1
|
Shim MS, Liton PB. Time-Lapse Live-Cell Imaging Using Fluorescent Protein Sensors in Outflow Pathway Cells Under Fluid Flow Conditions. Methods Mol Biol 2025; 2858:77-86. [PMID: 39433668 DOI: 10.1007/978-1-0716-4140-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The role of shear stress in regulating aqueous humor (AH) outflow and intraocular pressure (IOP) in the trabecular meshwork (TM) and Schlemm's canal (SC) of the eye is an emerging field. Shear stress has been shown to activate mechanosensitive ion channels in TM cells and induce nitric oxide production in SC cells, which can affect outflow resistance and lower IOP. Live-cell imaging using fluorescent protein sensors has provided real-time data to investigate the physiological relationship between fluid flow and shear stress in the outflow pathway cells. The successful application of time-lapse live-cell imaging in primary cultured cells has led to the identification of key cellular and molecular mechanisms involved in regulating AH outflow and IOP, including the role of autophagy and primary cilia as mechanosensors. This chapter presents a detailed protocol for conducting time-lapse live-cell imaging under fluid flow conditions in the outflow pathway cells.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| | - Paloma B Liton
- Department of Ophthalmology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Overby DR, Ethier CR, Miao C, Kelly RA, Reina-Torres E, Stamer WD. The Factors Affecting the Stability of IOP Homeostasis. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38833261 PMCID: PMC11157970 DOI: 10.1167/iovs.65.6.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Purpose Shear-induced nitric oxide (NO) production by Schlemm's canal (SC) endothelial cells provides a fast, IOP-sensitive feedback signal that normally contributes to IOP homeostasis. Our goal was to analyze the response of this homeostatic system under constant flow perfusion (as occurs in vivo) vs. constant pressure perfusion (as typical for laboratory perfusions). Methods A mathematical model of aqueous humor dynamics, including shear-mediated NO signaling, was formulated and analyzed for stability. The model includes Goldmann's equation, accounting for proximal and distal outflow resistance, and describes how elevated IOP causes narrowing of SC lumen that increases the shear stress on SC cells. Elevated shear stress stimulates NO production, which acts to reduce outflow resistance and relax trabecular meshwork cells to decrease trabecular meshwork stiffness, affecting the SC luminal caliber. Results During constant flow perfusion, the outflow system is typically stable, returning to baseline IOP after a perturbation. In contrast, during constant pressure perfusion, the outflow system can become unstable and exhibit a time-dependent change in outflow resistance that diverges from baseline. Conclusions The stability of shear mediated IOP homeostasis is predicted to differ critically between constant flow vs. constant pressure perfusion. Because outflow facility is typically measured at a constant pressure in the laboratory, this instability may contribute to the characteristic time-dependent increase in outflow facility, known as washout, observed in many nonhuman species. Studies of IOP homeostasis should consider how the outflow system may respond differently under constant pressure vs. constant flow perfusion.
Collapse
Affiliation(s)
- Darryl R. Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, United States
| | - Changxu Miao
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ruth A. Kelly
- Department of Ophthalmology, Duke University Medical School, Durham, North Carolina, United States
| | - Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University Medical School, Durham, North Carolina, United States
| |
Collapse
|
3
|
Youngblood H, Schoenlein PV, Pasquale LR, Stamer WD, Liu Y. Estrogen dysregulation, intraocular pressure, and glaucoma risk. Exp Eye Res 2023; 237:109725. [PMID: 37956940 PMCID: PMC10842791 DOI: 10.1016/j.exer.2023.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Characterized by optic nerve atrophy due to retinal ganglion cell (RGC) death, glaucoma is the leading cause of irreversible blindness worldwide. Of the major risk factors for glaucoma (age, ocular hypertension, and genetics), only elevated intraocular pressure (IOP) is modifiable, which is largely regulated by aqueous humor outflow through the trabecular meshwork. Glucocorticoids such as dexamethasone have long been known to elevate IOP and lead to glaucoma. However, several recent studies have reported that steroid hormone estrogen levels inversely correlate with glaucoma risk, and that variants in estrogen signaling genes have been associated with glaucoma. As a result, estrogen dysregulation may contribute to glaucoma pathogenesis, and estrogen signaling may protect against glaucoma. The mechanism for estrogen-related protection against glaucoma is not completely understood but likely involves both regulation of IOP homeostasis and neuroprotection of RGCs. Based upon its known activities, estrogen signaling may promote IOP homeostasis by affecting extracellular matrix turnover, focal adhesion assembly, actin stress fiber formation, mechanosensation, and nitric oxide production. In addition, estrogen receptors in the RGCs may mediate neuroprotective functions. As a result, the estrogen signaling pathway may offer a therapeutic target for both IOP control and neuroprotection. This review examines the evidence for a relationship between estrogen and IOP and explores the possible mechanisms by which estrogen maintains IOP homeostasis.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Patricia V Schoenlein
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; Department of Radiology and Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Surgery, Augusta University, Augusta, GA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Daniel Stamer
- Department of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
| |
Collapse
|
4
|
Johnstone M, Xin C, Martin E, Wang R. Trabecular Meshwork Movement Controls Distal Valves and Chambers: New Glaucoma Medical and Surgical Targets. J Clin Med 2023; 12:6599. [PMID: 37892736 PMCID: PMC10607137 DOI: 10.3390/jcm12206599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/29/2023] Open
Abstract
Herein, we provide evidence that human regulation of aqueous outflow is by a pump-conduit system similar to that of the lymphatics. Direct observation documents pulsatile aqueous flow into Schlemm's canal and from the canal into collector channels, intrascleral channels, aqueous veins, and episcleral veins. Pulsatile flow in vessels requires a driving force, a chamber with mobile walls and valves. We demonstrate that the trabecular meshwork acts as a deformable, mobile wall of a chamber: Schlemm's canal. A tight linkage between the driving force of intraocular pressure and meshwork deformation causes tissue responses in milliseconds. The link provides a sensory-motor baroreceptor-like function, providing maintenance of a homeostatic setpoint. The ocular pulse causes meshwork motion oscillations around the setpoint. We document valves entering and exiting the canal using real-time direct observation with a microscope and multiple additional modalities. Our laboratory-based high-resolution SD-OCT platform quantifies valve lumen opening and closing within milliseconds synchronously with meshwork motion; meshwork tissue stiffens, and movement slows in glaucoma tissue. Our novel PhS-OCT system measures nanometer-level motion synchronous with the ocular pulse in human subjects. Movement decreases in glaucoma patients. Our model is robust because it anchors laboratory studies to direct observation of physical reality in humans with glaucoma.
Collapse
Affiliation(s)
- Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA;
| | - Chen Xin
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing 100730, China
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Elizabeth Martin
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Ruikang Wang
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA;
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Utsunomiya T, Ishibazawa A, Yoshioka T, Song YS, Yoshida K. Assessing effects of mechanical stimulation of fluid shear stress on inducing matrix Metalloproteinase-9 in cultured corneal epithelial cells. Exp Eye Res 2023; 234:109571. [PMID: 37468028 DOI: 10.1016/j.exer.2023.109571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Blinking is regarded as mechanical stimulation of fluid shear stress on the corneal epithelial cells. Therefore, we evaluated whether fluid shear stress affects matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in cultured human corneal epithelial cells (HCECs). No other study has shown the influence of fluid shear stress on HCECs regarding mRNA expression and the protein levels of MMPs. Cultured HCECs were exposed to shear stress (0, 1.2, 12 dyne/cm2) for 12 and 24 h with the parallel-plate type of flow chamber. Gene expression of MMPs and TIMPs was measured by real-time polymerase reaction. Concentrations of MMP-1 and MMP-9 in cell lysates were determined using bead-based amplified luminescent proximity homogenous assay-linked immunosorbent assay. The expression of MMP-9 and MMP-1 in HCECs exposed to low and high flow for 12 and 24 h, respectively, increased significantly compared with those under static conditions. The expression of MMP-9 in the cells exposed to high flow for 24 h increased significantly compared with those under static and low flow conditions. Levels of MMP-9 in cell lysates exposed to fluid flow for 24 h were elevated significantly with increasing shear stress. Fluid shear stress exerted on HCECs affected MMPs, which was associated with inflammation and pathogenesis. Mechanical stress induced by blinking might influence expression of MMPs on the ocular surface. Further studies are warranted to establish the molecular mechanism of shear stress-induced alternations of MMPs.
Collapse
Affiliation(s)
- Tsugiaki Utsunomiya
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| | - Akihiro Ishibazawa
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takafumi Yoshioka
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Young-Seok Song
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Koichi Yoshida
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan; Department of Hospital Pharmacy & Pharmacology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
7
|
Sikiric P, Kokot A, Kralj T, Zlatar M, Masnec S, Lazic R, Loncaric K, Oroz K, Sablic M, Boljesic M, Antunovic M, Sikiric S, Strbe S, Stambolija V, Beketic Oreskovic L, Kavelj I, Novosel L, Zubcic S, Krezic I, Skrtic A, Jurjevic I, Boban Blagaic A, Seiwerth S, Staresinic M. Stable Gastric Pentadecapeptide BPC 157-Possible Novel Therapy of Glaucoma and Other Ocular Conditions. Pharmaceuticals (Basel) 2023; 16:1052. [PMID: 37513963 PMCID: PMC10385428 DOI: 10.3390/ph16071052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, stable gastric pentadecapeptide BPC 157 therapy by activation of collateral pathways counteracted various occlusion/occlusion-like syndromes, vascular, and multiorgan failure, and blood pressure disturbances in rats with permanent major vessel occlusion and similar procedures disabling endothelium function. Thereby, we revealed BPC 157 cytoprotective therapy with strong vascular rescuing capabilities in glaucoma therapy. With these capabilities, BPC 157 therapy can recover glaucomatous rats, normalize intraocular pressure, maintain retinal integrity, recover pupil function, recover retinal ischemia, and corneal injuries (i.e., maintained transparency after complete corneal abrasion, corneal ulceration, and counteracted dry eye after lacrimal gland removal or corneal insensitivity). The most important point is that in glaucomatous rats (three of four episcleral veins cauterized) with high intraocular pressure, all BPC 157 regimens immediately normalized intraocular pressure. BPC 157-treated rats exhibited normal pupil diameter, microscopically well-preserved ganglion cells and optic nerve presentation, normal fundus presentation, nor- mal retinal and choroidal blood vessel presentation, and normal optic nerve presentation. The one episcleral vein rapidly upgraded to accomplish all functions in glaucomatous rats may correspond with occlusion/occlusion-like syndromes of the activated rescuing collateral pathway (azygos vein direct blood flow delivery). Normalized intraocular pressure in glaucomatous rats corresponded to the counteracted intra-cranial (superior sagittal sinus), portal, and caval hypertension, and aortal hypotension in occlusion/occlusion-like syndromes, were all attenuated/eliminated by BPC 157 therapy. Furthermore, given in other eye disturbances (i.e., retinal ischemia), BPC 157 instantly breaks a noxious chain of events, both at an early stage and an already advanced stage. Thus, we further advocate BPC 157 as a therapeutic agent in ocular disease.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tamara Kralj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mirna Zlatar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Masnec
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ratimir Lazic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Kristina Loncaric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sablic
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marta Boljesic
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Antunovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vasilije Stambolija
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Shim MS, Dixon A, Nettesheim A, Perkumas KM, Stamer WD, Sun Y, Liton PB. Shear stress induces autophagy in Schlemm's canal cells via primary cilia-mediated SMAD2/3 signaling pathway. AUTOPHAGY REPORTS 2023; 2:2236519. [PMID: 37637387 PMCID: PMC10448710 DOI: 10.1080/27694127.2023.2236519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 08/29/2023]
Abstract
The Schlemm's canal (SC) is a circular, lymphatic-like vessel located at the limbus of the eye that participates in the regulation of aqueous humor drainage to control intraocular pressure (IOP). Circumferential flow of aqueous humor within the SC lumen generates shear stress, which regulates SC cell behaviour. Using biochemical analysis and real-time live cell imaging techniques, we have investigated the activation of autophagy in SC cells by shear stress. We report, for the first time, the primary cilium (PC)-dependent activation of autophagy in SC cells in response to shear stress. Moreover, we identified PC-dependent shear stress-induced autophagy to be positively regulated by phosphorylation of SMAD2 in its linker and C-terminal regions. Additionally, SMAD2/3 signaling was found to transcriptionally activate LC3B, ATG5 and ATG7 in SC cells. Intriguingly, concomitant to SMAD2-dependent activation of autophagy, we also report here the activation of mTOR pathway, a classical autophagy inhibitor, in SC cells by shear stress. mTOR activation was found to also be dependent on the PC. Moreover, pharmacological inhibition of class I PI3K increased phosphorylation of SMAD2 at the linker and activated autophagy. Together, our data indicates an interplay between PI3K and SMAD2/3 signaling pathways in the regulation of PC-dependent shear stress-induced autophagy in SC cells.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Angela Dixon
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - April Nettesheim
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Kristin M. Perkumas
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Paloma B. Liton
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Kelly RA, McDonnell FS, De Ieso ML, Overby DR, Stamer WD. Pressure Clamping During Ocular Perfusions Drives Nitric Oxide-Mediated Washout. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 37358489 PMCID: PMC10297780 DOI: 10.1167/iovs.64.7.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023] Open
Abstract
Purpose The aim of this study was to test the hypothesis that nitric oxide (NO) mediates a pressure-dependent, negative feedback loop that maintains conventional outflow homeostasis and thus IOP. If true, holding pressure during ocular perfusions will result in uncontrolled production of NO, hyper-relaxation of the trabecular meshwork, and washout. Methods Paired porcine eyes were perfused at constant pressure of 15 mm Hg. After 1 hour acclimatization, one eye was exchanged with N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester, monohydrochloride (L-NAME) (50 µm) and the contralateral eye with DBG, and perfused for 3 hours. In a separate group, one eye was exchanged with DETA-NO (100 nM) and the other with DBG and perfused for 30 minutes. Changes in conventional outflow tissue function and morphology were monitored. Results Control eyes exhibited a washout rate of 15% (P = 0.0026), whereas eyes perfused with L-NAME showed a 10% decrease in outflow facility from baseline over 3 hours (P < 0.01); with nitrite levels in effluent positively correlating with time and facility. Compared with L-NAME-treated eyes, significant morphological changes in control eyes included increased distal vessel size, number of giant vacuoles, and juxtacanalicular tissue separation from the angular aqueous plexi (P < 0.05). For 30-minute perfusions, control eyes showed a washout rate of 11% (P = 0.075), whereas DETA-NO-treated eyes showed an increased washout rate of 33% from baseline (P < 0.005). Compared with control eyes, significant morphological changes in DETA-NO-treated eyes also included increased distal vessel size, number of giant vacuoles and juxtacanalicular tissue separation (P < 0.05). Conclusions Uncontrolled NO production is responsible for washout during perfusions of nonhuman eyes where pressure is clamped.
Collapse
Affiliation(s)
- Ruth A. Kelly
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
| | - Fiona S. McDonnell
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
- Ophthalmology Department, University of Utah, Utah, United States
| | - Michael L. De Ieso
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - W. Daniel Stamer
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
| |
Collapse
|
10
|
Mansouri M, Ahmed A, Ahmad SD, McCloskey MC, Joshi IM, Gaborski TR, Waugh RE, McGrath JL, Day SW, Abhyankar VV. The Modular µSiM Reconfigured: Integration of Microfluidic Capabilities to Study In Vitro Barrier Tissue Models under Flow. Adv Healthc Mater 2022; 11:e2200802. [PMID: 35953453 PMCID: PMC9798530 DOI: 10.1002/adhm.202200802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Indexed: 01/28/2023]
Abstract
Microfluidic tissue barrier models have emerged to address the lack of physiological fluid flow in conventional "open-well" Transwell-like devices. However, microfluidic techniques have not achieved widespread usage in bioscience laboratories because they are not fully compatible with traditional experimental protocols. To advance barrier tissue research, there is a need for a platform that combines the key advantages of both conventional open-well and microfluidic systems. Here, a plug-and-play flow module is developed to introduce on-demand microfluidic flow capabilities to an open-well device that features a nanoporous membrane and live-cell imaging capabilities. The magnetic latching assembly of this design enables bi-directional reconfiguration and allows users to conduct an experiment in an open-well format with established protocols and then add or remove microfluidic capabilities as desired. This work also provides an experimentally-validated flow model to select flow conditions based on the experimental needs. As a proof-of-concept, flow-induced alignment of endothelial cells and the expression of shear-sensitive gene targets are demonstrated, and the different phases of neutrophil transmigration across a chemically stimulated endothelial monolayer under flow conditions are visualized. With these experimental capabilities, it is anticipated that both engineering and bioscience laboratories will adopt this reconfigurable design due to the compatibility with standard open-well protocols.
Collapse
Affiliation(s)
- Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Molly C. McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Indranil M. Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Thomas R. Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Steven W. Day
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Vinay V. Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
11
|
Li H, Singh A, Perkumas KM, Stamer WD, Ganapathy PS, Herberg S. YAP/TAZ Mediate TGFβ2-Induced Schlemm's Canal Cell Dysfunction. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36350617 PMCID: PMC9652721 DOI: 10.1167/iovs.63.12.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Elevated transforming growth factor beta2 (TGFβ2) levels in the aqueous humor have been linked to glaucomatous outflow tissue dysfunction. Potential mediators of dysfunction are the transcriptional coactivators, Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ). However, the molecular underpinnings of YAP/TAZ modulation in Schlemm's canal (SC) cells under glaucomatous conditions are not well understood. Here, we investigate how TGFβ2 regulates YAP/TAZ activity in human SC (HSC) cells using biomimetic extracellular matrix hydrogels, and examine whether pharmacological YAP/TAZ inhibition would attenuate TGFβ2-induced HSC cell dysfunction. Methods Primary HSC cells were seeded atop photo-cross-linked extracellular matrix hydrogels, made of collagen type I, elastin-like polypeptide and hyaluronic acid, or encapsulated within the hydrogels. HSC cells were induced with TGFβ2 in the absence or presence of concurrent actin destabilization or pharmacological YAP/TAZ inhibition. Changes in actin cytoskeletal organization, YAP/TAZ activity, extracellular matrix production, phospho-myosin light chain levels, and hydrogel contraction were assessed. Results TGFβ2 significantly increased YAP/TAZ nuclear localization in HSC cells, which was prevented by either filamentous-actin relaxation or depolymerization. Pharmacological YAP/TAZ inhibition using verteporfin without light stimulation decreased fibronectin expression and actomyosin cytoskeletal rearrangement in HSC cells induced by TGFβ2. Similarly, verteporfin significantly attenuated TGFβ2-induced HSC cell-encapsulated hydrogel contraction. Conclusions Our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in HSC cells under simulated glaucomatous conditions and suggest that pharmacological YAP/TAZ inhibition has promising potential to improve outflow tissue dysfunction.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Kristin M. Perkumas
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States
| |
Collapse
|
12
|
Shim MS, Liton PB. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog Retin Eye Res 2022; 90:101064. [PMID: 35370083 PMCID: PMC9464695 DOI: 10.1016/j.preteyeres.2022.101064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA.
| |
Collapse
|
13
|
Dietary Nitrate Intake Is Associated with Decreased Incidence of Open-Angle Glaucoma: The Rotterdam Study. Nutrients 2022; 14:nu14122490. [PMID: 35745220 PMCID: PMC9228179 DOI: 10.3390/nu14122490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Previous studies suggest that nitric oxide is involved in the regulation of the intraocular pressure (IOP) and in the pathophysiology of open-angle glaucoma (OAG). However, prospective studies investigating the association between dietary nitrate intake, a source of nitric oxide, and incident (i)OAG risk are limited. We aimed to determine the association between dietary nitrate intake and iOAG, and to evaluate the association between dietary nitrate intake and IOP. From 1991 onwards, participants were followed each five years for iOAG in the Rotterdam Study. A total of 173 participants developed iOAG during follow-up. Cases and controls were matched on age (mean ± standard deviation: 65.7 ± 6.9) and sex (%female: 53.2) in a case:control ratio of 1:5. After adjustment for potential confounders, total dietary nitrate intake was associated with a lower iOAG risk (odds ratio (OR) with corresponding 95% confidence interval (95% CI): 0.95 (0.91-0.98) for each 10 mg/day higher intake). Both nitrate intake from vegetables (OR (95% CI): 0.95 (0.91-0.98) for each 10 mg/day higher intake) and nitrate intake from non-vegetable food sources (OR (95% CI): 0.63 (0.41-0.96) for each 10 mg/day higher intake) were associated with a lower iOAG risk. Dietary nitrate intake was not associated with IOP. In conclusion, dietary nitrate intake was associated with a reduced risk of iOAG. IOP-independent mechanisms may underlie the association with OAG.
Collapse
|
14
|
Lewczuk K, Jabłońska J, Konopińska J, Mariak Z, Rękas M. Schlemm's canal: the outflow 'vessel'. Acta Ophthalmol 2022; 100:e881-e890. [PMID: 34519170 PMCID: PMC9293138 DOI: 10.1111/aos.15027] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
In a healthy eye, the aqueous humour (AH) flows via the ciliary body and trabecular meshwork into the collector channels, which carry it to the episcleral veins. In glaucoma, a heterogeneous group of eye disorders affecting approximately 60 million individuals worldwide, the juxtacanalicular meshwork offers greater resistance to the outflow of the AH, leading to an increase in outflow resistance that gradually results in elevated intraocular pressure (IOP). The present review comprehensively covers the morphology of Schlemm’s canal (SC) and AH pathways. The path of the AH from the anterior chamber through the trabeculum into suprascleral and conjunctival veins via collector channels is described, and the role of SC in the development of glaucoma and outflow resistance is discussed. Finally, channelography is presented as a precise method of assessing the conventional drainage pathway and facilitating localization of an uncollapsed collector and aqueous veins. Attention is also given to the relationship between aqueous and episcleral veins and heartbeat. Possible directions of future research are proposed.
Collapse
Affiliation(s)
- Katarzyna Lewczuk
- Department of Ophthalmology Military Institute of Medicine Warsaw Poland
| | - Joanna Jabłońska
- Department of Ophthalmology Military Institute of Medicine Warsaw Poland
| | - Joanna Konopińska
- Department of Ophthalmology Medical University in Bialystok Białystok Poland
| | - Zofia Mariak
- Department of Ophthalmology Medical University in Bialystok Białystok Poland
| | - Marek Rękas
- Department of Ophthalmology Military Institute of Medicine Warsaw Poland
| |
Collapse
|
15
|
Faralli JA, Filla MS, Peters DM. Integrin Crosstalk and Its Effect on the Biological Functions of the Trabecular Meshwork/Schlemm’s Canal. Front Cell Dev Biol 2022; 10:886702. [PMID: 35573686 PMCID: PMC9099149 DOI: 10.3389/fcell.2022.886702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Integrins are a family of heterodimeric receptors composed of an α- and β-subunit that mediate cell-adhesion to a number of extracellular matrix (ECM) proteins in the Trabecular Meshwork/Schlemm’s canal (TM/SC) of the eye. Upon binding an ECM ligand, integrins transmit signals that activate a number of signaling pathways responsible for regulating actin-mediated processes (i.e phagocytosis, cell contractility, and fibronectin fibrillogenesis) that play an important role in regulating intraocular pressure (IOP) and may be involved in glaucoma. An important function of integrin-mediated signaling events is that the activity of one integrin can affect the activity of other integrins in the same cell. This creates a crosstalk that allows TM/SC cells to respond to changes in the ECM presumably induced by the mechanical forces on the TM/SC, aging and disease. In this review, we discuss how integrin crosstalk influences the function of the human TM/SC pathway. In particular, we will discuss how different crosstalk pathways mediated by either the αvβ3 or α4β1 integrins can play opposing roles in the TM when active and therefore act as on/off switches to modulate the cytoskeleton-mediated processes that regulate the outflow of aqueous humor through the TM/SC.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mark S. Filla
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- *Correspondence: Donna M. Peters,
| |
Collapse
|
16
|
Johnstone M, Xin C, Acott T, Vranka J, Wen J, Martin E, Wang RK. Valve-Like Outflow System Behavior With Motion Slowing in Glaucoma Eyes: Findings Using a Minimally Invasive Glaucoma Surgery–MIGS-Like Platform and Optical Coherence Tomography Imaging. Front Med (Lausanne) 2022; 9:815866. [PMID: 35572956 PMCID: PMC9099151 DOI: 10.3389/fmed.2022.815866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 01/01/2023] Open
Abstract
PurposeThis study aimed to investigate anatomic relationships and biomechanics of pressure-dependent trabecular meshwork and distal valve-like structure deformation in normal and glaucoma eyes using high-resolution optical coherence tomography (HR-OCT).MethodsWe controlled Schlemm’s canal (SC) pressure during imaging with HR-OCT in segments of three normal (NL) and five glaucomatous (GL) ex vivo eyes. The dissected limbal wedges were studied from 15 locations (5 NL and 10 GL). A minimally invasive glaucoma surgery (MIGS)-like cannula was inserted into the SC lumen, whereas the other end was attached to a switch between two reservoirs, one at 0, the other at 30 mm Hg. A steady-state pressure of 30 mm Hg was maintained to dilate SC and collector channels (CC) during 3D volume imaging. The resulting 3D lumen surface relationships were correlated with internal structural features using an image mask that excluded tissues surrounding SC and CC. While imaging with HR-OCT, real-time motion responses in SC and CC areas were captured by switching pressure from 0 to 30 or 30 to 0 mm Hg. NL vs. GL motion differences were compared.ResultsLumen surface and internal relationships were successfully imaged. We identified SC inlet and outlet valve-like structures. In NL and GL, the mean SC areas measured at the steady-state of 0 and 30 mm Hg were each significantly different (p < 0.0001). Synchronous changes in SC and CC lumen areas occurred in <200 ms. Measured SC area differences at the steady-state 0 and 30 mmHg, respectively, were larger in NL than GL eyes (p < 0.0001). The SC motion curves rose significantly more slowly in GL than NL (p < 0.001). Pressure waves traveled from the cannula end along the SC lumen to CC and deep intrascleral channels.ConclusionHR-OCT provided simultaneous measurements of outflow pathway lumen surfaces, internal structures, and biomechanics of real-time pressure-dependent dimension changes. We identified SC inlet and outlet valve-like structures. GL tissues underwent less motion and responded more slowly than NL, consistent with increased tissue stiffness. A MIGS-like shunt to SC permitted pulse waves to travel distally along SC lumen and into CC.
Collapse
Affiliation(s)
- Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
- *Correspondence: Murray Johnstone,
| | - Chen Xin
- Department of Ophthalmology, Tongren Hospital, Beijing, China
| | - Ted Acott
- Department of Ophthalmology, Casey Eye Institute, Portland, OR, United States
| | - Janice Vranka
- Department of Ophthalmology, Casey Eye Institute, Portland, OR, United States
| | - Joanne Wen
- Department of Ophthalmology, Duke Eye Center, Durham, NC, United States
| | - Elizabeth Martin
- Department of Ophthalmology, Indiana University, Indianapolis, IN, United States
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Angiopoietin-1 Mimetic Nanoparticles for Restoring the Function of Endothelial Cells as Potential Therapeutic for Glaucoma. Pharmaceuticals (Basel) 2021; 15:ph15010018. [PMID: 35056075 PMCID: PMC8780450 DOI: 10.3390/ph15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
A root cause for the development and progression of primary open-angle glaucoma might be the loss of the Schlemm’s canal (SC) cell function due to an impaired Angiopoietin-1 (Angpt-1)/Tie2 signaling. Current therapeutic options fail to restore the SC cell function. We propose Angpt-1 mimetic nanoparticles (NPs) that are intended to bind in a multivalent manner to the Tie2 receptor for successful receptor activation. To this end, an Angpt-1 mimetic peptide was coupled to a poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) block co-polymer. The modified polymer allowed for the fabrication of Angpt-1 mimetic NPs with a narrow size distribution (polydispersity index < 0.2) and the size of the NPs ranging from about 120 nm (100% ligand density) to about 100 nm (5% ligand density). NP interaction with endothelial cells (HUVECs, EA.hy926) as surrogate for SC cells and fibroblasts as control was investigated by flow cytometry and confocal microscopy. The NP–cell interaction strongly depended on the ligand density and size of NPs. The cellular response to the NPs was investigated by a Ca2+ mobilization assay as well as by a real-time RT-PCR and Western blot analysis of endothelial nitric oxide synthase (eNOS). NPs with a ligand density of 25% opposed VEGF-induced Ca2+ influx in HUVECs significantly which could possibly increase cell relaxation and thus aqueous humor drainage, whereas the expression and synthesis of eNOS was not significantly altered. Therefore, we suggest Angpt-1 mimetic NPs as a first step towards a causative therapy to recover the loss of SC cell function during glaucoma.
Collapse
|
18
|
The Response of Corneal Endothelial Cells to Shear Stress in an In Vitro Flow Model. J Ophthalmol 2021; 2021:9217866. [PMID: 34873452 PMCID: PMC8643247 DOI: 10.1155/2021/9217866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Corneal endothelial cells are usually exposed to shear stress caused by the aqueous humour, which is similar to the exposure of vascular endothelial cells to shear stress caused by blood flow. However, the effect of fluid shear stress on corneal endothelial cells is still poorly understood. The purpose of this study was to explore whether the shear stress that results from the aqueous humour influences corneal endothelial cells. Methods An in vitro model was established to generate fluid flow on cells, and the effect of fluid flow on corneal endothelial cells after exposure to two levels of shear stress for different durations was investigated. The mRNA and protein expression of corneal endothelium-related markers in rabbit corneal endothelial cells was evaluated by real-time PCR and western blotting. Results The expression of the corneal endothelium-related markers ZO-1, N-cadherin, and Na+-K+-ATPase in rabbit corneal endothelial cells (RCECs) was upregulated at both the mRNA and protein levels after exposure to shear stress. Conclusion This study demonstrates that RCECs respond favourably to fluid shear stress, which may contribute to the maintenance of corneal endothelial cell function. Furthermore, this study also provides a theoretical foundation for further investigating the response of human corneal endothelial cells to the shear stress caused by the aqueous humour.
Collapse
|
19
|
Distribution of Gold Nanoparticles in the Anterior Chamber of the Eye after Intracameral Injection for Glaucoma Therapy. Pharmaceutics 2021; 13:pharmaceutics13060901. [PMID: 34204364 PMCID: PMC8235414 DOI: 10.3390/pharmaceutics13060901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
In glaucoma therapy, nanoparticles (NPs) are a favorable tool for delivering drugs to the outflow tissues of the anterior chamber of the eye where disease development and progression take place. In this context, a prerequisite is an efficient enrichment of NPs in the trabecular meshwork with minimal accumulation in off-target tissues such as the cornea, lens, iris and ciliary body. We evaluated the optimal size for targeting the trabecular meshwork by using gold NPs of 5, 60, 80 and 120 nm with a bare surface (AuNPs) or coated with hyaluronic acid (HA-AuNPs). NPs were compared regarding their colloidal stability, distribution in the anterior chamber of the eye ex vivo and cellular uptake in vitro. HA-AuNPs demonstrated an exceptional colloidal stability. Even after application into porcine eyes ex vivo, the HA coating prevented an aggregation of NPs inside the trabecular meshwork. NPs with a diameter of 120 nm exhibited the highest volume-based accumulation in the trabecular meshwork. Off-target tissues in the anterior chamber demonstrated an exceptionally low gold content. Our findings are particularly important for NPs with encapsulated anti-glaucoma drugs because a higher particle volume would be accompanied by a higher drug payload.
Collapse
|
20
|
Patel PD, Chen YL, Kasetti RB, Maddineni P, Mayhew W, Millar JC, Ellis DZ, Sonkusare SK, Zode GS. Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma. Proc Natl Acad Sci U S A 2021; 118:e2022461118. [PMID: 33853948 PMCID: PMC8072326 DOI: 10.1073/pnas.2022461118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm's canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.
Collapse
Affiliation(s)
- Pinkal D Patel
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Ramesh B Kasetti
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Prabhavathi Maddineni
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - William Mayhew
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Dorette Z Ellis
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908;
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107;
| |
Collapse
|
21
|
Madekurozwa M, Stamer WD, Reina-Torres E, Sherwood JM, Overby DR. The ocular pulse decreases aqueous humor outflow resistance by stimulating nitric oxide production. Am J Physiol Cell Physiol 2021; 320:C652-C665. [PMID: 33439773 PMCID: PMC8260357 DOI: 10.1152/ajpcell.00473.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
Intraocular pressure (IOP) is not static, but rather oscillates by 2-3 mmHg because of cardiac pulsations in ocular blood volume known as the ocular pulse. The ocular pulse induces pulsatile shear stress in Schlemm's canal (SC). We hypothesize that the ocular pulse modulates outflow facility by stimulating shear-induced nitric oxide (NO) production by SC cells. We confirmed that living mice exhibit an ocular pulse with a peak-to-peak (pk-pk) amplitude of 0.5 mmHg under anesthesia. Using iPerfusion, we measured outflow facility (flow/pressure) during alternating periods of steady or pulsatile IOP in both eyes of 16 cadaveric C57BL/6J mice (13-14 weeks). Eyes were retained in situ, with an applied mean pressure of 8 mmHg and 1.0 mmHg pk-pk pressure amplitude at 10 Hz to mimic the murine heart rate. One eye of each cadaver was perfused with 100 µM L-NAME to inhibit NO synthase, whereas the contralateral eye was perfused with vehicle. During the pulsatile period in the vehicle-treated eye, outflow facility increased by 16 [12, 20] % (P < 0.001) relative to the facility measured during the preceding and subsequent steady periods. This effect was partly inhibited by L-NAME, where pressure pulsations increased outflow facility by 8% [4, 12] (P < 0.001). Thus, the ocular pulse causes an immediate increase in outflow facility in mice, with roughly one-half of the facility increase attributable to NO production. These studies reveal a dynamic component to outflow function that responds instantly to the ocular pulse and may be important for outflow regulation and IOP homeostasis.
Collapse
Affiliation(s)
- Michael Madekurozwa
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Joseph M Sherwood
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
De Ieso ML, Gurley JM, McClellan ME, Gu X, Navarro I, Li G, Gomez-Caraballo M, Enyong E, Stamer WD, Elliott MH. Physiologic Consequences of Caveolin-1 Ablation in Conventional Outflow Endothelia. Invest Ophthalmol Vis Sci 2021; 61:32. [PMID: 32940661 PMCID: PMC7500130 DOI: 10.1167/iovs.61.11.32] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Polymorphisms at the caveolin-1/2 locus are associated with glaucoma and IOP risk and deletion of caveolin-1 (Cav1) in mice elevates IOP and reduces outflow facility. However, the specific location/cell type responsible for Cav1-dependent regulation of IOP is unclear. We hypothesized that endothelial Cav1 in the conventional outflow (CO) pathway regulate IOP via endothelial nitric oxide synthase (eNOS) signaling. Methods We created a mouse with targeted deletion of Cav1 in endothelial cells (Cav1ΔEC) and evaluated IOP, outflow facility, outflow pathway distal vascular morphology, eNOS phosphorylation, and tyrosine nitration of iridocorneal angle tissues by Western blotting. Results Endothelial deletion of Cav1 resulted in significantly elevated IOP versus wild-type mice but not a concomitant decrease in outflow facility. Endothelial Cav1 deficiency did not alter the trabecular meshwork or Schlemm's canal morphology, suggesting that the effects observed were not due to developmental deformities. Endothelial Cav1 deletion resulted in eNOS hyperactivity, modestly increased protein nitration, and significant enlargement of the drainage vessels distal to Schlemm's canal. L-Nitro-arginine methyl ester treatment reduced outflow in Cav1ΔEC but not wild-type mice and had no effect on the size of drainage vessels. Endothelin-1 treatment decrease the outflow and drainage vessel size in both wild-type and Cav1ΔEC mice. Conclusions Our results suggest that hyperactive eNOS signaling in the CO pathway of both Cav1ΔEC and global Cav1 knockout mice results in chronic dilation of distal CO vessels and protein nitration, but that Cav1 expression in the trabecular meshwork is sufficient to rescue CO defects reported in global Cav1 knockout mice.
Collapse
Affiliation(s)
- Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Jami M Gurley
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Mark E McClellan
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Xiaowu Gu
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Iris Navarro
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Guorong Li
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Maria Gomez-Caraballo
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Eric Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Michael H Elliott
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
23
|
Prajapati N, Karan A, Khezerlou E, DeCoster MA. The Immunomodulatory Potential of Copper and Silver Based Self-Assembled Metal Organic Biohybrids Nanomaterials in Cancer Theranostics. Front Chem 2021; 8:629835. [PMID: 33585405 PMCID: PMC7873042 DOI: 10.3389/fchem.2020.629835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Copper high aspect ratio structures (CuHARS) and silver cystine nanoparticles (AgCysNPs) are two unique micro/nano particles under study here that show extensive anti-cancer effects on a glioma tumor cell line. These micro/nano particles have shown potent toxicity in the presence of inflammatory stimulus (combination of tumor necrosis factor, [TNF] and lipo-polysaccharide, LPS). CuHARS with a concentration of 20 μg/ml uniquely increased the catalytic generation of nitric oxide (NO), an important contributor in the immune system. This NO was generated in a cell culture tumor microenvironment (TME) in the presence of 25 µM S-nitrosothiol (cysteine-NO) and the inflammatory stimulus. CuHARS increased the NO production by 68.75% when compared to untreated glioma cells with CysNO and inflammatory stimulus. The production of NO was significantly higher under similar circumstances in the case of normal primary structural cells like brain microvascular endothelial cells (BMVECs). The production of NO by BMVECs went up by 181.25% compared to glioma cells. This significant increase in the NO concentration could have added up to tumorigenesis but the anti-cancer effect of CuHARS was prominent enough to lower down the viability of glioma cells by approximately 20% and increased the metabolism of structural cells, BMVECs by approximately 200%. The immunomodulatory effect of NO in the TME under these circumstances in the presence of the novel micro/nano material, CuHARS has risen up compared to the effect of inflammatory stimulus alone. The potency and specific nature of these materials toward tumor cells may make them suitable candidates for cancer treatment. Successive treatment of CuHARS to glioma cells also proved to be an effective approach considering the decrease in the total count of cells by 11.84 fold in case of three successive treatments compared to a single dose which only decreased the cell count by 2.45 fold showing the dose-dependent increasing toxicity toward glioma cells. AgCysNPs are another potent nanomaterial which also proved its significant toxic nature toward tumor cell lines as demonstrated here, but their immunomodulatory response is still unclear and needs to be explored further.
Collapse
Affiliation(s)
- Neela Prajapati
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Anik Karan
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Elnaz Khezerlou
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Mark A DeCoster
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States.,Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| |
Collapse
|
24
|
Reina-Torres E, Boussommier-Calleja A, Sherwood JM, Overby DR. Aqueous Humor Outflow Requires Active Cellular Metabolism in Mice. Invest Ophthalmol Vis Sci 2021; 61:45. [PMID: 32845955 PMCID: PMC7452856 DOI: 10.1167/iovs.61.10.45] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Conventional wisdom posits that aqueous humor leaves the eye by passive bulk flow without involving energy-dependent processes. However, recent studies have shown that active processes, such as cell contractility, contribute to outflow regulation. Here, we examine whether inhibiting cellular metabolism affects outflow facility in mice. Methods We measured outflow facility in paired enucleated eyes from C57BL/6J mice using iPerfusion. We had three Experimental Sets: ES1, perfused at 35°C versus 22°C; ES2, perfused with metabolic inhibitors versus vehicle at 35°C; and ES3, perfused at 35°C versus 22°C in the presence of metabolic inhibitors. Inhibitors targeted glycolysis and oxidative phosphorylation (2-deoxy-D-glucose, 3PO and sodium azide). We also measured adenosine triphosphate (ATP) levels in separate murine anterior segments treated like ES1 and ES2. Results Reducing temperature decreased facility by 63% [38%, 78%] (mean [95% confidence interval (CI)], n = 10 pairs; P = 0.002) in ES1 after correcting for changes in viscosity. Metabolic inhibitors reduced facility by 21% [9%, 31%] (n = 9, P = 0.006) in ES2. In the presence of inhibitors, temperature reduction decreased facility by 44% [29%, 56%] (n = 8, P < 0.001) in ES3. Metabolic inhibitors reduced anterior segment adenosine triphosphate (ATP) levels by 90% [83%, 97%] (n = 5, P<<0.001), but reducing temperature did not affect ATP. Conclusions Inhibiting cellular metabolism decreases outflow facility within minutes. This implies that outflow is not entirely passive, but depends partly on energy-dependent cellular processes, at least in mice. This study also suggests that there is a yet unidentified mechanism, which is strongly temperature-dependent but metabolism-independent, that is necessary for nearly half of normal outflow function in mice.
Collapse
Affiliation(s)
- Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Joseph M Sherwood
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR, Stamer WD. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res 2020; 83:100922. [PMID: 33253900 DOI: 10.1016/j.preteyeres.2020.100922] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Catalyzed by endothelial nitric oxide (NO) synthase (eNOS) activity, NO is a gaseous signaling molecule maintaining endothelial and cardiovascular homeostasis. Principally, NO regulates the contractility of vascular smooth muscle cells and permeability of endothelial cells in response to either biochemical or biomechanical cues. In the conventional outflow pathway of the eye, the smooth muscle-like trabecular meshwork (TM) cells and Schlemm's canal (SC) endothelium control aqueous humor outflow resistance, and therefore intraocular pressure (IOP). The mechanisms by which outflow resistance is regulated are complicated, but NO appears to be a key player as enhancement or inhibition of NO signaling dramatically affects outflow function; and polymorphisms in NOS3, the gene that encodes eNOS modifies the relation between various environmental exposures and glaucoma. Based upon a comprehensive review of past foundational studies, we present a model whereby NO controls a feedback signaling loop in the conventional outflow pathway that is sensitive to changes in IOP and its oscillations. Thus, upon IOP elevation, the outflow pathway tissues distend, and the SC lumen narrows resulting in increased SC endothelial shear stress and stretch. In response, SC cells upregulate the production of NO, relaxing neighboring TM cells and increasing permeability of SC's inner wall. These IOP-dependent changes in the outflow pathway tissues reduce the resistance to aqueous humor drainage and lower IOP, which, in turn, diminishes the biomechanical signaling on SC. Similar to cardiovascular pathogenesis, dysregulation of the eNOS/NO system leads to dysfunctional outflow regulation and ocular hypertension, eventually resulting in primary open-angle glaucoma.
Collapse
Affiliation(s)
| | | | - Louis R Pasquale
- Eye and Vision Research Institute of New York Eye and Ear Infirmary at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK.
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| |
Collapse
|
26
|
miR-21-5p: A viable therapeutic strategy for regulating intraocular pressure. Exp Eye Res 2020; 200:108197. [PMID: 32871166 DOI: 10.1016/j.exer.2020.108197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Lowering intraocular pressure (IOP) is the most effective treatment of glaucoma, however most of the current available glaucoma drugs target a single molecule. MicroRNAs (miRNAs) are noncoding RNAs that target a network of molecules. This study aims to investigate the role of miR-21-5p in regulating IOP and the mechanism of function. miR-21-5p mimics was topically applied to C57/BL6 mouse eyes, which significantly increased miR-21-5p expression in the conventional outflow tissue and reduced IOP by a maximum of 17.77% at 24 h after treatment. The conventional outflow facility measured by ex vivo moue eye perfusion of miR-21-5p was significantly increased by 60.14%. Moreover, miR-21-5p overexpression significantly reduced the transendothelial electrical resistance in porcine angular aqueous plexus cells. Transcriptome analysis and further quantification by Western blot and PCR revealed that SMAD7 and FGF18 might be the downstream target of miR-21-5p in regulating aqueous humor outflow. The predicted functional pathways PTEN/eNOS, RhoB/pMLC and TIMP3/MMP9 were significantly altered after miR-21-5p transfection. Dual luciferase assay verified the direct targets of miR-21-5p. In conclusion, miR-21-5p seems to regulate IOP by modulating multiple genes that are associated with aqueous humor outflow, including genes those regulating cell adhesion, cytoskeletal dynamics and extracellular matrix turnover. Thus, miR-21-5p represents a new therapeutic strategy for glaucoma and a viable alternative to existing multidrug regimens.
Collapse
|
27
|
Schmitt HM, Johnson WM, Aboobakar IF, Strickland S, Gomez-Caraballo M, Parker M, Finnegan L, Corcoran DL, Skiba NP, Allingham RR, Hauser MA, Stamer WD. Identification and activity of the functional complex between hnRNPL and the pseudoexfoliation syndrome-associated lncRNA, LOXL1-AS1. Hum Mol Genet 2020; 29:1986-1995. [PMID: 32037441 PMCID: PMC7390937 DOI: 10.1093/hmg/ddaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 12/28/2022] Open
Abstract
Individuals with pseudoexfoliation (PEX) syndrome exhibit various connective tissue pathologies associated with dysregulated extracellular matrix homeostasis. PEX glaucoma is a common, aggressive form of open-angle glaucoma resulting from the deposition of fibrillary material in the conventional outflow pathway. However, the molecular mechanisms that drive pathogenesis and genetic risk remain poorly understood. PEX glaucoma-associated single-nucleotide polymorphisms are located in and affect activity of the promoter of LOXL1-AS1, a long non-coding RNA (lncRNA). Nuclear and non-nuclear lncRNAs regulate a host of biological processes, and when dysregulated, contribute to disease. Here we report that LOXL1-AS1 localizes to the nucleus where it selectively binds to the mRNA processing protein, heterogeneous nuclear ribonucleoprotein-L (hnRNPL). Both components of this complex are critical for the regulation of global gene expression in ocular cells, making LOXL1-AS1 a prime target for investigation in PEX syndrome and glaucoma.
Collapse
Affiliation(s)
- Heather M Schmitt
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - William M Johnson
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Inas F Aboobakar
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Shelby Strickland
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701 USA
| | - María Gomez-Caraballo
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Megan Parker
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Laura Finnegan
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
- School of Genetics and Microbiology, Department of Genetics, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland
| | - David L Corcoran
- Genomic Analysis and Bioinformatics Shared Resource, Duke University, Duke University CIEMAS, Durham, NC 27708, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - R Rand Allingham
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Michael A Hauser
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701 USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| |
Collapse
|
28
|
da Silva CN, Dourado LFN, de Lima ME, da Silva Cunha-Jr A. PnPP-19 Peptide as a Novel Drug Candidate for Topical Glaucoma Therapy Through Nitric Oxide Release. Transl Vis Sci Technol 2020; 9:33. [PMID: 32855879 PMCID: PMC7422904 DOI: 10.1167/tvst.9.8.33] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/31/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Evaluation of PnPP-19 safety and efficacy in reducing the intraocular pressure (IOP) of animals with healthy (normotensive) and ocular hypertensive eyes. PnPP-19 is a synthetic peptide designed from Phoneutria nigriventer spider toxin PnTx2-6. Methods Toxicity tests used chicken chorioallantoic membranes. Electroretinograms (ERGs) were recorded before and after administration of different doses of PnPP-19 on the eyes of Wistar rats. Histological sections of corneas and retinas were prepared. The efficacy of PnPP-19 in reducing IOP was evaluated for normotensive and ocular hypertensive animals using a tonometer. Ocular hypertension was induced in the right eye through injection of hyaluronic acid (HA) into the anterior chamber. ERG was recorded before and after glaucoma induction. The eyes were enucleated, and the corneas and retinas were histologically evaluated. Results PnPP-19 showed no toxicity, being safe for ocular application. A single topical instillation of one eye drop of the peptide solution was able to reduce IOP, both in healthy and ocular hypertensive rats, for 24 hours, without eliciting any apparent toxicity. PnPP-19 is a nitric oxide inducer and the results suggest that it may improve the conventional outflow of aqueous humor (AH), preventing the progression of optic nerve degeneration. Conclusions PnPP-19 has great potential to emerge as a promising drug for the treatment of ocular hypertension. Translational Relevance We regard our findings as exciting progress in translational glaucoma research, combining drug discovery, natural product research, and pharmacology, which may contribute to the establishment of new therapies for the treatment of this disease.
Collapse
Affiliation(s)
- Carolina Nunes da Silva
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Zipcode 31270-901, Brazil
| | | | - Maria Elena de Lima
- Santa Casa de Belo Horizonte: Instituto de Ensino e Pesquisa, Belo Horizonte-MG, Zipcode 30150-240, Brazil
| | - Armando da Silva Cunha-Jr
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Zipcode 31270-901, Brazil
| |
Collapse
|
29
|
Patel PD, Kasetti RB, Sonkusare SK, Zode GS. Technical brief: Direct, real-time electrochemical measurement of nitric oxide in ex vivo cultured human corneoscleral segments. Mol Vis 2020; 26:434-444. [PMID: 32565671 PMCID: PMC7300198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Chronic elevation of intraocular pressure (IOP) is a major risk factor associated with primary open angle glaucoma (POAG), a common form of progressive optic neuropathy that can lead to debilitating loss of vision. Recent studies have identified the role of nitric oxide (NO) in the regulation of IOP, and as a result, several therapeutic ventures are currently targeting enhancement of NO signaling in the eye. Although a low level of NO is important for ocular physiology, excess exogenous NO can be detrimental. Therefore, the ability to directly measure NO in real time is essential for determining the role of NO signaling in glaucomatous pathophysiology. Historically, NO activity in human tissues has been determined by indirect methods that measure levels of NO metabolites (nitrate/nitrite) or downstream components of the NO signaling pathway (cGMP). In this proof-of-concept work, we assess the feasibility of direct, real-time measurement of NO in ex vivo cultured human corneoscleral segments using electrochemistry. A NO-selective electrode (ISO-NOPF200) paired to a free radical analyzer (TBR1025) was placed on the trabecular meshwork (TM) rim for real-time measurement of NO released from cells. Exogenous NO produced within cells was measured after treatment of corneoscleral segments with esterase-dependent NO-donor O2-acetoxymethylated diazeniumdiolate (DETA-NONOate/AM; 20 μM) and latanoprostene bunod (5-20 μM). A fluorescent NO-binding dye DAF-FM (4-Amino-5-methylamino- 2',7'-difluorofluorescein diacetate) was used for validation. A linear relationship was observed between the electric currents measured by the NO-sensing electrode and the NO standard concentrations, establishing a robust calibration curve. Treatment of ex vivo cultured human donor corneoscleral segments with DETA-NONOate/AM and latanoprostene bunod led to a significant increase in NO production compared with vehicle-treated controls, as detected electrochemically. Furthermore, the DAF-FM fluorescence intensity was higher in outflow pathway tissues of corneoscleral segments treated with DETA-NONOate/AM and latanoprostene bunod compared with vehicle-treated controls. In conclusion, these results demonstrate that NO-sensing electrodes can be used to directly measure NO levels in real time from the tissues of the outflow pathway.
Collapse
Affiliation(s)
- Pinkal D. Patel
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX
| | - Ramesh B. Kasetti
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX
| | - Swapnil K. Sonkusare
- Molecular Physiology and Biological Physics, University of Virginia - School of Medicine, Charlottesville, VA
| | - Gulab S. Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX
| |
Collapse
|
30
|
Chen S, Waxman S, Wang C, Atta S, Loewen R, Loewen NA. Dose-dependent effects of netarsudil, a Rho-kinase inhibitor, on the distal outflow tract. Graefes Arch Clin Exp Ophthalmol 2020; 258:1211-1216. [PMID: 32372330 PMCID: PMC7237522 DOI: 10.1007/s00417-020-04691-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To characterize the effects of netarsudil on the aqueous humor outflow tract distal to the trabecular meshwork (TM). We hypothesized that netarsudil increases outflow facility in eyes with and without circumferential ab interno trabeculectomy (AIT) that removes the TM. METHODS Sixty-four porcine anterior segment cultures were randomly assigned to groups with (n = 32) and without circumferential AIT (n = 32). Cultures were exposed to 0.1, 1, and 10 μM netarsudil (N = 8 eyes per concentration). For each concentration, IOP and vessel diameters were compared with their respective pretreatment baselines. Outflow tract vessel diameters were assessed by spectral-domain optical coherence tomography (SDOCT) and rendered in 4D (XYZ time series). RESULTS Netarsudil at 1 μM reduced IOP both in eyes with TM (- 0.60 ± 0.24 mmHg, p = 0.01) and in eyes without TM (- 1.79 ± 0.42 mmHg, p < 0.01). At this concentration, vessels of the distal outflow tract dilated by 72%. However, at 0.1 μM netarsudil elevated IOP in eyes with TM (1.59 ± 0.36 mmHg, p < 0.001) as well as in eyes without TM (0.23 ± 0.32 mmHg, p < 0.001). Vessels of the distal outflow tract constricted by 31%. Similarly, netarsudil at a concentration of 10 μM elevated IOP both in eyes with TM (1.91 ± 0.193, p < 0.001) and in eyes without TM (3.65 ± 0.86 mmHg, p < 0.001). At this concentration, outflow tract vessels constricted by 27%. CONCLUSION In the porcine anterior segment culture, the dose-dependent IOP changes caused by netarsudil matched the diameter changes of distal outflow tract vessels. Hyper- and hypotensive properties of netarsudil persisted after TM removal.
Collapse
Affiliation(s)
- Si Chen
- Department of Ophthalmology, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chao Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sarah Atta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ralitsa Loewen
- Department of Ophthalmology, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nils A Loewen
- Department of Ophthalmology, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Xin C, Wang H, Wang N. Minimally Invasive Glaucoma Surgery: What Do We Know? Where Should We Go? Transl Vis Sci Technol 2020; 9:15. [PMID: 32821487 PMCID: PMC7401977 DOI: 10.1167/tvst.9.5.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
With the arrival of a plethora of new and revolving minimally invasive glaucoma surgery techniques, glaucoma specialists currently are fortunate to have various surgical options that aim to recovery of the function of the aqueous outflow system in different ways. Meanwhile, the aqueous outflow system has become the hot point of researching. In ARVO 2019, a special interest group session was held on new perspectives on minimally invasive glaucoma surgery. Ten surgeons, clinical professors, and experimental scientists were invited to report their latest studies and discussed on five hot topics in this special interest group. This review summarizes the special interest group session and posts the issues of greatest concern, providing insight to the aqueous outflow system and areas that require further study.
Collapse
Affiliation(s)
- Chen Xin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Huangzhou Wang
- Ophthalmology Department, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Shear Stress in Schlemm's Canal as a Sensor of Intraocular Pressure. Sci Rep 2020; 10:5804. [PMID: 32242066 PMCID: PMC7118084 DOI: 10.1038/s41598-020-62730-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Elevated intraocular pressure (IOP) narrows Schlemm’s canal (SC), theoretically increasing luminal shear stress. Using engineered adenoviruses containing a functional fragment of the shear-responsive endothelial nitric oxide synthase (eNOS) promoter, we tested effects of shear stress and elevated flow rate on reporter expression in vitro and ex vivo. Cultured human umbilical vein endothelial cells (HUVECs) and SC cells were transduced with adenovirus containing eNOS promoter driving secreted alkaline phosphatase (SEAP) or green fluorescent protein (GFP) and subjected to shear stress. In parallel, human anterior segments were perfused under controlled flow. After delivering adenoviruses to the SC lumen by retroperfusion, the flow rate in one anterior segment of pair was increased to double pressure. In response to high shear stress, HUVECs and SC cells expressed more SEAP and GFP than control. Similarly, human anterior segments perfused at higher flow rates released significantly more nitrites and SEAP into perfusion effluent, and SC cells expressed increased GFP near collector channel ostia compared to control. These data establish that engineered adenoviruses have the capacity to quantify and localize shear stress experienced by endothelial cells. This is the first in situ demonstration of shear-mediated SC mechanobiology as a key IOP-sensing mechanism necessary for IOP homeostasis.
Collapse
|
33
|
Kars ME, Toklu Y, Arıkan Yorgun M, Neşelioğlu S, Eren F. Electrolyte, Nitric Oxide and Oxidative Stress Levels of Aqueous Humor in Patients with Retinal Detachment and Silicone Oil Tamponade. Curr Eye Res 2020; 45:1443-1450. [PMID: 32228105 DOI: 10.1080/02713683.2020.1749668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To enlighten the pathogenesis of silicone oil (SiO)-related complications via measuring aqueous humor levels of electrolytes, nitric oxide (NO), and oxidative stress in SiO, retinal detachment (RD), and control groups. Materials and Methods: In this prospective study, 56 patients were grouped as SiO (n = 29), RD (n = 12), and control (n = 15). The results of pre- and post-operative ophthalmological examinations, aqueous humor electrolyte and NO levels, total antioxidant and oxidant status (TAS, TOS) and oxidative stress index (OSI) were analyzed. Results: SiO group had a higher mean Na+ level compared to controls (144.77 ± 11.48 vs 137.56 ± 6.57 mmol/kg, p = .02). Also, the mean Na+ and Cl- levels of RD group were higher than controls (149.04 ± 12.05 vs. 137.56 ± 6.57 mmol/kg, p = .02, 115.2 ± 7.79 vs 106.23 ± 8.99 mmol/kg, p = .031 for Na+ and Cl-, respectively). The mean NO level of RD group was higher than that of SiO group (51.07 ± 19.56 vs. 34.07 ± 13.84 μM, p = .009). The mean TAS and TOS were lower in SiO group compared to controls (1.92 ± 0.64 vs. 2.49 ± 0.56 μmolTroloxEqv./L, p = .021, 34.98 ± 26.55 vs. 61.46 ± 22.69 μmolH2O2Eqv./L, p = .004 for TAS and TOS, respectively). Intraocular retention time of SiO demonstrated positive correlation with post-operative visual acuity (logMAR) and negative correlation with TOS. Conclusions: Elevated aqueous humor Na+ and Cl- in RD patients might reflect abolished function of ion channels on detached retina. Increased Na+ and lack of NO response to elevated intraocular pressure in SiO-filled eyes might contribute to secondary cataract and glaucoma formation. SiO is associated with low levels of oxidative stress in aqueous humor; however, increased intraocular retention time of SiO is related to a poor visual outcome.
Collapse
Affiliation(s)
- Meltem Ece Kars
- Department of Ophthalmology, Yıldırım Beyazıt University, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| | - Yasin Toklu
- Department of Ophthalmology, Yıldırım Beyazıt University, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| | - Mücella Arıkan Yorgun
- Department of Ophthalmology, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| | - Salim Neşelioğlu
- Department of Biochemistry, Yıldırım Beyazıt University, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| | - Funda Eren
- Department of Biochemistry, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| |
Collapse
|
34
|
Tian YI, Zhang X, Torrejon K, Danias J, Gindina S, Nayyar A, Du Y, Xie Y. A bioengineering approach to Schlemm's canal-like stem cell differentiation for in vitro glaucoma drug screening. Acta Biomater 2020; 105:203-213. [PMID: 31982588 DOI: 10.1016/j.actbio.2020.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022]
Abstract
Human Schlemm's canal (HSC) cells are critical for understanding outflow physiology and glaucoma etiology. However, primary donor cells frequently used in research are difficult to isolate. HSC cells exhibit both vascular and lymphatic markers. Human adipose-derived stem cells (ADSCs) represent a potential source of HSC due to their capacity to differentiate into both vascular and lymphatic endothelial cells, via VEGF-A and VEGF-C. Shear stress plays a critical role in maintaining HSC integrity, function, and PROX1 expression. Additionally, the human trabecular meshwork (HTM) microenvironment could provide cues for HSC-like differentiation. We hypothesize that subjecting ADSCs to VEGF-A or VEGF-C, shear stress, and co-culture with HTM cells could provide biological, mechanical, and cellular cues necessary for HSC-like differentiation. To test this hypothesis, effects of VEGF-A, VEGF-C, and shear stress on ADSC differentiation were examined and compared to primary HSC cells in terms of cell morphology, and HSC marker expression using qPCR, immunoblotting, and immunocytochemistry analysis. Furthermore, the effect of co-culture with HTM cells on porous scaffolds on ADSC differentiation was studied. Treatment with VEGF-C under shear stress is effective in differentiating ADSCs into PROX1-expressing HSC-like cells. Co-culture with HTM cells on porous scaffolds leads to HTM/ADSC-derived HSC-like constructs that regulate through-flow and respond as expected to dexamethasone. STATEMENT OF SIGNIFICANCE: We successfully generated human Schlemm's canal (HSC) like cells from adipocyte-derived stem cells induced by biochemical and biomechanical cues as well as bioengineered human trabecular meshwork (HTM) on micropatterned, porous SU8 scaffolds. These stem cell-derived HSC-like cells co-cultured with HTM cells on SU8 scaffolds can regulate through-flow, and in particular, are responsive to steroid treatment as expected. These findings show that ADSC-derived HSC-like cells have the potential to recreate the ocular outflow pathway for in vitro glaucoma drug screening. To the best of our knowledge, it is the very first time to demonstrate derivation of Schlemm's canal-like cells from stem cells. It provides an important alternative source to primary Schlemm's canal cells that are very difficult to be isolated and cultured from human donors.
Collapse
Affiliation(s)
- Yangzi Isabel Tian
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Xulang Zhang
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Karen Torrejon
- Glauconix Biosciences, Inc., 251 Fuller Road, Albany, NY 12203, USA
| | - John Danias
- SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Sofya Gindina
- SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Ashima Nayyar
- SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Yiqin Du
- University of Pittsburg School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
35
|
Sherwood JM, Stamer WD, Overby DR. A model of the oscillatory mechanical forces in the conventional outflow pathway. J R Soc Interface 2020; 16:20180652. [PMID: 30958169 PMCID: PMC6364644 DOI: 10.1098/rsif.2018.0652] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intraocular pressure is regulated by mechanosensitive cells within the conventional outflow pathway, the primary route of aqueous humour drainage from the eye. However, the characteristics of the forces acting on those cells are poorly understood. We develop a model that describes flow through the conventional outflow pathway, including the trabecular meshwork (TM) and Schlemm’s canal (SC). Accounting for the ocular pulse, we estimate the time-varying shear stress on SC endothelium and strain on the TM. We consider a range of outflow resistances spanning normotensive to hypertensive conditions. Over this range, the SC shear stress increases significantly and becomes highly oscillatory. TM strain also increases, but with negligible oscillations. Interestingly, TM strain responds more to changes in outflow resistance around physiological values, while SC shear stress responds more to elevated levels of resistance. A modest increase in TM stiffness, as observed in glaucoma, suppresses TM strain and practically eliminates the influence of outflow resistance on SC shear stress. As SC and TM cells respond to mechanical stimulation by secreting factors that modulate outflow resistance, our model provides insight regarding the potential role of SC shear and TM strain as mechanosensory cues for homeostatic regulation of outflow resistance and hence intraocular pressure.
Collapse
Affiliation(s)
- Joseph M Sherwood
- 1 Department of Bioengineering, Imperial College London , London , UK
| | - W Daniel Stamer
- 2 Department of Ophthalmology, Duke University , Durham, NC , USA
| | - Darryl R Overby
- 1 Department of Bioengineering, Imperial College London , London , UK
| |
Collapse
|
36
|
A microfluidics-based wound-healing assay for studying the effects of shear stresses, wound widths, and chemicals on the wound-healing process. Sci Rep 2019; 9:20016. [PMID: 31882962 PMCID: PMC6934480 DOI: 10.1038/s41598-019-56753-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/30/2019] [Indexed: 01/22/2023] Open
Abstract
Collective cell migration plays important roles in various physiological processes. To investigate this collective cellular movement, various wound-healing assays have been developed. In these assays, a “wound” is created mechanically, chemically, optically, or electrically out of a cellular monolayer. Most of these assays are subject to drawbacks of run-to-run variations in wound size/shape and damages to cells/substrate. Moreover, in all these assays, cells are cultured in open, static (non-circulating) environments. In this study, we reported a microfluidics-based wound-healing assay by using the trypsin flow-focusing technique. Fibroblasts were first cultured inside this chip to a cellular monolayer. Then three parallel fluidic flows (containing normal medium and trypsin solution) were introduced into the channels, and cells exposed to protease trypsin were enzymatically detached from the surface. Wounds of three different widths were generated, and subsequent wound-healing processes were observed. This assay is capable of creating three or more wounds of different widths for investigating the effects of various physical and chemical stimuli on wound-healing speeds. The effects of shear stresses, wound widths, and β-lapachone (a wound healing-promoting chemical) on wound-healing speeds were studied. It was found that the wound-healing speed (total area healed per unit time) increased with increasing shear stress and wound width, but under a shear stress of 0.174 mPa the linear healing speed (percent area healed per unit time) was independent of the wound width. Also, the addition of β-lapachone up to 0.5 μM did not accelerate wound healing. This microfluidics-based assay can definitely help in understanding the mechanisms of the wound-healing process and developing new wound-healing therapies.
Collapse
|
37
|
Gardiner SK, Cull G, Fortune B, Wang L. Increased Optic Nerve Head Capillary Blood Flow in Early Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:3110-3118. [PMID: 31323681 PMCID: PMC6645706 DOI: 10.1167/iovs.19-27389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Blood flow in the optic nerve head (ONH) is known to be reduced in eyes with advanced glaucoma. However, experimental results from non-human primates suggest an initial increase in ONH blood flow at the earliest stages of damage. This study assesses flow and pulsatile hemodynamics across a range of severities to test the hypothesis that this also occurs in human glaucoma. Methods Laser speckle flowgraphy was used to measure average mean blur rate (MBRave) within ONH tissue (a correlate of capillary blood flow) and the pulsatile waveform in 93 eyes with functional loss and 74 glaucoma suspect/fellow eyes without functional loss. These were compared against results from 92 healthy control eyes. Parameters produced by the instrument's software were age-corrected, then compared between groups using generalized estimating equation models. Results The mean MBRave in the control eyes was 12.5 units. In glaucoma suspect/fellow eyes, the mean was 16.4 units, higher with P < 0.0001. In eyes with functional loss, the mean was 13.8 units, lower than eyes without functional loss with P < 0.0001, although still higher than control eyes with P = 0.0096. Analysis of the pulsatile waveform suggested that the deceleration in flow as it approaches its maximum across the cardiac cycle was delayed in glaucoma. Conclusions Blood flow within ONH capillaries was higher in glaucoma suspect eyes than in healthy controls. It was less elevated in eyes that had developed functional loss. The mechanisms causing these changes and their relation to concurrent changes in pulsatile hemodynamics remain under investigation.
Collapse
Affiliation(s)
- Stuart K Gardiner
- Devers Eye Institute, Legacy Health, Portland, Oregon, United States
| | - Grant Cull
- Devers Eye Institute, Legacy Health, Portland, Oregon, United States
| | - Brad Fortune
- Devers Eye Institute, Legacy Health, Portland, Oregon, United States
| | - Lin Wang
- Devers Eye Institute, Legacy Health, Portland, Oregon, United States
| |
Collapse
|
38
|
Partial Schlemm Canal, Trabecular Meshwork, and Descemet Membrane Separation During Gonioscopy-assisted Transluminal Trabeculotomy: A Case Report. J Glaucoma 2019; 29:e1-e2. [PMID: 31714326 DOI: 10.1097/ijg.0000000000001405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gonioscopy-assisted transluminal trabeculotomy (GATT) is a surgery that opens the trabecular meshwork (TM) circumferentially after cannulation of the Schlemm canal (SC) with a flexible illuminated microcatheter or suture. The main purpose of this case report was to describe a new complication of GATT. Herein, we report a case of partial SC, TM, and Descemet membrane (DM) separation during GATT. The patient was a 60-year-old man with a history of glaucoma who underwent GATT. SC, TM, and DM separation occurred intraoperatively during 360 degrees trabeculotomy. The separated tissue fragment was removed from the anterior chamber and later confirmed to be a part of the SC, TM, and DM by histopathologic examination. In our patient, this complication did not cause surgical failure. Various complications associated with GATT have been reported previously. Partial SC, TM, and DM separation may occur during this surgery.
Collapse
|
39
|
How many aqueous humor outflow pathways are there? Surv Ophthalmol 2019; 65:144-170. [PMID: 31622628 DOI: 10.1016/j.survophthal.2019.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022]
Abstract
The aqueous humor (AH) outflow pathways definition is still matter of intense debate. To date, the differentiation between conventional (trabecular meshwork) and unconventional (uveoscleral) pathways is widely accepted, distinguishing the different impact of the intraocular pressure on the AH outflow rate. Although the conventional route is recognized to host the main sites for intraocular pressure regulation, the unconventional pathway, with its great potential for AH resorption, seems to act as a sort of relief valve, especially when the trabecular resistance rises. Recent evidence demonstrates the presence of lymphatic channels in the eye and proposes that they may participate in the overall AH drainage and intraocular pressure regulation, in a presumably adaptive fashion. For this reason, the uveolymphatic route is increasingly thought to play an important role in the ocular hydrodynamic system physiology. As a result of the unconventional pathway characteristics, hydrodynamic disorders do not develop until the adaptive routes cannot successfully counterbalance the increased AH outflow resistance. When their adaptive mechanisms fail, glaucoma occurs. Our review deals with the standard and newly discovered AH outflow routes, with particular attention to the importance they may have in opening new therapeutic strategies in the treatment of ocular hypertension and glaucoma.
Collapse
|
40
|
Garhöfer G, Schmetterer L. Nitric oxide: a drug target for glaucoma revisited. Drug Discov Today 2019; 24:1614-1620. [DOI: 10.1016/j.drudis.2019.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
|
41
|
Ghimire K, Zaric J, Alday-Parejo B, Seebach J, Bousquenaud M, Stalin J, Bieler G, Schnittler HJ, Rüegg C. MAGI1 Mediates eNOS Activation and NO Production in Endothelial Cells in Response to Fluid Shear Stress. Cells 2019; 8:cells8050388. [PMID: 31035633 PMCID: PMC6562810 DOI: 10.3390/cells8050388] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
Fluid shear stress stimulates endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production through multiple kinases, including protein kinase A (PKA), AMP-activated protein kinase (AMPK), AKT and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Membrane-associated guanylate kinase (MAGUK) with inverted domain structure-1 (MAGI1) is an adaptor protein that stabilizes epithelial and endothelial cell-cell contacts. The aim of this study was to assess the unknown role of endothelial cell MAGI1 in response to fluid shear stress. We show constitutive expression and co-localization of MAGI1 with vascular endothelial cadherin (VE-cadherin) in endothelial cells at cellular junctions under static and laminar flow conditions. Fluid shear stress increases MAGI1 expression. MAGI1 silencing perturbed flow-dependent responses, specifically, Krüppel-like factor 4 (KLF4) expression, endothelial cell alignment, eNOS phosphorylation and NO production. MAGI1 overexpression had opposite effects and induced phosphorylation of PKA, AMPK, and CAMKII. Pharmacological inhibition of PKA and AMPK prevented MAGI1-mediated eNOS phosphorylation. Consistently, MAGI1 silencing and PKA inhibition suppressed the flow-induced NO production. Endothelial cell-specific transgenic expression of MAGI1 induced PKA and eNOS phosphorylation in vivo and increased NO production ex vivo in isolated endothelial cells. In conclusion, we have identified endothelial cell MAGI1 as a previously unrecognized mediator of fluid shear stress-induced and PKA/AMPK dependent eNOS activation and NO production.
Collapse
Affiliation(s)
- Kedar Ghimire
- Pathology, Department of Oncology, Microbiology and Immunology, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland.
| | - Jelena Zaric
- Pathology, Department of Oncology, Microbiology and Immunology, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland.
| | - Begoña Alday-Parejo
- Pathology, Department of Oncology, Microbiology and Immunology, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland.
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische, Wilhelms-Universität Münster, Vesaliusweg 2-4, D-48149 Münster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, D-48149 Muenster, Germany.
| | - Mélanie Bousquenaud
- Pathology, Department of Oncology, Microbiology and Immunology, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland.
| | - Jimmy Stalin
- Pathology, Department of Oncology, Microbiology and Immunology, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland.
| | - Grégory Bieler
- Pathology, Department of Oncology, Microbiology and Immunology, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland.
| | - Hans-Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische, Wilhelms-Universität Münster, Vesaliusweg 2-4, D-48149 Münster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, D-48149 Muenster, Germany.
| | - Curzio Rüegg
- Pathology, Department of Oncology, Microbiology and Immunology, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
42
|
Mietzner R, Breunig M. Causative glaucoma treatment: promising targets and delivery systems. Drug Discov Today 2019; 24:1606-1613. [PMID: 30905679 DOI: 10.1016/j.drudis.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Glaucoma is one of the most common causes of blindness worldwide. Elevated intraocular pressure (IOP) is the major modifiable risk factor of the disease. Conventional therapy suffers from poor compliance, low bioavailability, and the lack of causative treatment options. To improve therapeutic success, it is crucial to identify major mediators of pathological changes associated with elevated IOP and to intervene at the molecular level. Here, we discuss relevant key functions of transforming growth factor-β2 (TGF-β2), connective tissue growth factor (CTGF), integrins, Rho-associated kinase (ROCK), and nitric oxide (NO) with regard to the onset of glaucoma, highlighting new drug delivery approaches for causative treatment.
Collapse
Affiliation(s)
- Raphael Mietzner
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany.
| |
Collapse
|
43
|
Ramdas WD. The relation between dietary intake and glaucoma: a systematic review. Acta Ophthalmol 2018; 96:550-556. [PMID: 29461678 DOI: 10.1111/aos.13662] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE A common question of patients to their physician is what they can do themselves against glaucoma, except taking their daily medication. However, for ophthalmologists, it is often hard to give their patients an advice on their dietary intake. To help ophthalmologists in answering this question, an overview of the current scientific literature on the association of nutrients with glaucoma is presented. METHODS A comprehensive systematic review was conducted in which articles published up to September 2017 were identified in PubMed and reference lists. Nutrients were categorized into minerals and trace elements, nutrition with antioxidative properties and omega-fatty acids. RESULTS The literature search revealed a total of 407 articles of which a total of 46 met the inclusion criteria. Most of these articles studied the effect of nutrients on open-angle glaucoma. Many trace elements have been investigated in the literature, but the most interesting are selenium and iron (both may increase the risk of glaucoma). Investigated nutrients with antioxidative properties and omega-fatty acids included glutathione, nitric oxide, carotenoids, flavonoids, and omega-3 and omega-6 fatty acids. Of these, glutathione, nitric oxide, and flavonoids had a significant protective effect on glaucoma. CONCLUSION Intake of selenium and iron may increase the risk of glaucoma, though, only few studies have been done on this topic. Nitric oxide present in other dark green leafy vegetables seems to have a beneficial effect on glaucoma. However, the evidence for an association of dietary intake with glaucoma is still not strong. More (longitudinal and randomized clinical trials) studies are required to make the presented findings clinically applicable.
Collapse
Affiliation(s)
- Wishal D. Ramdas
- Department of Ophthalmology; Maastricht University Medical Center; Maastricht The Netherlands
| |
Collapse
|
44
|
Yan X, Li M, Zhang H. Relationship Between Post-Exercise Changes in the Lens and Schlemm's Canal: A Swept-Source Optical Coherence Tomography Study. Curr Eye Res 2018; 43:1351-1356. [PMID: 30015521 DOI: 10.1080/02713683.2018.1498523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
AIM To observe post-exercise changes in the lens and Schlemm's canal (SC) in healthy individuals using swept-source optical coherence tomography (SS-OCT). METHODS Thirty-five healthy, young individuals were recruited and performed aerobic exercise by jogging for 20 minutes. The SC area, SC perimeter, trabecular meshwork (TM) length, TM thickness, lens vault (LV), and lens thickness (LT) were assessed by SS-OCT before and after exercise. RESULTS Following aerobic exercise, SC area (4260.85 ± 1476.02 vs. 5158.24 ± 1527.42 μm2, p < 0.001), SC perimeter (349.21 ± 62.22 vs. 391.24 ± 71.77 μm, p < 0.001), TM length (781.16 ± 114.83 vs. 816.46 ± 121.26 μm, p < 0.001), and TM thickness (111.52 ± 19.30 vs. 116.96 ± 17.57 μm, p = 0.004) increased significantly, while LV (-0.134 ± 0.198 vs. -0.195 ± 0.198 mm, p < 0.001) decreased significantly and LT showed no significant post-exercise changes (3.86 ± 0.32 vs. 3.85 ± 0.32 mm, p = 0.801). Moreover, post-exercise changes in SC area were significantly associated with post-exercise changes in LV (β = -6487.83; p = 0.040). CONCLUSIONS Aerobic exercise induces both backward axial displacement of the lens and SC expansion. This backward axial displacement of the lens could be an important causative factor of the post-exercise SC expansion via the lens-zonular-ciliotrabecular vector and the connecting fibrils between ciliary body and SC.
Collapse
Affiliation(s)
- Xiaoqin Yan
- a Department of Ophthalmology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Mu Li
- a Department of Ophthalmology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Hong Zhang
- a Department of Ophthalmology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
45
|
Andrés-Guerrero V, García-Feijoo J. Nitric oxide-donating compounds for IOP lowering in glaucoma. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2018; 93:290-299. [PMID: 29580758 DOI: 10.1016/j.oftal.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION An elevated intraocular pressure (IOP) remains the main risk factor for progression of glaucoma upon which we can efficiently act. Pharmacological strategies to reduce IOP are directed towards the reduction of aqueous humour (AH) production and/or the increase in AH drainage through the uveoscleral pathway. However, there are no drugs currently available as first-line treatment to increase AH outflow primarily via the conventional route. Ocular nitric oxide (NO) production takes place in AH outflow pathways and in the ciliary muscle, modulating the cellular response to elevated IOP. METHODS This review describes the mechanism of action of endogenous NO and NO-donating compounds that are under research. It includes information regarding pre-clinical and clinical studies previously conducted with these compounds, discussing their role and therapeutic potential in the pharmacological treatment of ocular hypertension in glaucoma. RESULTS The topical ocular administration of NO-donating compounds significantly lowered IOP and maintained it in animal models of glaucoma and subjects with ocular hypertension. CONCLUSIONS The mechanism of action of these compounds is novel and scientific evidence that shows promising results. However, there is a need for more comprehensive studies to assess long-term safety and tolerability in order to properly evaluate their use in chronic therapies.
Collapse
Affiliation(s)
- V Andrés-Guerrero
- Servicio de Oftalmología, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos. Red de Enfermedades Oculares OftaRed, Instituto de Salud Carlos III, Madrid, España.
| | - J García-Feijoo
- Servicio de Oftalmología, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos. Red de Enfermedades Oculares OftaRed, Instituto de Salud Carlos III, Madrid, España; Departamento de Oftalmología y ORL, Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
46
|
Wareham LK, Buys ES, Sappington RM. The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide 2018; 77:75-87. [PMID: 29723581 DOI: 10.1016/j.niox.2018.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 01/12/2023]
Abstract
Glaucoma is a prevalent optic neuropathy characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs) and their optic nerve axons, which leads to irreversible visual field loss. Multiple risk factors for the disease have been identified, but elevated intraocular pressure (IOP) remains the primary risk factor amenable to treatment. Reducing IOP however does not always prevent glaucomatous neurodegeneration, and many patients progress with the disease despite having IOP in the normal range. There is increasing evidence that nitric oxide (NO) is a direct regulator of IOP and that dysfunction of the NO-Guanylate Cyclase (GC) pathway is associated with glaucoma incidence. NO has shown promise as a novel therapeutic with targeted effects that: 1) lower IOP; 2) increase ocular blood flow; and 3) confer neuroprotection. The various effects of NO in the eye appear to be mediated through the activation of the GC- guanosine 3:5'-cyclic monophosphate (cGMP) pathway and its effect on downstream targets, such as protein kinases and Ca2+ channels. Although NO-donor compounds are promising as therapeutics for IOP regulation, they may not be ideal to harness the neuroprotective potential of NO signaling. Here we review evidence that supports direct targeting of GC as a novel pleiotrophic treatment for the disease, without the need for direct NO application. The identification and targeting of other factors that contribute to glaucoma would be beneficial to patients, particularly those that do not respond well to IOP-dependent interventions.
Collapse
Affiliation(s)
- Lauren K Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
47
|
McDonnell F, Dismuke WM, Overby DR, Stamer WD. Pharmacological regulation of outflow resistance distal to Schlemm's canal. Am J Physiol Cell Physiol 2018; 315:C44-C51. [PMID: 29631366 DOI: 10.1152/ajpcell.00024.2018] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The trabecular meshwork (TM) and Schlemm's canal generate the majority of outflow resistance; however, the distal regions of the conventional outflow pathway account for 25-50% of total resistance. Sections of distal vessels are surrounded by α-smooth muscle actin-containing cells, indicating that they may be vasoregulated. This study examined the effect of a potent vasodilator, nitric oxide (NO), and its physiological antagonist, endothelin-1 (ET-1), on the regulation of outflow resistance in the distal regions of the conventional outflow pathway. Using a physiological model of the conventional outflow pathway, human and porcine anterior segments were perfused in organ culture under constant flow conditions, while intrachamber pressure was continually monitored. For porcine anterior segments, a stable baseline outflow facility with TM intact was first achieved before anterior segments were removed and a trabeculotomy was performed. For human anterior segments, a trabeculotomy was immediately performed. In human anterior segments, 100 nM ET-1 significantly decreased distal outflow facility from 0.49 ± 0.26 to 0.31 ± 0.18 (mean ± SD) µl·min-1·mmHg, P < 0.01. Perfusion with 100 µM diethylenetriamine-NO in the presence of 1 nM ET-1 immediately reversed ET-1 effects, significantly increasing distal outflow facility to 0.54 ± 0.35 µl·min-1·mmHg, P = 0.01. Similar results were obtained in porcine anterior segment experiments. Therefore, data show a dynamic range of resistance generation by distal vessels in both the human and the porcine conventional outflow pathways. Interestingly, maximal contraction of vessels in the distal outflow tract of trabeculotomized eyes generated resistance very near physiological levels for both species having an intact TM.
Collapse
Affiliation(s)
- Fiona McDonnell
- Department of Ophthalmology, Duke University , Durham, North Carolina
| | - W Michael Dismuke
- Department of Ophthalmology, Duke University , Durham, North Carolina
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London , London , United Kingdom
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University , Durham, North Carolina.,Department of Biomedical Engineering, Duke University , Durham, North Carolina
| |
Collapse
|
48
|
Aliancy J, Stamer WD, Wirostko B. A Review of Nitric Oxide for the Treatment of Glaucomatous Disease. Ophthalmol Ther 2017; 6:221-232. [PMID: 28584936 PMCID: PMC5693832 DOI: 10.1007/s40123-017-0094-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, affecting 64.3 million people. An estimated 60.5 million people are affected by primary open angle glaucoma globally, and this will increase to 111.8 million by 2040. The definition of glaucoma has evolved greatly over time. Although multiple risk factors such as ischemia, inflammation, myopia, race, age and low ocular perfusion pressure may play a role, intraocular pressure (IOP) is still the main risk factor we can easily identify and modify. Currently, both medical and surgical interventions aim to reduce IOP. Effective IOP reduction controls and prevents the progression in many cases of glaucoma. Although this multifactorial disease's true pathophysiology is difficult to elucidate, physiologic mediators including nitric oxide (NO) are being evaluated as novel ways to impact progression by both lowering IOP and improving optic nerve head perfusion. Latanoprostene bunod 0.024% is an emerging therapeutic agent that has shown promise in clinical trials. As a nitric oxide-donating prostaglandin F2-alpha receptor agonist, it has proven to effectively, and with good tolerability, reduce IOP in glaucoma and ocular hypertensive patients. Latanoprostene bunod capitalizes on NO's ability to modulate the conventional aqueous humor outflow system, directly improving outflow through the trabecular meshwork, Schlemm's canal and distal scleral vessels. Importantly, targeting the conventional outflow tissues with NO-donating drugs represents an opportunity to restore outflow function, which will most likely have a beneficial consequence of additional IOP-lowering effects with dampening of diurnal and other IOP fluctuations, the benefit of a healthy trabecular meshwork.
Collapse
Affiliation(s)
- Joah Aliancy
- Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | | |
Collapse
|
49
|
Inoue T, Tanihara H. Ripasudil hydrochloride hydrate: targeting Rho kinase in the treatment of glaucoma. Expert Opin Pharmacother 2017; 18:1669-1673. [PMID: 28893104 DOI: 10.1080/14656566.2017.1378344] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Among the intraocular pressure (IOP)-lowering drugs used in a clinical setting, Rho kinase (ROCK) inhibitors lower IOP by a unique mechanism, namely the depolymerization of intracellular actin in the conventional outflow tissues: the trabecular meshwork (TM) and Schlemm's canal (SC). Furthermore, ROCK inhibitors suppress the production of extracellular matrix by TM cells, which represents a potential alternative method of lowering IOP. Considering that conventional outflow is a dominant pathway in humans, IOP-lowering ROCK inhibitors, delivered in conjunction with other drugs, may be able to treat the glaucomatous eye. Areas covered: Ripasudil hydrochloride hydrate is the first ROCK inhibitor approved for clinical use in Japan (and worldwide) against glaucoma and ocular hypertension. The efficacy of ripasudil, as monotherapy and as an adjunctive medication to prostaglandin analogs and/or adrenergic β-receptor antagonists, has been confirmed in clinical trials. Expert opinion: Considering the unique ROCK-inhibiting mechanism by which ripasudil lowers IOP via its actions on TM and SC endothelial cells, it may be an ideal adjunctive medication for treating glaucoma in the clinic.
Collapse
Affiliation(s)
- Toshihiro Inoue
- a Faculty of Life Sciences, Department of Ophthalmology , Kumamoto University , Kumamoto City , Japan
| | - Hidenobu Tanihara
- a Faculty of Life Sciences, Department of Ophthalmology , Kumamoto University , Kumamoto City , Japan
| |
Collapse
|
50
|
Cavet ME, DeCory HH. The Role of Nitric Oxide in the Intraocular Pressure Lowering Efficacy of Latanoprostene Bunod: Review of Nonclinical Studies. J Ocul Pharmacol Ther 2017; 34:52-60. [PMID: 28783422 PMCID: PMC5963638 DOI: 10.1089/jop.2016.0188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/26/2017] [Indexed: 01/16/2023] Open
Abstract
Latanoprostene bunod (LBN) is a topical ophthalmic therapeutic for the reduction of intraocular pressure (IOP) in patients with open-angle glaucoma or ocular hypertension (OHT). LBN is composed of latanoprost acid (LA) linked to a nitric oxide (NO)-donating moiety and is the first NO-releasing prostaglandin analog to be submitted for marketing authorization in the United States. The role of latanoprost in increasing uveoscleral outflow of aqueous humor (AqH) is well established. Herein, we review findings from nonclinical studies, which evaluated the role of NO in the IOP-lowering efficacy of LBN. Pharmacokinetic studies in rabbits and corneal homogenates indicate that LBN is rapidly metabolized to LA and butanediol mononitrate (BDMN). NO is subsequently released by BDMN as shown by increased cyclic guanosine monophosphate (cGMP) levels in (1) the AqH and iris-ciliary body after administration of LBN in rabbits and in (2) human trabecular meshwork (TM) cells after incubation with LBN. LBN reduced myosin light chain phosphorylation, induced cytoskeletal rearrangement, and decreased resistance to current flow to a greater extent than latanoprost in TM cells, indicating that NO released from LBN elicited TM cell relaxation. LBN also lowered IOP to a greater extent than latanoprost in FP receptor knockout mice, rabbits with transient OHT, glaucomatous dogs, and primates with OHT. Along with results from a Phase 2 clinical study in which treatment with LBN 0.024% resulted in greater IOP-lowering efficacy than latanoprost 0.005%, these data indicate that LBN has a dual mechanism of action, increasing AqH outflow through both the uveoscleral (using LA) and TM/Schlemm's canal (using NO) pathways.
Collapse
Affiliation(s)
- Megan E Cavet
- Pharmaceutical Medical Affairs , Bausch + Lomb, Rochester, New York
| | - Heleen H DeCory
- Pharmaceutical Medical Affairs , Bausch + Lomb, Rochester, New York
| |
Collapse
|