1
|
Wen J, Liu D, Zhu H, Shu K. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy. J Neuroinflammation 2024; 21:226. [PMID: 39285276 PMCID: PMC11406851 DOI: 10.1186/s12974-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Glioma is the most common primary intracranial tumor in adults, with high incidence, recurrence, and mortality rates. Tumor-associated neutrophils (TANs) are essential components of the tumor microenvironment (TME) in glioma and play a crucial role in glioma cell proliferation, invasion and proneural-mesenchymal transition. Besides the interactions between TANs and tumor cells, the multi-dimensional crosstalk between TANs and other components within TME have been reported to participate in glioma progression. More importantly, several therapies targeting TANs have been developed and relevant preclinical and clinical studies have been conducted in cancer therapy. In this review, we introduce the origin of TANs and the functions of TANs in malignant behaviors of glioma, highlighting the microenvironmental regulation of TANs. Moreover, we focus on summarizing the TANs-targeted methods in cancer therapy, aiming to provide insights into the mechanisms and therapeutic opportunities of TANs in the malignant glioma microenvironment.
Collapse
Affiliation(s)
- Jiayi Wen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
2
|
Long Q, Huang C, Zhang L, Jiang H, Zhao S, Zhang L, Zheng X, Ou S, Gu H. A novel tissue-engineered corneal epithelium based on ultra-thin amniotic membrane and mesenchymal stem cells. Sci Rep 2024; 14:17407. [PMID: 39075142 PMCID: PMC11286932 DOI: 10.1038/s41598-024-68219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Currently, in vitro cultured corneal epithelial transplantation is effective in treating limbal stem cell dysfunction (LSCD). Selecting carriers is crucial for constructing the corneal epithelium through tissue engineering. In this study, the traditional amniotic membrane (AM) was modified, and mesenchymal stem cells (MSCs) were inoculated into the ultra-thin amniotic membrane (UAM) stroma to construct a novel UAM-MSC tissue-engineered corneal epithelial carrier, that could effectively simulate the limbal stem cells (LSCs) microenvironment. The structure of different carriers cultured tissue-engineered corneal epithelium and the managed rabbit LSCD model corneas were observed through hematoxylin-eosin staining. Cell phenotypes were evaluated through fluorescence staining, Western blotting, and RT-qPCR. Additionally, cell junction genes and expression markers related to anti-neovascularization were evaluated using RT-qPCR. Corneal epithelium cell junctions were observed via an electron microscope. The tissue-engineered corneal epithelium culture medium was analyzed through mass spectrometry. Tissue-engineered corneal epithelial cells expanded by LSCs on UAM-MSCs had good transparency. Simultaneously, progenitor cell (K14, PNCA, p63) and corneal epithelial (PAX6) gene expression in tissue-engineered corneal epithelium constructed using UAM-MSCs was higher than that in corneal epithelial cells amplified by UAM and de-epithelialized amniotic membrane. Electron microscopy revealed that corneal epithelial cells grafted with UAM-MSCs were closely connected. In conclusion, the UAM-MSCs vector we constructed could better simulate the limbal microenvironment; the cultured tissue-engineered corneal epithelium had better transparency, anti-neovascularization properties, closer intercellular connections, and closer resemblance to the natural corneal epithelial tissue phenotype.
Collapse
Affiliation(s)
- Qiurong Long
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Chao Huang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Liying Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Hao Jiang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Su Zhao
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Lingli Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueer Zheng
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shangkun Ou
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| | - Hao Gu
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Drzyzga Ł, Śpiewak D, Dorecka M, Wyględowska-Promieńska D. Available Therapeutic Options for Corneal Neovascularization: A Review. Int J Mol Sci 2024; 25:5479. [PMID: 38791518 PMCID: PMC11121997 DOI: 10.3390/ijms25105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Corneal neovascularization can impair vision and result in a poor quality of life. The pathogenesis involves a complex interplay of angiogenic factors, notably vascular endothelial growth factor (VEGF). This review provides a comprehensive overview of potential therapies for corneal neovascularization, covering tissue inhibitors of metalloproteinases (TIMPs), transforming growth factor beta (TGF-β) inhibitors, interleukin-1L receptor antagonist (IL-1 Ra), nitric oxide synthase (NOS) isoforms, galectin-3 inhibitors, retinal pigment epithelium-derived factor (PEDF), platelet-derived growth factor (PDGF) receptor inhibitors, and surgical treatments. Conventional treatments include anti-VEGF therapy and laser interventions, while emerging therapies such as immunosuppressive drugs (cyclosporine and rapamycin) have been explored. Losartan and decorin are potential antifibrotic agents that mitigate TGF-β-induced fibrosis. Ocular nanosystems are innovative drug-delivery platforms that facilitate the targeted release of therapeutic agents. Gene therapies, such as small interfering RNA and antisense oligonucleotides, are promising approaches for selectively inhibiting angiogenesis-related gene expression. Aganirsen is efficacious in reducing the corneal neovascularization area without significant adverse effects. These multifaceted approaches underscore the corneal neovascularization management complexity and highlight ideas for enhancing therapeutic outcomes. Furthermore, the importance of combination therapies and the need for further research to develop specific inhibitors while considering their therapeutic efficacy and potential adverse effects are discussed.
Collapse
Affiliation(s)
- Łukasz Drzyzga
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Dorota Śpiewak
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| |
Collapse
|
4
|
Wu D, Chan KE, Lim BXH, Lim DKA, Wong WM, Chai C, Manotosh R, Lim CHL. Management of corneal neovascularization: Current and emerging therapeutic approaches. Indian J Ophthalmol 2024; 72:S354-S371. [PMID: 38648452 PMCID: PMC467007 DOI: 10.4103/ijo.ijo_3043_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 04/25/2024] Open
Abstract
Corneal neovascularization (CoNV) is a sight-threatening condition affecting an estimated 1.4 million people per year, and the incidence is expected to rise. It is a complication of corneal pathological diseases such as infective keratitis, chemical burn, corneal limbal stem cell deficiency, mechanical trauma, and immunological rejection after keratoplasties. CoNV occurs due to a disequilibrium in proangiogenic and antiangiogenic mediators, involving a complex system of molecular interactions. Treatment of CoNV is challenging, and no therapy thus far has been curative. Anti-inflammatory agents such as corticosteroids are the mainstay of treatment due to their accessibility and well-studied safety profile. However, they have limited effectiveness and are unable to regress more mature neovascularization. With the advent of advanced imaging modalities and an expanding understanding of its pathogenesis, contemporary treatments targeting a wide array of molecular mechanisms and surgical options are gaining traction. This review aims to summarize evidence regarding conventional and emerging therapeutic options for CoNV.
Collapse
Affiliation(s)
- Duoduo Wu
- Department of Ophthalmology, National University Hospital, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Blanche Xiao Hong Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dawn Ka-Ann Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wendy Meihua Wong
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charmaine Chai
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ray Manotosh
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chris Hong Long Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Singapore Eye Research Institute, Singapore
| |
Collapse
|
5
|
Bui TM, Yalom LK, Ning E, Urbanczyk JM, Ren X, Herrnreiter CJ, Disario JA, Wray B, Schipma MJ, Velichko YS, Sullivan DP, Abe K, Lauberth SM, Yang GY, Dulai PS, Hanauer SB, Sumagin R. Tissue-specific reprogramming leads to angiogenic neutrophil specialization and tumor vascularization in colorectal cancer. J Clin Invest 2024; 134:e174545. [PMID: 38329810 PMCID: PMC10977994 DOI: 10.1172/jci174545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Neutrophil (PMN) tissue accumulation is an established feature of ulcerative colitis (UC) lesions and colorectal cancer (CRC). To assess the PMN phenotypic and functional diversification during the transition from inflammatory ulceration to CRC we analyzed the transcriptomic landscape of blood and tissue PMNs. Transcriptional programs effectively separated PMNs based on their proximity to peripheral blood, inflamed colon, and tumors. In silico pathway overrepresentation analysis, protein-network mapping, gene signature identification, and gene-ontology scoring revealed unique enrichment of angiogenic and vasculature development pathways in tumor-associated neutrophils (TANs). Functional studies utilizing ex vivo cultures, colitis-induced murine CRC, and patient-derived xenograft models demonstrated a critical role for TANs in promoting tumor vascularization. Spp1 (OPN) and Mmp14 (MT1-MMP) were identified by unbiased -omics and mechanistic studies to be highly induced in TANs, acting to critically regulate endothelial cell chemotaxis and branching. TCGA data set and clinical specimens confirmed enrichment of SPP1 and MMP14 in high-grade CRC but not in patients with UC. Pharmacological inhibition of TAN trafficking or MMP14 activity effectively reduced tumor vascular density, leading to CRC regression. Our findings demonstrate a niche-directed PMN functional specialization and identify TAN contributions to tumor vascularization, delineating what we believe to be a new therapeutic framework for CRC treatment focused on TAN angiogenic properties.
Collapse
Affiliation(s)
- Triet M. Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lenore K. Yalom
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edward Ning
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica M. Urbanczyk
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingsheng Ren
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline J. Herrnreiter
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jackson A. Disario
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Wray
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew J. Schipma
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuri S. Velichko
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - David P. Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kouki Abe
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Parambir S. Dulai
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Stephen B. Hanauer
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Lee H, Ibrahimi L, Han KY. Fluorescence-Based Peptidolytic Assay for High-Throughput Screening of MMP14 Inhibitors. Methods Mol Biol 2024; 2747:229-242. [PMID: 38038944 DOI: 10.1007/978-1-0716-3589-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The membrane-bound matrix metalloproteinase 14 (MMP14, also known as MT1-MMP) plays important roles in the remodeling of the extracellular matrix during various cellular processes such as cancer metastasis, angiogenesis, and wound healing through its proteolytic activity. There are no known MMP14-specific inhibitors to date, and hence identification of MMP14-specific inhibitors will be beneficial for finding potential therapeutics for various diseases, including cancer and inflammation. High-throughput screening (HTS) assays have become a common way to search for new small compounds, peptides, and natural products. Enzymatic assays are highly amenable to HTS because most enzyme activities are quantifiable with the effect of many small molecules of interest on a specific target enzyme. Here, we describe a fluorescence-based enzymatic assay that can be applied as a large-scale HTS and a follow-up enzyme kinetics assay to find MMP14-specific inhibitors.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Biophysics Core at the Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucas Ibrahimi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Droho S, Voigt AP, Sterling JK, Rajesh A, Chan KS, Cuda CM, Perlman H, Lavine JA. NR4A1 deletion promotes pro-angiogenic polarization of macrophages derived from classical monocytes in a mouse model of neovascular age-related macular degeneration. J Neuroinflammation 2023; 20:238. [PMID: 37858232 PMCID: PMC10588116 DOI: 10.1186/s12974-023-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration causes vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Cx3cr1-/- mice display alterations in non-classical monocytes and microglia with increased CNV size, suggesting that non-classical monocytes may inhibit CNV formation. NR4A1 is a transcription factor that is necessary for maturation of non-classical monocytes from classical monocytes. While Nr4a1-/- mice are deficient in non-classical monocytes, results are confounded by macrophage hyper-activation. Nr4a1se2/se2 mice lack a transcriptional activator, resulting in non-classical monocyte loss without macrophage hyper-activation. MAIN BODY We subjected Nr4a1-/- and Nr4a1se2/se2 mice to the laser-induced CNV model and performed multi-parameter flow cytometry. We found that both models lack non-classical monocytes, but only Nr4a1-/- mice displayed increased CNV area. Additionally, CD11c+ macrophages were increased in Nr4a1-/- mice. Single-cell transcriptomic analysis uncovered that CD11c+ macrophages were enriched from Nr4a1-/- mice and expressed a pro-angiogenic transcriptomic profile that was disparate from prior reports of macrophage hyper-activation. CONCLUSIONS These results suggest that non-classical monocytes are dispensable during CNV, and NR4A1 deficiency results in increased recruitment of pro-angiogenic macrophages.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrew P Voigt
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jacob K Sterling
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amrita Rajesh
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle S Chan
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Angelidakis E, Chen S, Zhang S, Wan Z, Kamm RD, Shelton SE. Impact of Fibrinogen, Fibrin Thrombi, and Thrombin on Cancer Cell Extravasation Using In Vitro Microvascular Networks. Adv Healthc Mater 2023; 12:e2202984. [PMID: 37119127 PMCID: PMC10524192 DOI: 10.1002/adhm.202202984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/25/2023] [Indexed: 04/30/2023]
Abstract
A bidirectional association exists between metastatic dissemination and the hypercoagulable state associated with many types of cancer. As such, clinical studies have provided evidence that markers associated with elevated levels of coagulation and fibrinolysis correlate with decreased patient survival. However, elucidating the mechanisms underpinning the effects of different components of the coagulation system on metastasis formation is challenging both in animal models and 2D models lacking the complex cellular interactions necessary to model both thrombosis and metastasis. Here, an in vitro, 3D, microvascular model for observing the formation of fibrin thrombi is described, which is in turn used to study how different aspects of the hypercoagulable state associated with cancer affect the endothelium. Using this platform, cancer cells expressing ICAM-1 are shown to form a fibrinogen-dependent bridge and transmigrate through the endothelium more effectively. Cancer cells are also demonstrated to interact with fibrin thrombi, using them to adhere, spread, and enhance their extravasation efficiency. Finally, thrombin is also shown to enhance cancer cell extravasation. This system presents a physiologically relevant model of fibrin clot formation in the human microvasculature, enabling in-depth investigation of the cellular interactions between cancer cells and the coagulation system affecting cancer cell extravasation.
Collapse
Affiliation(s)
- Emmanouil Angelidakis
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sophia Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shun Zhang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Zhengpeng Wan
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah E. Shelton
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana Farber Cancer InstituteBostonMA02215USA
| |
Collapse
|
9
|
Lee H, Youn I, Demissie R, Vaid TM, Che CT, Azar DT, Han KY. Identification of small molecule inhibitors against MMP-14 via High-Throughput screening. Bioorg Med Chem 2023; 85:117289. [PMID: 37094433 PMCID: PMC10167624 DOI: 10.1016/j.bmc.2023.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Matrix metalloproteinases (MMPs) are involved in various cellular events in physiology and pathophysiology through endopeptidases activity. The expression levels and activities of most MMPs remain minimal in the normal conditions, whereas some MMPs are significantly activated in pathological conditions such as cancer and neovascularization. Hence, MMPs are considered as both diagnostic markers and potential targets for therapeutic agents. Twenty-three known human MMPs share a similar active site structure with a zinc-binding motif, resulting in lack of specificity. Therefore, the enhancement of target specificity is a primary goal for the development of specific MMP inhibitors. MMP-14 regulates VEGFA/VEGFR2-system through cleavage of the non-functional VEGFR1 in vascular angiogenesis. In this study, we developed a fluorescence-based enzymatic assay using a specific MMP-14 substrate generated from VEGFR1 cleavage site. This well optimized assay was used as a primary screen method to identify MMP-14 specific inhibitors from 1,200 Prestwick FDA-approved drug library. Of ten initial hits, two compounds showed IC50 values below 30 µM, which were further validated by direct binding analysis using surface plasmon resonance (SPR). Clioquinol and chloroxine, both of which contain a quinoline structure, were identified as MMP-14 inhibitors. Five analogs were tested, four of which were found to be completely devoid of inhibitory activity. Clioquinol exhibited selectivity towards MMP-14, as it showed no inhibitory activity towards four other MMPs.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA; Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Isoo Youn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Robel Demissie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA; Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tasneem M Vaid
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
10
|
The Role of Membrane-Type 1 Matrix Metalloproteinase-Substrate Interactions in Pathogenesis. Int J Mol Sci 2023; 24:ijms24032183. [PMID: 36768503 PMCID: PMC9917210 DOI: 10.3390/ijms24032183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.
Collapse
|
11
|
Malyugin BE, Isabekov RS, Kalinnikova SY, Antonova OP. [Methods of diagnosis and treatment of corneal neovascularization]. Vestn Oftalmol 2023; 139:86-92. [PMID: 37638577 DOI: 10.17116/oftalma202313904186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Corneal neovascularization is one of the most common causes of decreased visual acuity and disability for vision loss, increase in the risk of corneal graft rejection, and appearance of opacifications on the cornea. This article reviews literature on etiological factors of the development of corneal neovascularization, as well as modern methods of diagnosis, conservative and surgical treatment of this pathology.
Collapse
Affiliation(s)
- B E Malyugin
- S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Moscow, Russia
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - R S Isabekov
- S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Moscow, Russia
| | - S Yu Kalinnikova
- S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Moscow, Russia
| | - O P Antonova
- S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Moscow, Russia
| |
Collapse
|
12
|
Zhang Y, Zhong Q, Luo X, Zhang W. Effects of Tegafur, Gimeracil and Oteracil Potassium Capsules combined with Calf Spleen Extractive Injection on serum VEGF and MMP-9 in patients with advanced gastric cancer. Am J Transl Res 2022; 14:7969-7976. [PMID: 36505301 PMCID: PMC9730097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the effects of Tegafur, Gimeracil and Oteracil Potassium Capsules (TGOPC) combined with Calf Spleen Extractive Injection (CSEI) on vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) in patients with advanced gastric cancer. METHODS A retrospective analysis was conducted on data of 118 patients with advanced gastric cancer treated in Anyang Tumor Hospital from January 2016 to September 2018. The patients were divided into two groups according to treatment modalities, with control group receiving Oxaliplatin and TGOPC and observation group receiving Oxaliplatin, TGOPC and CSEI. Clinical efficacy, changes of serum VEGF and MMP-9 before and after chemotherapy, survival rate and incidence of adverse reactions were compared between the two groups. RESULTS The number of responded patients was 36 (61.02%) in the observation group and was 18 (30.51%) in the control group (P<0.05). The levels of serum VEGF and MMP-9, and incidence of nausea and vomiting in the observation group were lower than those in the control group (P<0.05). The 1-year and 2-year survival rates in the observation group were higher than those in the control group (P<0.05). CONCLUSION The use of CSEI on the basis of Oxaliplatin combined with TGOPC chemotherapy for the treatment of advanced gastric cancer could further improve the clinical efficacy and survival rate, and reduce the incidence of adverse reactions.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Xiamen Humanity Hospital, Fujian Medical UniversityXiamen, Fujian, China,Department of Gastroenterology, Beijing Pinggu HospitalBeijing, China
| | - Qiang Zhong
- Department of Anesthesiology, Xiang’an Hospital of Xiamen UniversityXiamen, Fujian, China
| | - Xiaochun Luo
- Center for Digestive Endoscopy, Xiang’an Hospital of Xiamen UniversityXiamen, Fujian, China
| | - Wei Zhang
- The First Department of Surgery, Anyang Tumor HospitalAnyang, Henan, China
| |
Collapse
|
13
|
Wang J, Guo X, Jiang R, He J, Zhao T, Peng Y, Zheng Y. Research progress in the prevention and treatment of liver fibrosis in Chinese medicine based on miRNAs molecular regulation of angiogenesis. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022; 4:100151. [DOI: 10.1016/j.prmcm.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
14
|
Tavakkoli F, Damala M, Koduri MA, Gangadharan A, Rai AK, Dash D, Basu S, Singh V. Transcriptomic Profiling of Human Limbus-Derived Stromal/Mesenchymal Stem Cells-Novel Mechanistic Insights into the Pathways Involved in Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms23158226. [PMID: 35897793 PMCID: PMC9368612 DOI: 10.3390/ijms23158226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Limbus-derived stromal/mesenchymal stem cells (LMSCs) are vital for corneal homeostasis and wound healing. However, despite multiple pre-clinical and clinical studies reporting the potency of LMSCs in avoiding inflammation and scarring during corneal wound healing, the molecular basis for the ability of LMSCs remains unknown. This study aimed to uncover the factors and pathways involved in LMSC-mediated corneal wound healing by employing RNA-Sequencing (RNA-Seq) in human LMSCs for the first time. We characterized the cultured LMSCs at the stages of initiation (LMSC−P0) and pure population (LMSC−P3) and subjected them to RNA-Seq to identify the differentially expressed genes (DEGs) in comparison to native limbus and cornea, and scleral tissues. Of the 28,000 genes detected, 7800 DEGs were subjected to pathway-specific enrichment Gene Ontology (GO) analysis. These DEGs were involved in Wnt, TGF-β signaling pathways, and 16 other biological processes, including apoptosis, cell motility, tissue remodeling, and stem cell maintenance, etc. Two hundred fifty-four genes were related to wound healing pathways. COL5A1 (11.81 ± 0.48) and TIMP1 (20.44 ± 0.94) genes were exclusively up-regulated in LMSC−P3. Our findings provide new insights involved in LMSC-mediated corneal wound healing.
Collapse
Affiliation(s)
- Fatemeh Tavakkoli
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Center for Genetic Disorders, Banaras Hindu University, Varanasi 221005, India;
| | - Mukesh Damala
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Madhuri Amulya Koduri
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Abhilash Gangadharan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road Campus, New Delhi 110025, India; (A.G.); (D.D.)
| | - Amit K. Rai
- Center for Genetic Disorders, Banaras Hindu University, Varanasi 221005, India;
| | - Debasis Dash
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road Campus, New Delhi 110025, India; (A.G.); (D.D.)
| | - Sayan Basu
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Center for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Vivek Singh
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Center for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India
- Correspondence: ; Tel.: +91-40-6810-2286
| |
Collapse
|
15
|
Luo Q, Yang J, Xu H, Shi J, Liang Z, Zhang R, Lu P, Pu G, Zhao N, Zhang J. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Deliv 2022; 29:837-855. [PMID: 35277107 PMCID: PMC8920403 DOI: 10.1080/10717544.2022.2048134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sorafenib (SRB), a multikinase inhibitor, is effective in reducing experimental corneal neovascularization (CNV) after oral administration; however, its therapeutic use in ocular surface disorders is restricted due to poor solubility and limited bioavailability. This study aimed to develop and optimize SRB-loaded nanostructured lipid carriers (SRB-NLCs) for topical ocular delivery by a central composite design response surface methodology (CCD-RSM). It was spherical and uniform in morphology with an average particle size of 111.87 ± 0.93 nm and a narrow size distribution. The in vitro drug release from the released SRB-NLC formulation was well fitted to Korsmeyer Peppas release kinetics. The cell counting kit-8 (CCK-8) cell viability assay demonstrated that SRB-NLC was not obviously cytotoxic to human corneal epithelial cells (HCECs). An in vivo ocular irritation test showed that SRB-NLC was well tolerated by rabbit eyes. Ocular pharmacokinetics revealed 6.79-fold and 1.24-fold increase in the area under concentration-time curves (AUC0-12h) over 12 h in rabbit cornea and conjunctiva, respectively, treated with one dose of SRB-NLC compared with those treated with SRB suspension. Moreover, SRB-NLC (0.05% SRB) and dexamethasone (0.025%) similarly suppressed corneal neovascularization in mice. In conclusion, the optimized SRB-NLC formulation demonstrated excellent physicochemical properties and good tolerance, sustained release, and enhanced ocular bioavailability. It is safe and potentially effective for the treatment of corneal neovascularization.
Collapse
Affiliation(s)
- Qing Luo
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jieran Shi
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Rui Zhang
- Department of Ophthalmology, Henan University People’s Hospital, Zhengzhou, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Guojuan Pu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Ma Y, Yang J, Zhang Y, Zheng C, Liang Z, Lu P, Song F, Wang Y, Zhang J. Development of a naringenin microemulsion as a prospective ophthalmic delivery system for the treatment of corneal neovascularization: in vitro and in vivo evaluation. Drug Deliv 2021; 29:111-127. [PMID: 34964414 PMCID: PMC8725867 DOI: 10.1080/10717544.2021.2021323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Naringenin, a flavonoid, possesses antiangiogenic potential and inhibits corneal neovascularization (CNV); however, its therapeutic use is restricted due to poor solubility and limited bioavailability. In this study, we developed a naringenin microemulsion (NAR-ME) for inhibiting CNV. NAR-ME formulation was composed of triacetin (oil phase), Cremophor RH40 (CRH40), PEG400, and water, its droplet size was 13.22 ± 0.13 nm with a narrow size distribution (0.112 ± 0.0014). The results demonstrated that NAR-ME released higher and permeated more drug than NAR suspension (NAR-Susp) in in vitro drug release and ex vivo corneal permeation study. Human corneal epithelial cells (HCECs) toxicity study showed no toxicity with NAR-ME, which is consistent with the result of ocular irritation study. NAR-ME had high bioavailability 1.45-fold, 2.15-fold, and 1.35-fold higher than NAR-Susp in the cornea, conjunctiva, and aqueous humor, respectively. Moreover, NAR-ME (0.5% NAR) presented efficacy comparable to that of dexamethasone (0.025%) in the inhibition of CNV in mice CNV model induced by alkali burning, resulting from the attenuation of corneal vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP-14) expression. In conclusion, the optimized NAR-ME formulation demonstrated excellent physicochemical properties and good tolerance, enhanced ocular bioavailability and corneal permeability. This formulation is promising, safe, and effective for the treatment of CNV.
Collapse
Affiliation(s)
- Yu Ma
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yali Zhang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Chunyan Zheng
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Fei Song
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yuwei Wang
- Henan University of Chinese Medicine, Zhengzhou, China.,The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Huang H. Proteolytic Cleavage of Receptor Tyrosine Kinases. Biomolecules 2021; 11:biom11050660. [PMID: 33947097 PMCID: PMC8145142 DOI: 10.3390/biom11050660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The receptor tyrosine kinases (RTKs) are a large family of cell-surface receptors, which are essential components of signal transduction pathways. There are more than fifty human RTKs that can be grouped into multiple RTK subfamilies. RTKs mediate cellular signaling transduction, and they play important roles in the regulation of numerous cellular processes. The dysregulation of RTK signaling is related to various human diseases, including cancers. The proteolytic cleavage phenomenon has frequently been found among multiple receptor tyrosine kinases. More and more information about proteolytic cleavage in RTKs has been discovered, providing rich insight. In this review, we summarize research about different aspects of RTK cleavage, including its relation to cancer, to better elucidate this phenomenon. This review also presents proteolytic cleavage in various members of the RTKs.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; or
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Han KY, Chang JH, Azar DT. Proteomics-Based Characterization of the Effects of MMP14 on the Protein Content of Exosomes from Corneal Fibroblasts. Protein Pept Lett 2021; 27:979-988. [PMID: 32268857 DOI: 10.2174/0929866527666200408142827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. OBJECTIVE The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. METHODS Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. RESULTS Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. CONCLUSION Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
19
|
Giannaccare G, Pellegrini M, Bovone C, Spena R, Senni C, Scorcia V, Busin M. Anti-VEGF Treatment in Corneal Diseases. Curr Drug Targets 2020; 21:1159-1180. [PMID: 32189591 DOI: 10.2174/1389450121666200319111710] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corneal neovascularization (CN) is a clue feature of different ocular pathological conditions and can lead to corneal edema and opacification with subsequent vision loss. Vascular endothelial growth factor (VEGF), which plays a key role in new vessels formation, proliferation and migration, was found to be up-regulated in these conditions. Nowadays, it is possible to downregulate the angiogenic process by using anti-VEGF agents administered by different routes. OBJECTIVE To evaluate the efficacy, safety and possible future directions of anti-VEGF agents used for the treatment of CNV owing to different aetiologies. METHODS A computerized search of articles dealing with the topic of anti-VEGF therapy in CN was conducted in PubMed, Scopus and Medline electronic databases. The following key phrases were used: anti-VEGF agents, corneal neovascularization, bevacizumab, ranibizumab, vascular endothelial growth factor, angiogenesis. RESULTS The use of anti-VEGF therapy in the treatment of CN reduced pathological vessel density without causing significant side effects. Various administration routes such as topical, subconjunctival and intrastromal ones are available, and the choice depends on patient and disease characteristics. Much more effectiveness is achieved in case of early administration before mature and wellestablished vessels take place. A combined approach between various drugs including anti-VEGF agents should be adopted in those cases at higher risk of neovascularization recurrence such as chronic long-standing diseases where ischemic and inflammatory stimuli are not definitively reversed. CONCLUSION The efficacy and safety of anti-VEGF agents support their adoption into the daily clinical practice for the management of CN.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Cristina Bovone
- Department of Ophthalmology, Ospedale Privato "Villa Igea", Forli, Italy
| | - Rossella Spena
- Department of Ophthalmology, Ospedale Privato "Villa Igea", Forli, Italy
| | - Carlotta Senni
- Ophthalmology Unit, University of Bologna, Bologna, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Massimo Busin
- Department of Ophthalmology, Ospedale Privato "Villa Igea", Forli, Italy
| |
Collapse
|
20
|
Zhang J, Wang S, He Y, Yao B, Zhang Y. Regulation of matrix metalloproteinases 2 and 9 in corneal neovascularization. Chem Biol Drug Des 2020; 95:485-492. [PMID: 31002472 DOI: 10.1111/cbdd.13529] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 01/11/2023]
Abstract
Corneal neovascularization (CNV), a pathological process of angiogenesis, can lead to serious consequences in the cornea. CNV is generally proved to associate with inflammation in the cornea closely, which is mainly elicited by the disruption of equilibrium between angiogenic and antiangiogenic factors. Angiogenic factors including vascular endothelial growth factors (VEGFs), basic fibroblast growth factors (bFGFs), and matrix metalloproteinases (MMPs) are vital factors in the formation of CNV. Especially VEGFs are convinced to be the core angiogenic factors in CNV, and MMPs are proved to exert dual effects on the process. Strikingly, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) are determined to play key roles in the formation of CNV, while the mechanism is still vague. In this review, the latest researches are reviewed to discuss the role of MMP-2 and MMP-9 in CNV, respectively, and some inhibitors of them are presented. We hope to provide a new direction of drug research for CNV.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| | - Shurong Wang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| | - Yuxi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| | - Boyuan Yao
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Angioregulatory microRNAs in Colorectal Cancer. Cancers (Basel) 2019; 12:cancers12010071. [PMID: 31887997 PMCID: PMC7016698 DOI: 10.3390/cancers12010071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Angiogenesis is a rate-determining step in CRC development and metastasis. The balance of angiogenic and antiangiogenic factors is crucial in this process. Angiogenesis-related genes can be regulated post-transcriptionally by microRNAs (miRNAs) and some miRNAs have been shown to shuttle between tumor cells and the tumor microenvironment (TME). MiRNAs have context-dependent actions and can promote or suppress angiogenesis dependent on the type of cancer. On the one hand, miRNAs downregulate anti-angiogenic targets and lead to angiogenesis induction. Tumor suppressor miRNAs, on the other hand, enhance anti-angiogenic response by targeting pro-angiogenic factors. Understanding the interaction between these miRNAs and their target mRNAs will help to unravel molecular mechanisms involved in CRC progression. The aim of this article is to review the current literature on angioregulatory miRNAs in CRC.
Collapse
|
22
|
Sato S, Vasaikar S, Eskaros A, Kim Y, Lewis JS, Zhang B, Zijlstra A, Weaver AM. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight 2019; 4:132447. [PMID: 31661464 DOI: 10.1172/jci.insight.132447] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is a key process that allows nutrient uptake and cellular trafficking and is coopted in cancer to enable tumor growth and metastasis. Recently, extracellular vesicles (EVs) have been shown to promote angiogenesis; however, it is unclear what unique features EVs contribute to the process. Here, we studied the role of EVs derived from head and neck squamous cell carcinoma (HNSCC) in driving tumor angiogenesis. Small EVs (SEVs), in the size range of exosomes (50-150 nm), induced angiogenesis both in vitro and in vivo. Proteomic analysis of HNSCC SEVs revealed the cell-to-cell signaling receptor ephrin type B receptor 2 (EPHB2) as a promising candidate cargo to promote angiogenesis. Analysis of patient data further identified EPHB2 overexpression in HNSCC tumors to be associated with poor patient prognosis and tumor angiogenesis, especially in the context of overexpression of the exosome secretion regulator cortactin. Functional experiments revealed that EPHB2 expression in SEVs regulated angiogenesis both in vitro and in vivo and that EPHB2 carried by SEVs stimulates ephrin-B reverse signaling, inducing STAT3 phosphorylation. A STAT3 inhibitor greatly reduced SEV-induced angiogenesis. These data suggest a model in which EVs uniquely promote angiogenesis by transporting Eph transmembrane receptors to nonadjacent endothelial cells to induce ephrin reverse signaling.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suhas Vasaikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Adel Eskaros
- Department of Pathology, Microbiology and Immunology, and
| | - Young Kim
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James S Lewis
- Department of Pathology, Microbiology and Immunology, and
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, and
| |
Collapse
|
23
|
Jiang Z, Mao Z. Astragaloside IV (AS-IV) alleviates the malignant biological behavior of hepatocellular carcinoma via Wnt/β-catenin signaling pathway. RSC Adv 2019; 9:35473-35482. [PMID: 35528074 PMCID: PMC9074712 DOI: 10.1039/c9ra05933d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022] Open
Abstract
Astragaloside IV (AS-IV) is an active substance isolated from Astragalus membranaceus (Fisch.) Bungede, which has been shown to have pharmacological effects in a variety of cancers. However, the effects of AS-IV in hepatocellular carcinoma (HCC) and its related mechanisms have been poorly understood. In this study, we explored the roles of AS-IV on HCC and the underlying signaling pathway. We reported that the appropriate concentrations of AS-IV (25, 50, 100 nmol l-1) significantly suppressed the proliferation and cell cycle of HepG2 and Hep3B cell lines whilst promoting apoptosis. Besides, a trans-well and wound healing assay showed that AS-IV could markedly inhibit the migration and invasion of HepG2 and Hep3B cells, the expression of E-cadherin was up-regulation but the expression of N-cadherin and vimentin was down-regulation, and the protein levels of cleaved-caspase-3, 9 were increased markedly compared with the corresponding control. Furthermore, animal model treatment revealed that AS-IV could effectively reduce tumor formation. Moreover, AS-IV also significantly weakened the expression of Wnt, β-catenin and TCF-4 in vitro and in vivo. Taken together, these results suggested that AS-IV inhibited the biological processes of HCC via regulating of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- ZhongYu Jiang
- Department of Cancer Center, Zhejiang Quhua Hospital Quzhou City Zhejiang Province 324004 China
| | - Zhen Mao
- Department of Traditional Chinese Medicine, Gansu Provincial Hospital No. 204, Donggang West Road, Chengguan District Lanzhou City Gansu Province 730000 China
| |
Collapse
|
24
|
Khochtali S, Abroug N, Megzari K, Gargouri MA, Ksiaa I, Ben Amor H, Saihi E, Khairallah M. Swept-source Optical Coherence Tomography Angiography Findings in Uveitic Cystoid Macular Edema. Ocul Immunol Inflamm 2019; 27:1211-1223. [DOI: 10.1080/09273948.2019.1672195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sana Khochtali
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Nesrine Abroug
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Kenza Megzari
- Department of Ophthalmology, Valenciennes Hospital Center, Valenciennes, France
| | | | - Imen Ksiaa
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Hager Ben Amor
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Emna Saihi
- Department of Ophthalmology, Valenciennes Hospital Center, Valenciennes, France
| | - Moncef Khairallah
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
25
|
Khatib TZ, Martin KR. Neuroprotection in Glaucoma: Towards Clinical Trials and Precision Medicine. Curr Eye Res 2019; 45:327-338. [PMID: 31475591 DOI: 10.1080/02713683.2019.1663385] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose: The eye is currently at the forefront of translational medicine and therapeutics. However, despite advances in technology, primary open-angle glaucoma remains the leading cause of irreversible blindness worldwide. Traditional intraocular pressure (IOP)-lowering therapies are often not sufficient to prevent progression to blindness, even in patients with access to high-quality healthcare. Neuroprotection strategies, which aim to boost the ability of target cells to withstand a pathological insult, have shown significant promise in animal models but none have shown clinically relevant efficacy in human clinical trials to date. We sought to evaluate the current status of neuroprotection clinical trials for glaucoma and identify limitations which have prevented translation of new glaucoma therapies to date.Methods: Literature searches identified English language references. Sources included MEDLINE, EMBASE, the Cochrane Library and Web of Science databases; reference lists of retrieved studies; and internet pages of relevant organisations, meetings and conference proceedings, and clinical trial registries.Results: We discuss six key neuroprotective strategies for glaucoma that have reached the clinical trial stage. Delivery of neurotrophic factors through gene therapy is also progressing towards glaucoma clinical trials. Refinements in trial design and the use of new modalities to define structural and functional endpoints may improve our assessment of disease activity and treatment efficacy. Advances in our understanding of compartmentalised glaucomatous degeneration and continued progress in the molecular profiling of glaucoma patients will enable us to predict individual risk and tailor treatment.Conclusion: New approaches to future glaucoma neuroprotection trials could improve the prospects for new glaucoma therapies. Glaucoma treatment tailored according to an individual's unique risk profile may become increasingly common in the future.
Collapse
Affiliation(s)
- Tasneem Z Khatib
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Eye Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Medical Sciences Division, University of Oxford, Oxford, UK
| | - Keith R Martin
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Eye Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Cambridge NIHR Biomedical Research Centre, Cambridge, UK.,Wellcome Trust - 5 MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
26
|
Al-Fakhri AS, Alsulaiman SM. Recovery of the Ellipsoid and Interdigitation Zones in Acute Behcet’s Uveitis after Therapy. Ocul Immunol Inflamm 2019; 28:1129-1132. [DOI: 10.1080/09273948.2019.1644351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Sulaiman M. Alsulaiman
- Vitreoretinal Division and Uveitis Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Abstract
There is growing evidence that vascular dysfunction plays a role in the pathogenesis of glaucoma. The details of this relationship have remained elusive partially due to limitations in our ability to assess blood flow in the optic nerve. Optical coherence tomography angiography (OCTA) has emerged as a promising new technology well positioned to become the first clinically suitable test of optic nerve perfusion. OCTA uses the motion of red blood cells as an intrinsic contrast agent to create reproducible images of microvascular networks rapidly and non-invasively. A significant body of research regarding the use of OCTA in glaucoma has emerged in recent years. This review aims to provide an overview of the basic principles underlying OCTA technology, summarize the current literature regarding the application of OCTA in the management of glaucoma, and address the role of OCTA in explicating the vascular pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Astrid C Werner
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , USA
| | - Lucy Q Shen
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , USA
| |
Collapse
|
28
|
Cucurbita argyrosperma Seed Extracts Attenuate Angiogenesis in a Corneal Chemical Burn Model. Nutrients 2019; 11:nu11051184. [PMID: 31137826 PMCID: PMC6567871 DOI: 10.3390/nu11051184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 01/27/2023] Open
Abstract
Severe corneal inflammation produces opacity or even perforation, scarring, and angiogenesis, resulting in blindness. In this study, we used the cornea to examine the effect of new anti-angiogenic chemopreventive agents. We researched the anti-angiogenic effect of two extracts, methanol (Met) and hexane (Hex), from the seed of Cucurbita argyrosperma, on inflamed corneas. The corneas of Wistar rats were alkali-injured and treated intragastrically for seven successive days. We evaluated: opacity score, corneal neovascularization (CNV) area, re-epithelialization percentage, and histological changes. Also, we assessed the inflammatory (cyclooxigenase-2, nuclear factor-kappaB, and interleukin-1β) and angiogenic (vascular endothelial growth factor A, VEGF-A; -receptor 1, VEGFR1; and -receptor 2, VEGFR2) markers. Levels of Cox-2, Il-1β, and Vegf-a mRNA were also determined. After treatment, we observed a reduction in corneal edema, with lower opacity scores and cell infiltration compared to untreated rats. Treatment also accelerated wound healing and decreased the CNV area. The staining of inflammatory and angiogenic factors was significantly decreased and related to a down-expression of Cox-2, Il-1β, and Vegf. These results suggest that intake of C. argyrosperma seed has the potential to attenuate the angiogenesis secondary to inflammation in corneal chemical damage.
Collapse
|
29
|
Han KY, Chang JH, Azar DT. MMP14-Containing Exosomes Cleave VEGFR1 and Promote VEGFA-Induced Migration and Proliferation of Vascular Endothelial Cells. Invest Ophthalmol Vis Sci 2019; 60:2321-2329. [PMID: 31117124 PMCID: PMC6532701 DOI: 10.1167/iovs.18-26277] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Investigate the impact matrix metalloproteinase 14 (MMP14) delivered via exosomes produced by corneal fibroblasts on vascular endothelial growth factor receptor 1 (VEGFR1) cleavage on endothelial cells, and other key processes of angiogenesis. Methods Proteolysis of VEGFR1 and R2 by the catalytic domain of MMP14 was investigated via immunocytochemistry with anti-VEGFR1, anti-VEGFR2, and anti-MMP14 antibodies. Exosomes were isolated via precipitation and serial ultracentrifugation from wild-type (WT) and MMP14 exon4-deficient corneal fibroblasts. Transmission electron microscopy and nanotracking analysis were used to characterize the isolated exosomes. The presence of MMP14 in exosomes from WT fibroblasts was confirmed by Western blotting. VEGFR1 cleavage upon treatment with WT-derived exosomes, Δexon4-derived exosomes, or the pan-MMP inhibitor GM60001 was examined via in vitro proteolysis analysis using recombinant mouse (rm) VEGFR1/R2. Endothelial cell migration and proliferation were investigated using a Boyden chamber assay and BrdU incorporation, respectively. Results WT-derived exosomes specifically cleaved rmVEGFR1 in vitro, whereas Δexon4-derived exosomes did not. Treatment with the pan-MMP inhibitor GM6001 effectively inhibited VEGFR1 cleavage by WT-derived exosomes, confirming the role of MMP14 in this cleavage. WT-derived exosomes induced greater endothelial cell migration (P < 0.01) and proliferation (P < 0.5) compared to Δexon4-derived exosomes. Conclusions MMP14-containing exosomes may be involved in the regulation of corneal neovascularization through degradation of VEGFR1 and VEGFA-induced endothelial cell proliferation and migration.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois-Chicago, Chicago, Illinois, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois-Chicago, Chicago, Illinois, United States
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois-Chicago, Chicago, Illinois, United States
| |
Collapse
|
30
|
Wolf M, Clay SM, Oldenburg CE, Rose-Nussbaumer J, Hwang DG, Chan MF. Overexpression of MMPs in Corneas Requiring Penetrating and Deep Anterior Lamellar Keratoplasty. Invest Ophthalmol Vis Sci 2019; 60:1734-1747. [PMID: 31022731 PMCID: PMC6485316 DOI: 10.1167/iovs.18-25961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Matrix metalloproteinases (MMPs) comprise a family of zinc-dependent endopeptidases involved in wound healing processes, including neovascularization and fibrosis. We assessed MMP protein expression levels in diseased corneas of patients requiring penetrating and deep anterior lamellar keratoplasty. The purpose of this study was to test the hypothesis that upregulation of MMPs in diseased corneas is positively associated with clinical levels of corneal neovascularization and fibrosis. Methods Protein expression levels of nine individual MMPs were quantified simultaneously in human corneal lysates by using the Bio-Plex Pro Human MMP 9-Plex Panel and the MAGPIX technology. Measurements of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP12, and MMP13 were performed on diseased specimens from 21 patients undergoing corneal transplantation (17 for penetrating keratoplasty and 4 for deep anterior lamellar keratoplasty) and 6 normal control corneas. Results Luminex-based expression analysis revealed a significant overexpression of four of the nine MMPs tested (MMP2, MMP8, MMP12, and MMP13) in patient samples compared to control. Significant overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 was observed in diseased corneas with neovascularization compared with diseased corneas without neovascularization. Overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 also corresponded with the levels of corneal fibrosis. Finally, reduced expression of MMP3 was detected in keratoconus patients. Conclusions Multiple MMPs are expressed in the corneas of patients with chronic disease requiring keratoplasty even when the pathologic process appears to be clinically inactive. In particular, the expression of several MMPs (MMP2, MMP8, MMP12, and MMP13) is positively associated with increased levels corneal fibrosis and neovascularization.
Collapse
Affiliation(s)
- Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Selene M Clay
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Catherine E Oldenburg
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Jennifer Rose-Nussbaumer
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - David G Hwang
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| |
Collapse
|
31
|
Iftikhar M, Zafar S, Gonzalez N, Murphy O, Ohemaa Kwakyi MS, Sydney Feldman BS, A Calabresi P, Saidha S, Channa R. Image Artifacts in Optical Coherence Tomography Angiography Among Patients With Multiple Sclerosis. Curr Eye Res 2019; 44:558-563. [PMID: 30624088 DOI: 10.1080/02713683.2019.1565892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE To evaluate artifacts in optical coherence tomography angiography (OCT-A) images of multiple sclerosis (MS) patients and healthy controls. MATERIALS AND METHODS This was a prospective cross-sectional study conducted at the Department of Neurology and the Wilmer Eye Institute at Johns Hopkins Hospital. Subjects included patients with an established diagnosis of MS and healthy volunteers. OCT-A was performed using Spectralis® OCT-A prototype, OCT2 (Heidelberg, Germany). The type and frequency of artifacts, the clinical factors associated with them, and their impact on vessel density measurements were assessed. RESULTS Overall, 385 images from 102 participants were analyzed. The majority of images (97.1%) had some degree of artifact. The most frequent was motion artifact (96.3%), followed by blinking (51.9%), and loss of focus (25.1%). MS patients were more likely to have any artifact vs. controls (OR [95% CI], 3.83 [1.12-12.92]), and were more likely to have motion artifacts with longer disease duration (OR [95% CI], 1.11 [1.03-1.20]) or history of optic neuritis (OR [95% CI], 4.24 [1.19-15.16]). The relative area occupied by the artifact was found to underestimate vessel density measurements in both MS patients and controls. CONCLUSIONS Artifacts are common with OCT-A imaging using this particular Spectralis® OCT-A prototype and can impact quantitative vascular density metrics. Future studies should review images for artifacts before drawing definitive conclusions.
Collapse
Affiliation(s)
- Mustafa Iftikhar
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Sidra Zafar
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Natalia Gonzalez
- b Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Olwen Murphy
- b Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - M S Ohemaa Kwakyi
- b Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - B S Sydney Feldman
- b Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Peter A Calabresi
- b Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Shiv Saidha
- b Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Roomasa Channa
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
32
|
Khan AO, El-Ghrably IA. Overlapping retinal phenotypes in a consanguineous family harboring mutations in CRB1 and RS1. Ophthalmic Genet 2019; 40:17-21. [DOI: 10.1080/13816810.2018.1561906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Arif O. Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western University, Cleveland, OH, USA
| | | |
Collapse
|
33
|
Goker YS, Yılmaz S, Kızıltoprak H, Tekin K, Demir G. Quantitative Analysis of Optical Coherence Tomography Angiography Features in Patients with Nonocular Behcet’s Disease. Curr Eye Res 2018; 44:212-218. [PMID: 30261150 DOI: 10.1080/02713683.2018.1530361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Sedat Yılmaz
- Department of Rheumatology, Gülhane Training and Research Hospital, Ankara, Turkey
| | | | - Kemal Tekin
- Ophthalmology Department, Ercis State Hospital, Van, Turkey
| | - Gokhan Demir
- Beyoglu Eye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
34
|
Zhang L, Lv Z, Xu J, Chen C, Ge Q, Li P, Wei D, Wu Z, Sun X. Micro
RNA
‐134 inhibits osteosarcoma angiogenesis and proliferation by targeting the
VEGFA
/
VEGFR
1 pathway. FEBS J 2018; 285:1359-1371. [PMID: 29474747 DOI: 10.1111/febs.14416] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | - Zhi Lv
- Department of Orthopaedics The Second Hospital of Shanxi Medical University Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair Taiyuan China
| | - Jing Xu
- Shanxi Medical University Taiyuan China
| | | | | | - Pengcui Li
- Department of Orthopaedics The Second Hospital of Shanxi Medical University Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair Taiyuan China
| | | | - Zhuangzhuang Wu
- Department of Orthopaedics The Second Hospital of Shanxi Medical University Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair Taiyuan China
| | - Xiaojuan Sun
- Department of Orthopaedics The Second Hospital of Shanxi Medical University Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair Taiyuan China
| |
Collapse
|
35
|
Feizi S, Azari AA, Safapour S. Therapeutic approaches for corneal neovascularization. EYE AND VISION 2017; 4:28. [PMID: 29234686 PMCID: PMC5723406 DOI: 10.1186/s40662-017-0094-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Angiogenesis refers to new blood vessels that originate from pre-existing vascular structures. Corneal neovascularization which can lead to compromised visual acuity occurs in a wide variety of corneal pathologies. A large subset of measures has been advocated to prevent and/or treat corneal neovascularization with varying degrees of success. These approaches include topical corticosteroid administration, laser treatment, cautery, and fine needle diathermy. Since the imbalance between proangiogenic agents and antiangiogenic agents primarily mediate the process of corneal neovascularization, recent therapies are intended to disrupt the different steps in the synthesis and actions of proangiogenic factors. These approaches, however, are only partially effective and may lead to several side effects. The aim of this article is to review the most relevant treatments for corneal neovascularization available so far.
Collapse
Affiliation(s)
- Sepehr Feizi
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, 16666 Iran
| | - Amir A Azari
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, 16666 Iran
| | - Sharareh Safapour
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, 16666 Iran
| |
Collapse
|
36
|
Diabetic nephropathy: serum miR-9 confers a poor prognosis in and is associated with level changes of vascular endothelial growth factor and pigment epithelium-derived factor. Biotechnol Lett 2017; 39:1583-1590. [PMID: 28667418 DOI: 10.1007/s10529-017-2390-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the relationship between the serum level of miR-9 and the progression of diabetic nephropathy (DN) and related molecular mechanisms. RESULTS Thirty-five healthy subjects and 140 DN patients were divided into five groups: control, DN I-II, DN III, DN IV and DN V. Serum level of miR-9 was measured by real-time qPCR. Serum levels of vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF) lipids, fasting glucose, insulin, hemoglobin A1c (HBA1c), creatinine, fibrinogen and insulin resistance (HOMA-IR) were also measured. The results show that the levels of miR-9, PEDF and VEGF are increased with DN progression (P < 0.05). miR-9, VEGF and PEDF are independent risk factors of DN (R2 = 0.430). Spearman rank correlation analysis showed that miR-9 level is positively related to the levels of VEGF, PEDF, cholesterol, triglyceride, fasting glucose, fasting insulin, HBA1c, creatinine, fibrinogen and HOMA-IR (P < 0.05). CONCLUSIONS Serum miR-9 is a potential marker for conferring a poor prognosis in DN and associated with the levels of VEGF, PEDF and biochemical indices.
Collapse
|
37
|
Liu X, Wang S, Wang X, Liang J, Zhang Y. Recent drug therapies for corneal neovascularization. Chem Biol Drug Des 2017; 90:653-664. [PMID: 28489275 DOI: 10.1111/cbdd.13018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyao Liu
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Shurong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Xuanzhong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Jiaming Liang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Yan Zhang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| |
Collapse
|