC and organ-cultured corneas with NBC enhanced wound healing by 1.4-fold (p<0.01) and 23.3% (p<0.05), respectively, with increased expression of LESC and diabetic markers. CONCLUSIONS/INTERPRETATION We provide the first account of epigenetic changes in diabetic corneas including dual inhibition of WNT5A by DNA methylation and miRNA action. Overall, Wnt-5a is a new corneal epithelial wound healing stimulator that can be targeted to improve wound healing and stem cells in the diabetic cornea. DATA AVAILABILITY The DNA methylation dataset is available from the public GEO repository under accession no. GSE229328 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229328 ).
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Tanya M Spektor
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Kura Oncology, Inc., Boston, MA, USA
| | | | - Hui Ding
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Kunshan Xinyunda Biotech Co., Ltd., Kunshan, China
| | - Rameshwar Patil
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Basic Science, Division of Cancer Science, Loma Linda University Cancer Center, Loma Linda, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xue-Ying Song
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Jake Inzalaco
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Sue Turjman
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Mount Saint Mary's University, Los Angeles, CA, USA
| | - Sean Ghiam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Jiho Jeong-Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Sasha Tolstoff
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- California Institute of Technology, Pasadena, CA, USA
| | - Sabina V Yampolsky
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Duke University, Durham, NC, USA
| | - Onkar B Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, USA
| | - Yaron S Rabinowitz
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ezra Maguen
- American Eye Institute, Los Angeles, CA, USA
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Clive N Svendsen
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Julia Y Ljubimova
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res 2023; 95:101149. [PMID: 36443219 PMCID: PMC10209355 DOI: 10.1016/j.preteyeres.2022.101149] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Ghiam
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Chong RS, Busoy JMF, Tan B, Yeo SW, Lee YS, Barathi AV, Crowston JG, Schmetterer L. A Minimally Invasive Experimental Model of Acute Ocular Hypertension with Acute Angle Closure Characteristics. Transl Vis Sci Technol 2020; 9:24. [PMID: 32832230 PMCID: PMC7414621 DOI: 10.1167/tvst.9.7.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose To describe a minimally invasive experimental model of acute ocular hypertension (OHT) with characteristics of acute angle closure (AAC). Methods Adult C57/Bl6 mice (n = 31) were subjected to OHT in one eye using a modified circumlimbal suture technique that elevated intraocular pressure (IOP) for 30 minutes. Contralateral un-operated eyes served as controls. IOP, anterior segment optical coherence tomography, and fundus fluorescein angiography (FFA) were performed. The positive scotopic threshold response (pSTR) and a-wave and b-wave amplitudes were also evaluated. Retinal tissues were immunostained for the retinal ganglion cell (RGC) marker RBPMS and the glial marker GFAP. Results OHT eyes developed shallower anterior chambers and dilated pupils. FFA showed focal leakage in 32.2% of OHT eyes, but in none of the control eyes. pSTR was significantly reduced at week 1 in OHT eyes compared to control eyes (57.3 ± 7.2 µV vs. 106.9 ± 24.8 µV; P < 0.05), but a- and b-waves were unaffected. GFAP was upregulated in OHT eyes but not in control eyes or eyes that had been sutured without OHT. RGC density was reduced in OHT eyes after 4 weeks (3857 ± 143.8) vs. control eyes (4469 ± 176.0) (P < 0.05). Conclusions Our minimally invasive model resulted in acute OHT with characteristics of AAC in the absence of non-OHT-related neuroinflammatory changes arising from ocular injury alone. Translational Relevance This model provides a valuable approach to studying specific characteristics of a severe blinding disease in an experimental setting. Focal areas of ischemia were demonstrated, consistent with clinical studies of acute angle closure patients elsewhere, which may indicate the need for further research into how this could affect visual outcome in these patients.
Collapse
Affiliation(s)
- Rachel S Chong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Glaucoma Department, Singapore National Eye Centre, Singapore, Singapore.,Agency for Science, Technology and Research, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanna M F Busoy
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Sia Wey Yeo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ying Shi Lee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Amutha V Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jonathan G Crowston
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| |
Collapse
|
4
|
Zhang L, Yuan Y, Yeh LK, Dong F, Zhang J, Okada Y, Kao WWY, Liu CY, Zhang Y. Excess Transforming Growth Factor-α Changed the Cell Properties of Corneal Epithelium and Stroma. Invest Ophthalmol Vis Sci 2020; 61:20. [PMID: 32668000 PMCID: PMC7425719 DOI: 10.1167/iovs.61.8.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose This study is to investigate the corneal anomaly caused by excess transforming growth factor-α (TGF-α) during mouse development. Methods Bitransgenic KeraRT/TGF-α mice, generated via cross-mating tetO-TGF-α and KeraRT mice, were induced to overexpress TGF-α by doxycycline commencing at embryonic day 0 or postnatal day 0 to different developmental stages. Bitransgenic mice with doxycycline induction were defined as TGF-αECK mice (TGF-α excess expression by corneal keratocytes). Mouse eyes were examined by hematoxylin and eosin staining, immunofluorescent staining and transmission electron microscopy. Protein and RNA from mouse cornea were subjected to western blotting and real-time quantitative polymerase chain reaction. Results In TGF-αECK mice, TGF-α overexpression resulted in corneal opacity. Excess TGF-α initially caused corneal epithelial hyperplasia and subsequent epithelium degeneration as the mouse developed, which was accompanied by gradually diminished K12 expression from the periphery of corneal epithelium and increased K13 expression toward the corneal center. Interestingly, K14 was detected in all layers of corneal epithelium of TGF-αECK mice, whereas it was limited at basal layer of controls. Transmission electron microscopy showed desmosome loss between corneal epithelial cells of TGF-αECK mice. In TGF-αECK mice, keratocan expression was abolished; α-SMA expression was increased while expression of Col1a1, Col1a2, and Col5a1 was diminished. Cell proliferation increased in the corneal epithelium and stroma, but not in the endothelium of TGF-αECK mice. Conclusions Excess TGF-α had detrimental effects on corneal morphogenesis during mouse development in that it changed the cell fate of corneal epithelial cells to assume conjunctival phenotypic expression of K13, and keratocytes to myofibroblast phenotype.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Differentiation
- Cell Proliferation
- Corneal Stroma/metabolism
- Corneal Stroma/ultrastructure
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/ultrastructure
- Gene Expression Regulation, Developmental
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Models, Animal
- RNA, Messenger/genetics
- Transforming Growth Factor alpha/biosynthesis
- Transforming Growth Factor alpha/genetics
Collapse
Affiliation(s)
- Lingling Zhang
- School of Optometry, Indiana University, Bloomington, Indiana, United States
- School of Optometry, University of California, Berkeley, California, United States
| | - Yong Yuan
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Ohio, United States
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang-Gung Memorial Hospital, Linkou, Taiwan
- Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Fei Dong
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Ohio, United States
| | - Jianhua Zhang
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Ohio, United States
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Winston W Y. Kao
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Ohio, United States
| | - Chia-Yang Liu
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Yujin Zhang
- School of Optometry, Indiana University, Bloomington, Indiana, United States
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
5
|
Yuan Y, Schlötzer-Schrehardt U, Ritch R, Call M, Chu FB, Dong F, Rice T, Zhang J, Kao WWY. Transient expression of Wnt5a elicits ocular features of pseudoexfoliation syndrome in mice. PLoS One 2019; 14:e0212569. [PMID: 30840655 PMCID: PMC6402630 DOI: 10.1371/journal.pone.0212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Pseudoexfoliation (PEX) syndrome is an age-related systemic disease with ocular manifestations. The development of animal models is critical in order to elucidate the cause of the disease and to test potential treatment regimens. The purpose of this study is to report phenotypes found in mouse eyes injected with Adenovirus coding Wnt5a. Some of the phenotypes resemble those found in PEX patients while others are different. METHODS Recombinant Adenovirus coding Wnt5a or green fluorescent protein (GFP) were injected into mouse eyes. Two months after the injection, eyes were examined for PEX phenotypes using slit lamp, fluorescence stereomicroscope, histological staining, immunostaining and transmission electron microscope. RESULT Certain ocular features of PEX syndrome were found in mouse eyes injected with recombinant Adenovirus coding Wnt5a. These features include accumulation of exfoliation-like extracellular material on surfaces of anterior segment structures and its dispersion in the anterior chamber, saw-tooth appearance and disrupted basement membrane of the posterior iris pigment epithelium, iris stromal atrophy and disorganized ciliary zonules. Ultrastructure analysis of the exfoliation material revealed that the microfibril structure found in this model was different from those of PEX patients. CONCLUSION These features, resembling signs of ocular PEX syndrome in patients, suggest that new information obtained from this study will be helpful for developing better mouse models for PEX syndrome.
Collapse
Affiliation(s)
- Yong Yuan
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States of America
| | - Mindy Call
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Fred B. Chu
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati Eye Institute, Cincinnati, Ohio, United States of America
| | - Fei Dong
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Taylor Rice
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jianhua Zhang
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Winston W.-Y. Kao
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
6
|
Wnt5a contributes to dectin-1 and LOX-1 induced host inflammatory response signature in Aspergillus fumigatus keratitis. Cell Signal 2018; 52:103-111. [PMID: 30172652 DOI: 10.1016/j.cellsig.2018.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 01/18/2023]
Abstract
Fungal keratitis causes devastating corneal ulcers which can result in significant visual impairment and even blindness. As a ligand that activates the non-canonical Wnt signaling pathways, Wnt5a triggers the production of important inflammatory chemokines and the chemotactic migration of neutrophils. In this study we aimed to characterize the role of Wnt5a production, in situ, in vivo and in vitro in response to fungal keratitis. Wnt5a expression in corneas of Aspergillus fumigatus (A. fumigatus) keratitis patients was determined by quantitative polymerase chain reaction (qRT-PCR) and immunofluorescence. In vivo and in vitro experiments were then performed in mouse models and THP-1 macrophages cell cultures infected with A. fumigatus, respectively. C57BL/6 mice were pretreated with siRNAs or neutralizing antibodies for dectin-1, LOX-1 and Wnt5a, or inhibitors of erk1/2 and JNK. Changes in Wnt5a expression were assessed by clinical evaluation, qRT-PCR, immunofluorescence, western blot and bioluminescence imaging system image acquisition. We confirmed that corneal Wnt5a expression increased with A. fumigatus keratitis in patients and a murine model. Wnt5a production was dependent on dectin-1 and LOX-1 expression with contributions by Erk1/2 and JNK pathways. Additionally, Wnt5a knockdown revealed decreased levels of MPO, lower neutrophil recruitment, and a higher fungal load in mouse models. Compared with controls, Wnt5a knockdown impaired pro-inflammatory cytokine IL-1β production in response to A. fumigatus exposure. Wnt5a also produces dectin-1 and LOX-1 induced inflammatory signature via effective neutrophil recruitment and inflammatory cytokine production in response to A. fumigatus keratitis. These findings demonstrate that Wnt5a is a critical component of the antifungal immune response.
Collapse
|
7
|
Bashar AE, Metcalfe AL, Viringipurampeer IA, Yanai A, Gregory-Evans CY, Gregory-Evans K. An ex vivo gene therapy approach in X-linked retinoschisis. Mol Vis 2016; 22:718-33. [PMID: 27390514 PMCID: PMC4919093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 10/28/2022] Open
Abstract
PURPOSE X-linked retinoschisis (XLRS) is juvenile-onset macular degeneration caused by haploinsufficiency of the extracellular cell adhesion protein retinoschisin (RS1). RS1 mutations can lead to either a non-functional protein or the absence of protein secretion, and it has been established that extracellular deficiency of RS1 is the underlying cause of the phenotype. Therefore, we hypothesized that an ex vivo gene therapy strategy could be used to deliver sufficient extracellular RS1 to reverse the phenotype seen in XLRS. Here, we used adipose-derived, syngeneic mesenchymal stem cells (MSCs) that were genetically modified to secrete human RS1 and then delivered these cells by intravitreal injection to the retina of the Rs1h knockout mouse model of XLRS. METHODS MSCs were electroporated with two transgene expression systems (cytomegalovirus (CMV)-controlled constitutive and doxycycline-induced Tet-On controlled inducible), both driving expression of human RS1 cDNA. The stably transfected cells, using either constitutive mesenchymal stem cell (MSC) or inducible MSC cassettes, were assayed for their RS1 secretion profile. For single injection studies, 100,000 genetically modified MSCs were injected into the vitreous cavity of the Rs1h knockout mouse eye at P21, and data were recorded at 2, 4, and 8 weeks post-injection. The control groups received either unmodified MSCs or vehicle injection. For the multiple injection studies, the mice received intravitreal MSC injections at P21, P60, and P90 with data collection at P120. For the single- and multiple-injection studies, the outcomes were measured with electroretinography, optokinetic tracking responses (OKT), histology, and immunohistochemistry. RESULTS Two lines of genetically modified MSCs were established and found to secrete RS1 at a rate of 8 ng/million cells/day. Following intravitreal injection, RS1-expressing MSCs were found mainly in the inner retinal layers. Two weeks after a single injection of MSCs, the area of the schisis cavities was reduced by 65% with constitutive MSCs and by 83% with inducible MSCs, demonstrating improved inner nuclear layer architecture. This benefit was maintained up to 8 weeks post-injection and corresponded to a significant improvement in the electroretinogram (ERG) b-/a-wave ratio at 8 weeks (2.6 inducible MSCs; 1.4 untreated eyes, p<0.05). At 4 months after multiple injections, the schisis cavity areas were reduced by 78% for inducible MSCs and constitutive MSCs, more photoreceptor nuclei were present (700/µm constitutive MSC; 750/µm inducible MSC; 383/µm untreated), and the ERG b-wave was significantly improved (threefold higher with constitutive MSCs and twofold higher with inducible MSCs) compared to the untreated control group. CONCLUSIONS These results establish that extracellular delivery of RS1 rescues the structural and functional deficits in the Rs1h knockout mouse model and that this ex vivo gene therapy approach can inhibit progression of disease. This proof-of-principle work suggests that other inherited retinal degenerations caused by a deficiency of extracellular matrix proteins could be targeted by this strategy.
Collapse
|
8
|
Kobayashi T, Shiraishi A, Hara Y, Kadota Y, Yang L, Inoue T, Shirakata Y, Ohashi Y. Stromal-epithelial interaction study: The effect of corneal epithelial cells on growth factor expression in stromal cells using organotypic culture model. Exp Eye Res 2015; 135:109-17. [PMID: 25682729 DOI: 10.1016/j.exer.2015.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/29/2022]
Abstract
Interactions between stromal and epithelial cells play important roles in the development, homeostasis, and pathological conditions of the cornea. Soluble cytokines are critical factors in stromal-epithelial interactions, and growth factors secreted from corneal stromal cells contribute to the regulation of proliferation and differentiation of corneal epithelial cells (CECs). However, the manner in which the expression of growth factors is regulated in stromal cells has not been completely determined. To study stromal-epithelial cell interactions, we used an organotypic culture model. Human or rabbit CECs (HCECs or RCECs) were cultured on amniotic membranes placed on human corneal fibroblasts (HCFs) embedded in a collagen gel. The properties of the organotypic culture were examined by hematoxylin-eosin staining and immunofluorescence. In the organotypic culture, HCECs or RCECs were stratified into two-three layers after five days and five-seven layers after nine days. However, stratification was not observed when the HCECs were seeded on a collagen gel without fibroblasts. K3/K12 were expressed on day 9. The HCF-embedded collagen gels were collected on days 3, 5, or 9 after seeding the RCECs, and mRNA expression of growth factors FGF7, HGF, NGF, EGF, TGF-α, SCF, TGF-β1, TGF-β2, and TGF-β3 were quantified by real-time PCR. mRNA expression of the growth factors in HCFs cultured with RCECs were compared with those cultured without RCECs, as well as in monolayer cultures. mRNA expression of TGF-α was markedly increased in HCFs cultured with RCECs. However, mRNA expression of the TGF-β family was suppressed in HCFs cultured with RCECs. Principal component analysis revealed that mRNA expression of the growth factors in HCFs were generally similar when they were cultured with RCECs. In organotypic cultures, the morphological changes in the CECs and the expression patterns of the growth factors in the stromal cells clearly demonstrated stromal-epithelial cell interactions, and the results suggest that stromal cells and epithelial cells may act in concert in the cornea.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Ophthalmology and Regenerative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Stem Cell Biology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Atsushi Shiraishi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Stem Cell Biology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Yuko Hara
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yuko Kadota
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Lujun Yang
- Department of Dermatology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tomoyuki Inoue
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yuji Shirakata
- Department of Dermatology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yuichi Ohashi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Infectious Diseases, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
9
|
Science and Art of Cell-Based Ocular Surface Regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:45-106. [DOI: 10.1016/bs.ircmb.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Stepp MA, Zieske JD, Trinkaus-Randall V, Kyne BM, Pal-Ghosh S, Tadvalkar G, Pajoohesh-Ganji A. Wounding the cornea to learn how it heals. Exp Eye Res 2014; 121:178-93. [PMID: 24607489 DOI: 10.1016/j.exer.2014.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022]
Abstract
Corneal wound healing studies have a long history and rich literature that describes the data obtained over the past 70 years using many different species of animals and methods of injury. These studies have lead to reduced suffering and provided clues to treatments that are now helping patients live more productive lives. In spite of the progress made, further research is required since blindness and reduced quality of life due to corneal scarring still happens. The purpose of this review is to summarize what is known about different types of wound and animal models used to study corneal wound healing. The subject of corneal wound healing is broad and includes chemical and mechanical wound models. This review focuses on mechanical injury models involving debridement and keratectomy wounds to reflect the authors' expertise.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA; Department of Ophthalmology, The George Washington University Medical Center, Washington, DC 20037, USA.
| | - James D Zieske
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114-2500, USA
| | - Vickery Trinkaus-Randall
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Briana M Kyne
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Ahdeah Pajoohesh-Ganji
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| |
Collapse
|
11
|
Yuan Y, Call MK, Yuan Y, Zhang Y, Fischesser K, Liu CY, Kao WWY. Dexamethasone induces cross-linked actin networks in trabecular meshwork cells through noncanonical wnt signaling. Invest Ophthalmol Vis Sci 2013; 54:6502-9. [PMID: 23963164 DOI: 10.1167/iovs.13-12447] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Dexamethasone (DEX) regulates aqueous humor outflow by inducing a reorganization of the cytoskeleton to form cross-linked actin networks (CLANs) in trabecular meshwork (TM) cells. Rho-associated protein kinase (ROCK) has been demonstrated to have an important role in this process, but the upstream components leading to its activation remain elusive. The purpose of the study is to demonstrate that noncanonical Wnt signaling mediates the DEX-induced CLAN formation in TM cells. METHODS The TM cells were treated with 100 nM DEX in low serum medium for over 7 days. The medium was changed every 3 days. The cells were harvested and subjected to molecular analysis for the expression of Wnt ligands. Stress fiber structures were revealed by Phalloidin staining. Lentivirus-based shRNA against noncanonical Wnt receptor (Ror2) was used to determine the role of noncanonical Wnt signaling in DEX-induced CLAN formation. RESULTS The DEX induced stress fiber rearrangement in TM cells. A noncanonical Wnt ligand (Wnt5a) was upregulated by DEX as demonstrated by Wnt ligand degenerate PCR, real-time quantitative PCR (qRT-PCR), and Western blotting. Knocking-down Ror2, the receptor of noncanonical Wnt signaling, abolished the effects of DEX on the TM cells. CONCLUSIONS Our data suggest that DEX induces the upregulation of noncanonical Wnt ligand Wnt5a. Recombinant WNT5a protein induces CLAN formation through the noncanonical Wnt receptor ROR2/RhoA/ROCK signaling axis. Given the similarities between DEX-induced ocular hypertension and primary open-angle glaucoma, our results provide a mechanism of action for applying ROCK inhibitor to treat primary open-angle glaucoma.
Collapse
Affiliation(s)
- Yong Yuan
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|