1
|
Wu Y, Liu Y, Feng Y, Li X, Lu Z, Gu H, Li W, Hill LJ, Ou S. Evolution of therapeutic strategy based on oxidant-antioxidant balance for fuchs endothelial corneal dystrophy. Ocul Surf 2024; 34:247-261. [PMID: 39111696 DOI: 10.1016/j.jtos.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024]
Abstract
Fuchs endothelial corneal dystrophy (FECD) stands as the most prevalent primary corneal endothelial dystrophy worldwide, posing a significant risk to corneal homeostasis and clarity. Corneal endothelial cells exhibit susceptibility to oxidative stress, suggesting a nuanced relationship between oxidant-antioxidant imbalance and FECD pathogenesis, irrespective of FECD genotype. Given the constrained availability of corneal transplants, exploration into non-surgical interventions becomes crucial. This encompasses traditional antioxidants, small molecule compounds, biologics, and diverse non-drug therapies, such as gene-related therapy, hydrogen therapy and near infrared light therapy. This review concentrates on elucidating the mechanisms behind oxidant-antioxidant imbalance and the evolution of strategies to restore oxidant-antioxidant balance in FECD. It provides a comprehensive overview of both conventional and emerging therapeutic approaches, offering valuable insights for the advancement of non-surgical treatment modalities. The findings herein might establish a robust foundation for future research and the therapeutic strategy of FECD.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanbo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuchong Feng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoshuang Li
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Zhaoxiang Lu
- Institute of Microbiology and Infection, Department of Microbes, Infections and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK
| | - Hao Gu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wei Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Medical Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lisa J Hill
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK.
| | - Shangkun Ou
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550025, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
2
|
Gu S, Wu S, Lin Z, Han Z, Mo K, Huang H, Li M, Li G, Ouyang H, Wang L. Screening and evaluation of antioxidants for retinal pigment epithelial cell protection: L-ergothioneine as a novel therapeutic candidate through NRF2 activation. Exp Eye Res 2024; 242:109862. [PMID: 38490292 DOI: 10.1016/j.exer.2024.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The continual exposure of retinal tissues to oxidative stress leads to discernible anatomical and physiological alterations. Specifically, the onslaught of oxidative damage escalates the irreversible death of retinal pigmented epithelium (RPE) cells, pinpointed as the fundamental pathological event in dry age-related macular degeneration (AMD). There is a conspicuous lack of effective therapeutic strategies to counteract this degenerative process. This study screened a library of antioxidants for their ability to protect RPE cells against oxidative stress and identified L-ergothioneine (EGT) as a potent cytoprotective agent. L-ergothioneine provided efficient protection against oxidative stress-damaged RPE and maintained cell redox homeostasis and normal physiological functions. It maintained the normal structure of the retina in mice under oxidative stress conditions. Transcriptomic analysis revealed that EGT counteracted major gene expression changes induced by oxidative stress. It upregulated antioxidant gene expression and inhibited NRF2 translocation. The inhibition of NRF2 abolished EGT's protective effects, suggesting that NRF2 activation contributes to its mechanism of action. In conclusion, we identified EGT as a safe and effective small-molecule compound that is expected to be a novel antioxidative agent for treating AMD.
Collapse
Affiliation(s)
- Sijie Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Gen Li
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Sakakura S, Inagaki E, Sayano T, Yamazaki R, Fusaki N, Hatou S, Hirayama M, Tsubota K, Negishi K, Okano H, Shimmura S. Non-apoptotic regulated cell death in Fuchs endothelial corneal dystrophy. Regen Ther 2023; 24:592-601. [PMID: 38034859 PMCID: PMC10681880 DOI: 10.1016/j.reth.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Fuchs endothelial corneal dystrophy (FECD) is the leading cause of corneal blindness in developed countries. Corneal endothelial cells in FECD are susceptive to oxidative stress, leading to mitochondrial dysfunction and cell death. Oxidative stress causes many forms of cell death including parthanatos, which is characterized by translocation of apoptosis-inducing factor (AIF) to the nucleus with upregulation of poly (ADP-ribose) polymerase 1 (PARP-1) and poly (ADP-ribose) (PAR). Although cell death is an important aspect of FECD, previous reports have often analyzed immortalized cell lines, making the evaluation of cell death difficult. Therefore, we established a new in vitro FECD model to evaluate the pathophysiology of FECD. Methods Corneal endothelial cells were derived from disease-specific induced pluripotent stem cells (iPSCs). Hydrogen peroxide (H2O2) was used as a source for oxidative stress to mimic the pathophysiology of FECD. We investigated the responses to oxidative stress and the involvement of parthanatos in FECD-corneal endothelial cells. Results Cell death ratio and oxidative stress level were upregulated in FECD with H2O2 treatment compared with non-FECD control, indicating the vulnerability of oxidative stress in FECD. We also found that intracellular PAR, as well as PARP-1 and AIF in the nucleus were upregulated in FECD. Furthermore, PARP inhibition, but not pan-caspase inhibition, rescued cell death, DNA double-strand breaks, mitochondrial membrane potential depolarization and energy depletion, suggesting that cell death was mainly due to parthanatos. Conclusions We report that parthanatos may be involved in the pathophysiology of FECD and targeting this cell death pathway may be a potential therapeutic approach for FECD.
Collapse
Affiliation(s)
- Saki Sakakura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo 102-0083, Japan
| | - Tomoko Sayano
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Cellusion Inc. 8-6 Nihonbashi-Kobunacho, Chuo-ku, Tokyo 103-0024, Japan
| | - Risa Yamazaki
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Noemi Fusaki
- University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, 4-6-1 Shirokanedai, Minato, Tokyo 108-8639, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Cellusion Inc. 8-6 Nihonbashi-Kobunacho, Chuo-ku, Tokyo 103-0024, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Haneda Innovation City Zone A, 1-1-4, Hanedakuko, Ota-ku, Tokyo 144-0041, Japan
| |
Collapse
|
4
|
Dong C, Li Z, Wang X, Zou D, Duan H, Zhao C, Zhou Q, Shi W. SRT1720 attenuates UVA-induced corneal endothelial damage via inhibition of oxidative stress and cellular apoptosis. Exp Eye Res 2023; 231:109464. [PMID: 37015319 DOI: 10.1016/j.exer.2023.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/06/2023]
Abstract
Corneal endothelium is mostly sensitive to oxidative pressure and mitochondrial dysfunction. However, the oxidative-antioxidant mechanism of corneal endothelial cells (CECs) remains partially defined. Silent information regulator 1 (SIRT1) is a well-studied therapeutic target of oxidative damage. This study aimed to determine the SIRT1 expression in ultraviolet A (UVA)-induced corneal endothelial damage and explore potential drugs to repair corneal endothelial oxidative injury. In this study, we showed that CECs exhibited cellular apoptosis, reactive oxygen species (ROS) accumulation and decreased SIRT1 expression. In addition, UVA induced the imbalance of mitochondrial homeostasis and function, involving in mitochondrial membrane potential, mitochondrial fusion/fission and mitochondrial energy metabolism. SRT1720, the SIRT1 activator, effectively increased SIRT1 expression and attenuated UVA-induced cell damage in CECs. The therapeutic effects of SRT1720 for corneal endothelial oxidative damage were also verified in UVA-irradiated mice model. Our findings indicated that SIRT1 maintained the oxidant-antioxidant balance in corneal endothelium, suggesting a new promising therapeutic target for corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Chunxiao Dong
- Qingdao University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Xin Wang
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Dulei Zou
- Qingdao University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Can Zhao
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Weiyun Shi
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China.
| |
Collapse
|
5
|
Jalilian I, Muppala S, Ali M, Anderson JD, Phinney B, Salemi M, Wilmarth PA, Murphy CJ, Thomasy SM, Raghunathan V. Cell derived matrices from bovine corneal endothelial cells as a model to study cellular dysfunction. Exp Eye Res 2023; 226:109303. [PMID: 36343671 PMCID: PMC11349083 DOI: 10.1016/j.exer.2022.109303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease that impacts the structure and stiffness of the Descemet's membrane (DM), the substratum for corneal endothelial cells (CECs). These structural alterations of the DM could contribute to the loss of the CECs resulting in corneal edema and blindness. Oxidative stress and transforming growth factor-β (TGF-β) pathways have been implicated in endothelial cell loss and endothelial to mesenchymal transition of CECs in FECD. Ascorbic acid (AA) is found at high concentrations in FECD and its impact on CEC survival has been investigated. However, how TGF-β and AA effect the composition and rigidity of the CEC's matrix remains unknown. METHODS In this study, we investigated the effect of AA, TGF-β1 and TGF-β3 on the deposition, ultrastructure, stiffness, and composition of the extracellular matrix (ECM) secreted by primary bovine corneal endothelial cells (BCECs). RESULTS Immunofluorescence and electron microscopy post-decellularization demonstrated a robust deposition and distinct structure of ECM in response to treatments. AFM measurements showed that the modulus of the matrix in BCECs treated with TGF-β1 and TGF-β3 was significantly lower than the controls. There was no difference in the stiffness of the matrix between the AA-treated cell and controls. Gene Ontology analysis of the proteomics results revealed that AA modulates the oxidative stress pathway in the matrix while TGF-β induces the expression of matrix proteins collagen IV, laminin, and lysyl oxidase homolog 1. CONCLUSIONS Molecular pathways identified in this study demonstrate the differential role of soluble factors in the pathogenesis of FECD.
Collapse
Affiliation(s)
- Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Santoshi Muppala
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Maryam Ali
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Johnathon D Anderson
- Department of Otolaryngology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Brett Phinney
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Michelle Salemi
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resources, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, 77204, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
6
|
Dominguini D, Michels M, Wessler LB, Streck EL, Barichello T, Dal-Pizzol F. Mitochondrial protective effects caused by the administration of mefenamic acid in sepsis. J Neuroinflammation 2022; 19:268. [PMID: 36333747 PMCID: PMC9636698 DOI: 10.1186/s12974-022-02616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for the reduction of inflammatory parameters and mitochondrial damage in animals submitted to polymicrobial sepsis. To test our hypothesis, adult male Wistar rats were submitted to the cecal ligation and perforation (CLP) model for sepsis induction and after receiving an injection of MFA (doses of 10, 30, and 50 mg/kg) or sterile saline (1 mL/kg). At 24 h after sepsis induction, the frontal cortex and hippocampus were dissected to analyze the levels of TNF-α, IL-1β, and IL-18; oxidative damage (thiobarbituric acid reactive substances (TBARS), carbonyl, and DCF-DA (oxidative parameters); protein expression (mitochondrial transcription factor A (TFAM), NLRP-3, 8-oxoG; Bax, Bcl-2 and (ionized calcium-binding adaptor molecule 1 (IBA-1)); and the activity of mitochondrial respiratory chain complexes. It was observed that the septic group in both structures studied showed an increase in proinflammatory cytokines mediated by increased activity in NLRP-3, with more significant oxidative damage and higher production of reactive oxygen species (ROS) by mitochondria. Damage to mtDNA it was also observed with an increase in 8-oxoG levels and lower levels of TFAM and NGF-1. In addition, this group had an increase in pro-apoptotic proteins and IBA-1 positive cells. However, MFA at doses of 30 and 50 mg/kg decreased inflammasome activity, reduced levels of cytokines and oxidative damage, increased bioenergetic efficacy and reduced production of ROS and 8-oxoG, and increased levels of TFAM, NGF-1, Bcl-2, reducing microglial activation. As a result, it is suggested that MFA induces protection in the central nervous system early after the onset of sepsis.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Leticia B Wessler
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| |
Collapse
|
7
|
Qiu JN, Shan K, Xiang J, Gu JY, Zhou RM, Zhang XL, Zhang CR, Xu JJ. Comprehensive Analysis of circRNA-Associated-ceRNA Networks in Human Corneal Endothelial Dysfunction. Cornea 2022; 41:1545-1552. [PMID: 35965398 DOI: 10.1097/ico.0000000000003065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Circular RNAs (circRNAs) are a novel class of endogenous noncoding RNAs that regulate gene expression through the competitive endogenous RNA (ceRNA) mechanism. CircRNA-associated-ceRNA networks are closely related to oxidative stress-related diseases. Oxidative stress-induced dysfunction of the corneal endothelium (CE) is a major pathological feature in many corneal diseases. This study was aimed to analyze circRNA-associated-ceRNA networks in oxidative stress-induced CE dysfunction. METHODS A CE dysfunction model was established using human corneal endothelial cells (HCECs) treated with H2O2 at a concentration of 250 μM for 4 hours at 37°C. High-throughput sequencing was conducted to determine the expression profiles of circRNA, miRNA, and mRNA. Bioinformatic analyses, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes analysis, were conducted to identify the potential biological modules and pathologic pathways of dysregulated circRNAs. CircRNA-associated-ceRNA networks were established based on the data of sequencing and bioinformatic analyses. RESULTS We obtained 108 differentially expressed circRNAs, including 77 upregulated and 31 downregulated circRNAs. GO analysis suggested that dysregulated circRNAs were mainly targeted to protein quality control for misfolded or incompletely synthesized proteins (biologic process), nuclear chromatin (cellular component), and ubiquitin protein ligase binding (molecular function). GO terms related to CE functions responding to oxidative stress were also identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that dysregulated circRNAs were mostly enriched in the adherens junction pathway. Network analysis identified several potential therapeutic targets for CE dysfunction. CONCLUSIONS CircRNAs are significantly dysregulated in HCECs under oxidative stress. The circRNA-associated-ceRNA networks are closely related to HCEC functions. Targeting these networks might provide novel therapies for CE dysfunction.
Collapse
Affiliation(s)
- Ji-Ni Qiu
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kun Shan
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jun Xiang
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jia-Yu Gu
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and
| | - Rong-Mei Zhou
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xue-Ling Zhang
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chao-Ran Zhang
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jian-Jiang Xu
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
8
|
Patel SP, Calle Gonzalez B, Paone N, Mueller C, Floss JC, Sousa ME, Shi MY. Effect of Physiological Oxygen on Primary Human Corneal Endothelial Cell Cultures. Transl Vis Sci Technol 2022; 11:33. [PMID: 35191961 PMCID: PMC8883143 DOI: 10.1167/tvst.11.2.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Primary human corneal endothelial cells (HCEnCs) cultured in room air are exposed to significantly higher O2 concentrations [O2] than what is normally present in the eye. We evaluated the growth and metabolism of HCEnCs cultured under physiological [O2] (2.5%; [O2]2.5) and room air ([O2]A). Methods Primary cultures of HCEnCs from normal donors and donors with Fuchs dystrophy were grown at [O2]2.5 and [O2]A. Growth and morphology were compared using phase-contrast microscopy, zonula occludens (ZO-1) localization, cell density measurements, and senescence marker staining. CD44 (cell quality) and HIF-1α (hypoxia-inducible factor-1α) levels were evaluated by Western blotting. Cell adaptability to a reversal of [O2] growth conditions was measured with cell viability assays, and cell metabolism was assessed via oxygen consumption and extracellular acidification rates. Results HCEnCs grown at [O2]A and [O2]2.5 displayed similar morphologies, ZO-1 localization, CD44 expression, and senescence. Cells from donors with Fuchs dystrophy grew better at [O2]2.5 than at [O2]A. HIF-1α was undetectable. Cells displayed greater viability at [O2]2.5 than at [O2]A. HCEnCs showed significantly greater proton leak (P < 0.01), nonmitochondrial oxygen consumption (P < 0.01), and spare capacity (P < 0.05) for oxygen consumption rates, and greater basal glycolysis (P < 0.05) with a decreased glycolytic reserve capacity (P < 0.05) for extracellular acidification rates. Conclusions Primary HCEnCs show unique metabolic characteristics at physiologic [O2]. The effect of [O2] for optimization of HCEnC culture conditions should be considered. Translational Relevance With the advance of cell-based therapeutics for corneal endothelial diseases, [O2] should be considered an important variable in the optimization of HCEnC culture conditions.
Collapse
Affiliation(s)
- Sangita P Patel
- Ross Eye Institute, Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.,Research Service, Veterans Administration of Western New York Healthcare System, Buffalo, New York, USA.,Ophthalmology Service, Veterans Administration of Western New York Healthcare System, Buffalo, New York, USA
| | - Brayan Calle Gonzalez
- Ross Eye Institute, Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.,Research Service, Veterans Administration of Western New York Healthcare System, Buffalo, New York, USA
| | - Nataliia Paone
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Christian Mueller
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jamie C Floss
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Maria E Sousa
- Ross Eye Institute, Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.,Research Service, Veterans Administration of Western New York Healthcare System, Buffalo, New York, USA
| | - Michael Y Shi
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
9
|
Català P, Thuret G, Skottman H, Mehta JS, Parekh M, Ní Dhubhghaill S, Collin RWJ, Nuijts RMMA, Ferrari S, LaPointe VLS, Dickman MM. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res 2021; 87:100987. [PMID: 34237411 DOI: 10.1016/j.preteyeres.2021.100987] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The state of the art therapy for treating corneal endothelial disease is transplantation. Advances in the reproducibility and accessibility of surgical techniques are increasing the number of corneal transplants, thereby causing a global deficit of donor corneas and leaving 12.7 million patients with addressable visual impairment. Approaches to regenerate the corneal endothelium offer a solution to the current tissue scarcity and a treatment to those in need. Methods for generating corneal endothelial cells into numbers that could address the current tissue shortage and the possible strategies used to deliver them have now become a therapeutic reality with clinical trials taking place in Japan, Singapore and Mexico. Nevertheless, there is still a long way before such therapies are approved by regulatory bodies and become clinical practice. Moreover, acellular corneal endothelial graft equivalents and certain drugs could provide a treatment option for specific disease conditions without the need of donor tissue or cells. Finally, with the emergence of gene modulation therapies to treat corneal endothelial disease, it would be possible to treat presymptomatic patients or those presenting early symptoms, drastically reducing the need for donor tissue. It is necessary to understand the most recent developments in this rapidly evolving field to know which conditions could be treated with which approach. This article provides an overview of the current and developing regenerative medicine therapies to treat corneal endothelial disease and provides the necessary guidance and understanding towards the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Pere Català
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Gilles Thuret
- Laboratory of Biology, Engineering and Imaging of Corneal Graft, BiiGC, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France; Institut Universitaire de France, Paris, France
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University Singapore Medical School, Singapore; Singapore National Eye Centre, Singapore
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK; The Veneto Eye Bank Foundation, Venice, Italy; Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sorcha Ní Dhubhghaill
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect Human Corneal Endothelial Cells from Endoplasmic Reticulum Stress-Mediated Apoptosis. Int J Mol Sci 2021; 22:ijms22094930. [PMID: 34066474 PMCID: PMC8125791 DOI: 10.3390/ijms22094930] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal endothelial dystrophy is a relevant cause of vision loss and corneal transplantation worldwide. In the present study, we analyzed the effect of mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) in an in vitro model of corneal dystrophy, characterized by endoplasmic reticulum stress. The effects of MSC-EVs were compared with those of serum-derived EVs, reported to display a pro-angiogenic activity. MSC-EVs were able to induce a significant down-regulation of the large majority of endoplasmic reticulum stress-related genes in human corneal endothelial cells after exposure to serum deprivation and tunicamycin. In parallel, they upregulated the Akt pathway and limited caspase-3 activation and apoptosis. At variance, the effect of the serum EVs was mainly limited to Akt phosphorylation, with minimal or absent effects on endoplasmic reticulum stress modulation and apoptosis prevention. The effects of MSC-EVs were correlated to the transfer of numerous endoplasmic reticulum (ER)-stress targeting miRNAs to corneal endothelial cells. These data suggest a potential therapeutic effect of MSC-EVs for corneal endothelial endoplasmic reticulum stress, a major player in corneal endothelial dystrophy.
Collapse
|
11
|
Tsao Y, Wu W, Chen K, Yeh L, Hwang Y, Hsueh Y, Chen H, Cheng C. Analysis of aqueous humor total antioxidant capacity and its correlation with corneal endothelial health. Bioeng Transl Med 2021; 6:e10199. [PMID: 34027088 PMCID: PMC8126826 DOI: 10.1002/btm2.10199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 02/04/2023] Open
Abstract
Corneal endothelial decompensation is a serious condition that frequently requires treatment via corneal transplantation which contributes to a global shortage in donor corneas. Therefore, the purpose of this study was to analyze the influence of aqueous humor total antioxidant capacity (TAC) on corneal endothelial health. There is an urgent need for discovering protective factors to combat corneal endothelial cell (CEC) loss. For methods, we developed a cupric ion-based TAC (CuTAC) assay to analyze TAC level in a small volume of aqueous humor, that is, 10 μL per test, and examined the influences of ascorbic acid (AA) and antioxidant proteins on aqueous humor TAC. To broaden the investigation, we conducted a case-control study with patients classified into two groups, an insufficient endothelial cell density (ECD < 2100 cells/mm2) group, and a control group. These groups were formed based on baseline ECD values and were used to evaluate the influence of aqueous humor TAC and AA on overall corneal endothelial health. A CuTAC assay was used to accurately measure aqueous humor TAC without the need for sample dilution. After analyzing a total of 164 human aqueous humor samples, we found that AA was the major contributor to aqueous humor TAC (73.2%). In addition, TAC and AA levels in the IECD and control groups were both found to be significantly different (1.168 vs. 1.592 mM, p = 0.009 and 0.856 vs. 1.178 mM, p = 0.016). TAC and AA were considered independent protective factors against IECD with adjusted odds ratios of 0.02 (p = 0.017) and 0.023 (p = 0.033), respectively. In conclusion, aqueous humor TAC and AA contribute to the maintenance of sufficient corneal ECD, and our CuTAC assay can be a useful tool for analyzing TAC using only a small aqueous humor sample volume.
Collapse
Affiliation(s)
- Yu‐Ting Tsao
- Institute of Biomedical Engineering, National Tsing Hua UniversityHsinchuTaiwan
- Department of EducationChang Gung Memorial HospitalLinkouTaiwan
| | - Wei‐Chi Wu
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Kuan‐Jen Chen
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Lung‐Kun Yeh
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Yih‐Shiou Hwang
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Yi‐Jen Hsueh
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Center for Tissue EngineeringChang Gung Memorial HospitalLinkouTaiwan
| | - Hung‐Chi Chen
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
- Center for Tissue EngineeringChang Gung Memorial HospitalLinkouTaiwan
| | - Chao‐Min Cheng
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
12
|
Cheah IK, Halliwell B. Ergothioneine, recent developments. Redox Biol 2021; 42:101868. [PMID: 33558182 PMCID: PMC8113028 DOI: 10.1016/j.redox.2021.101868] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
There has been a recent surge of interest in the unique low molecular weight dietary thiol/thione, ergothioneine. This compound can accumulate at high levels in the body from diet and may play important physiological roles in human health and development, and possibly in prevention and treatment of disease. Blood levels of ergothioneine decline with age and onset of various diseases. Here we highlight recent advances in our knowledge of ergothioneine.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore.
| |
Collapse
|
13
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Price MO, Mehta JS, Jurkunas UV, Price FW. Corneal endothelial dysfunction: Evolving understanding and treatment options. Prog Retin Eye Res 2020; 82:100904. [PMID: 32977001 DOI: 10.1016/j.preteyeres.2020.100904] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022]
Abstract
The cornea is exquisitely designed to protect the eye while transmitting and focusing incoming light. Precise control of corneal hydration by the endothelial cell layer that lines the inner surface of the cornea is required for optimal transparency, and endothelial dysfunction or damage can result in corneal edema and visual impairment. Advances in corneal transplantation now allow selective replacement of dysfunctional corneal endothelium, providing rapid visual rehabilitation. A series of technique improvements have minimized complications and various adaptations allow use even in eyes with complicated anatomy. While selective endothelial keratoplasty sets a very high standard for safety and efficacy, a shortage of donor corneas in many parts of the world restricts access, prompting a search for alternatives. Clinical trials are underway to evaluate the potential for self-recovery after removal of dysfunctional central endothelium in patients with healthy peripheral endothelium. Various approaches to using cultured human corneal endothelial cells are also in clinical trials; these aim to multiply cells from a single donor cornea for use in potentially hundreds of patients. Pre-clinical studies are underway with induced pluripotent stem cells, endothelial stem cell regeneration, gene therapy, anti-sense oligonucleotides, and various biologic/pharmacologic approaches designed to treat, prevent, or retard corneal endothelial dysfunction. The availability of more therapeutic options will hopefully expand access around the world while also allowing treatment to be more precisely tailored to each individual patient.
Collapse
Affiliation(s)
- Marianne O Price
- Cornea Research Foundation of America, 9002 N. Meridian St., Suite 212, Indianapolis, IN, USA.
| | - Jodhbir S Mehta
- Singapore National Eye Centre, 11 Third Hospital Ave #08-00, 168751, Singapore
| | - Ula V Jurkunas
- Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, USA
| | - Francis W Price
- Price Vision Group, 9002 N. Meridian St., Suite 100, Indianapolis, IN, USA
| |
Collapse
|
15
|
Yu YH, Pan HY, Guo LQ, Lin JF, Liao HL, Li HY. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Microb Cell Fact 2020; 19:164. [PMID: 32811496 PMCID: PMC7437059 DOI: 10.1186/s12934-020-01421-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ergothioneine (EGT) has a unique antioxidant ability and diverse beneficial effects on human health. But the content of EGT is very low in its natural producing organisms such as Mycobacterium smegmatis and mushrooms. Therefore, it is necessary to highly efficient heterologous production of EGT in food-grade yeasts such as Saccharomyces cerevisiae. Results Two EGT biosynthetic genes were cloned from the mushroom Grifola frondosa and successfully heterologously expressed in Saccharomyces cerevisiae EC1118 strain in this study. By optimization of the fermentation conditions of the engineered strain S. cerevisiae EC1118, the 11.80 mg/L of EGT production was obtained. With daily addition of 1% glycerol to the culture medium in the fermentation process, the EGT production of the engineered strain S. cerevisiae EC1118 can reach up to 20.61 mg/L. Conclusion A successful EGT de novo biosynthetic system of S. cerevisiae containing only two genes from mushroom Grifola frondosa was developed in this study. This system provides promising prospects for the large scales production of EGT for human health.
Collapse
Affiliation(s)
- Ying-Hao Yu
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Hong-Yu Pan
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Han-Lu Liao
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
| | - Hao-Ying Li
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
| |
Collapse
|
16
|
Soh YQ, Kocaba V, Weiss JS, Jurkunas UV, Kinoshita S, Aldave AJ, Mehta JS. Corneal dystrophies. Nat Rev Dis Primers 2020; 6:46. [PMID: 32528047 DOI: 10.1038/s41572-020-0178-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Corneal dystrophies are broadly defined as inherited disorders that affect any layer of the cornea and are usually progressive, bilateral conditions that do not have systemic effects. The 2015 International Classification of Corneal Dystrophies classifies corneal dystrophies into four classes: epithelial and subepithelial dystrophies, epithelial-stromal TGFBI dystrophies, stromal dystrophies and endothelial dystrophies. Whereas some corneal dystrophies may result in few or mild symptoms and morbidity throughout a patient's lifetime, others may progress and eventually result in substantial visual and ocular disturbances that require medical or surgical intervention. Corneal transplantation, either with full-thickness or partial-thickness donor tissue, may be indicated for patients with advanced corneal dystrophies. Although corneal transplantation techniques have improved considerably over the past two decades, these surgeries are still associated with postoperative risks of disease recurrence, graft failure and other complications that may result in blindness. In addition, a global shortage of cadaveric corneal graft tissue critically limits accessibility to corneal transplantation in some parts of the world. Ongoing advances in gene therapy, regenerative therapy and cell augmentation therapy may eventually result in the development of alternative, novel treatments for corneal dystrophies, which may substantially improve the quality of life of patients with these disorders.
Collapse
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Netherlands Institute for Innovative Ocular Surgery, Rotterdam, Netherlands
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University, School of Medicine, New Orleans, USA
| | - Ula V Jurkunas
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Schepens Eye Research Institute, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
17
|
Matthaei M, Hribek A, Clahsen T, Bachmann B, Cursiefen C, Jun AS. Fuchs Endothelial Corneal Dystrophy: Clinical, Genetic, Pathophysiologic, and Therapeutic Aspects. Annu Rev Vis Sci 2020; 5:151-175. [PMID: 31525145 DOI: 10.1146/annurev-vision-091718-014852] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a bilateral corneal endothelial disorder and the most common cause of corneal transplantation worldwide. Professor Ernst Fuchs described the first 13 cases of FECD more than 100 years ago. Since then, we have seen far-reaching progress in its diagnosis and treatment. In the field of diagnostics, new technologies enable the development of more accurate classification systems and the more detailed breakdown of the genetic basis of FECD. Laboratory studies help in deciphering the molecular pathomechanisms. The development of minimally invasive surgical techniques leads to a continuous improvement of the postoperative result. This review highlights and discusses clinical, genetic, pathophysiologic, and therapeutic aspects of this common and important corneal disorder.
Collapse
Affiliation(s)
- Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Agathe Hribek
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; , , , ,
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA;
| |
Collapse
|
18
|
BULBOACA AE, NICULA 3, C, BULBOACA A, BLIDARU M, BOARESCU PM, FESTILA D, DOGARU G, STANESCU I. Oxidative stress/antioxidant balance implication in reducing of intra-ocular pressure in patients with stroke, nicergoline therapy and open-angle glaucoma. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The continue efforts for long term reducing of intraocular pressure (IOP) in patients with open angle glaucoma, focused the attention on those patients who received different therapies, other that topical drugs for IOP reduction, that can influence this parameter.. The aim of this study was to evaluate the IOP, total oxidative stress and anti-oxidant capacity of plasma before and after nicergoline therapy in patients with ischemic stroke and associated open angle glaucoma.
Material and method: a group of 35 patients with ischemic stroke and chronic open angle glaucoma (under topical beta-blockers therapy) was studied regarding the values of IOP, total oxidative stress (TOS) and total antioxidant capacity (TAC) before (T1) and after 6 month (T2) of nicergoline therapy.
Results: IOP values for both eyes were significantly reduced when the values of T1 examination were compared with those of T2 assessment. The total oxidative stress parameter was also significantly reduced after nicergoline therapy together with increasing of total antioxidant capacity of plasma.
Conclusions: besides its positive effects on neuronal metabolism for ischemic stroke patients, nicergoline is able to influence the IOP in patients with open angle glaucoma and to improve the plasmatic oxidative stress/antioxidant balance. By this mechanism nicergoiline can contribute to a neuroprotection and better visual function preservation for these patients, improving their chances to neuro-motor rehabilitation and their quality of life.
Collapse
Affiliation(s)
- Adriana Elena BULBOACA
- Department of Pathophysiology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania 2Clinical Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Cristina NICULA 3,
- Department of Ophthalmology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Angelo BULBOACA
- Clinical Rehabilitation Hospital, Cluj-Napoca, Romania, Department of Neurology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Mihai BLIDARU
- Department of Pathophysiology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Paul Mihai BOARESCU
- Department of Pathophysiology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Dana FESTILA
- Department of Orthodontics, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Gabriela DOGARU
- Clinical Rehabilitation Hospital, Cluj-Napoca, Romania, Department of Medical Rehabilitation, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Ioana STANESCU
- Clinical Rehabilitation Hospital, Cluj-Napoca, Romania, Department of Neurology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
19
|
Hori J, Yamaguchi T, Keino H, Hamrah P, Maruyama K. Immune privilege in corneal transplantation. Prog Retin Eye Res 2019; 72:100758. [PMID: 31014973 DOI: 10.1016/j.preteyeres.2019.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Corneal transplantation is the most successful solid organ transplantation performed in humans. The extraordinary success of orthotopic corneal allografts, in both humans and experimental animals, is related to the phenomenon of "immune privilege". Inflammation is self-regulated to preserve ocular functions because the eye has immune privilege. At present, three major mechanisms are considered to provide immune privilege in corneal transplantation: 1) anatomical, cellular, and molecular barriers in the cornea; 2) tolerance related to anterior chamber-associated immune deviation and regulatory T cells; and 3) an immunosuppressive intraocular microenvironment. This review describes the mechanisms of immune privilege that have been elucidated from animal models of ocular inflammation, especially those involving corneal transplantation, and its relevance for the clinic. An update on molecular, cellular, and neural interactions in local and systemic immune regulation is provided. Therapeutic strategies for restoring immune privilege are also discussed.
Collapse
Affiliation(s)
- Junko Hori
- Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan; Department of Ophthalmology, Nippon Medical School, Tama-Nagayama Hospital, 1-7-1 Nagayama, Tama, Tokyo, 206-8512, Japan.
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa-shi, Chiba, 272-8513, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Yazu H, Yamaguchi T, Tsubota K, Shimazaki J. Clinical Factors for Rapid Endothelial Cell Loss After Corneal Transplantation: Novel Findings From the Aqueous Humor. CURRENT OPHTHALMOLOGY REPORTS 2019. [DOI: 10.1007/s40135-019-00204-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Sarnicola C, Farooq AV, Colby K. Fuchs Endothelial Corneal Dystrophy: Update on Pathogenesis and Future Directions. Eye Contact Lens 2019; 45:1-10. [DOI: 10.1097/icl.0000000000000469] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Okumura N, Hayashi R, Koizumi N. Perspective of Future Potent Therapies for Fuchs Endothelial Corneal Dystrophy. Open Ophthalmol J 2018; 12:154-163. [PMID: 30123380 PMCID: PMC6062905 DOI: 10.2174/1874364101812010154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/16/2018] [Accepted: 01/30/2018] [Indexed: 02/03/2023] Open
Abstract
Background Fuchs Endothelial Corneal Dystrophy (FECD) is a progressive disease that affects the corneal endothelium in both eyes. Recent studies have identified a novel genetic basis for FECD, and basic research findings have provided evidence for its underlying pathophysiology. Since its first description by Ernst Fuchs in 1910, the only therapeutic choice has been corneal transplantation using donor corneas. However, accumulating evidence suggests that a change in this "rule" may be imminent. Conclusions This article reviews the current knowledge of the genetics and pathophysiology of FECD, and it introduces some potent therapeutic modalities that show promise as new treatments for this disorder.
Collapse
Affiliation(s)
- Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences,Doshisha University,Kyotanabe,Japan
| | - Ryousuke Hayashi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences,Doshisha University,Kyotanabe,Japan
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences,Doshisha University,Kyotanabe,Japan
| |
Collapse
|
23
|
Wagoner MD, Bohrer LR, Aldrich BT, Greiner MA, Mullins RF, Worthington KS, Tucker BA, Wiley LA. Feeder-free differentiation of cells exhibiting characteristics of corneal endothelium from human induced pluripotent stem cells. Biol Open 2018; 7:bio032102. [PMID: 29685994 PMCID: PMC5992532 DOI: 10.1242/bio.032102] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to devise a strategy for the derivation of corneal endothelial cells (CEnCs) from adult fibroblast-derived induced pluripotent stem cells (iPSCs). IPSCs were generated from an adult human with normal ocular history via expression of OCT4, SOX2, KLF4 and c-MYC Neural crest cells (NCCs) were differentiated from iPSCs via addition of CHIR99021 and SB4315542. NCCs were driven toward a CEnC fate via addition of B27, PDGF-BB and DKK-2 to CEnC media. Differentiation of NCCs and CEnCs was evaluated via rt-PCR, morphological and immunocytochemical analysis. At 17 days post-NCC induction, there were notable changes in cell morphology and upregulation of the neural crest lineage transcripts PAX3, SOX9, TFAP2A, SOX10 and p75NTR and the proteins p75/NGFR and SOX10. Exposure of NCCs to B27, PDGF-BB and DKK-2 induced a shift in morphology from a spindle-shaped neural phenotype to a tightly-packed hexagonal appearance and increased expression of the transcripts ATP1A1, COL8A1, COL8A2, AQP1 and CDH2 and the proteins ZO-1, N-Cad, AQP-1 and Na+/K+ATPase. Replacement of NCC media with CEnC media on day 3, 5 or 8 reduced the differentiation time needed to yield CEnCs. IPSC-derived CEnCs could be used for evaluation of cornea endothelial disease pathophysiology and for testing of novel therapeutics.
Collapse
Affiliation(s)
- Michael D Wagoner
- Cornea Research Unit, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laura R Bohrer
- Cornea Research Unit, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin T Aldrich
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Lions Eye Bank, Coralville, IA 52241, USA
| | - Mark A Greiner
- Cornea Research Unit, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Lions Eye Bank, Coralville, IA 52241, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luke A Wiley
- Cornea Research Unit, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Tang RMY, Cheah IKM, Yew TSK, Halliwell B. Distribution and accumulation of dietary ergothioneine and its metabolites in mouse tissues. Sci Rep 2018; 8:1601. [PMID: 29371632 PMCID: PMC5785509 DOI: 10.1038/s41598-018-20021-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/11/2018] [Indexed: 01/31/2023] Open
Abstract
L-ergothioneine (ET) is a diet-derived amino acid that accumulates at high concentrations in animals and humans. Numerous studies have highlighted its antioxidant abilities in vitro, and possible cytoprotective capabilities in vivo. We investigated the uptake and distribution of ET in various organs by a highly sensitive and specific liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) technique, both before and after oral administration of pure ET (35 and 70 mg/kg/day for 1, 7, and 28 days) to male C57BL6J mice. ET primarily concentrates in the liver and whole blood, and also in spleen, kidney, lung, heart, intestines, eye, and brain tissues. Strong correlations were found between ET and its putative metabolites - hercynine, ET-sulfonate (ET-SO3H), and S-methyl ET. Hercynine accumulates in the brain after prolonged ET administration. This study demonstrates the uptake and distribution of ET and provides a foundation for future studies with ET to target oxidative damage in a range of tissues in human diseases.
Collapse
Affiliation(s)
- Richard Ming Yi Tang
- National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - Irwin Kee-Mun Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, Singapore
| | - Terry Shze Keong Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, Singapore.
| |
Collapse
|
25
|
Abstract
Fuchs' endothelial dystrophy (FED) is characterized by corneal endothelial dysfunction and guttate excrescences on the posterior corneal surface, and is the leading indication for corneal transplantation in developed countries. In severe cases, keratoplasty is considered as the gold standard of treatment. However, there have been significant developments in our understanding of FED over the past decade. Attempts have been made to treat this disease with regenerative therapy techniques such as primary descemetorhexis without an endothelial graft or with a tissue-engineering approach. The discovery of a strong association between the CTG18.1 trinucleotide repeat expansion sequence and FED may pave the way for gene therapy strategies in the future. In this review, we evaluate these novel therapeutic modalities as possible alternatives to keratoplasty as the standard of care for FED.
Collapse
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, 168751, Singapore.,Department of Corneal & External Eye Disease, Singapore National Eye Centre, 168751, Singapore
| | - Gary Sl Peh
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, 168751, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, 168751, Singapore.,Department of Corneal & External Eye Disease, Singapore National Eye Centre, 168751, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, 169857, Singapore.,Department of Clinical Sciences, Duke-NUS Graduate Medical School, 169857, Singapore
| |
Collapse
|
26
|
Rowsey TG, Karamichos D. The role of lipids in corneal diseases and dystrophies: a systematic review. Clin Transl Med 2017; 6:30. [PMID: 28782089 PMCID: PMC5552625 DOI: 10.1186/s40169-017-0158-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
Corneal diseases are an extensive cause of blindness worldwide and continue to persist as a challenging public health concern. Recently, various lipid-based therapies have been advocated for the modulation of corneal diseases; however, the number of studies is still very limited. Here we focus on developments and challenges on lipid-based therapies for dry eye disease, diabetic neuropathy, and Fuchs' endothelial corneal dystrophy. All three diseases are highly prevalent conditions and involve corneal stress and inflammation. Lipid-based therapeutics discussed includes cyclooxygenase inhibitors, essential fatty acids, and resolvin analogs. Lipids also show increasing promise as biomarkers of disease and are explored in this review.
Collapse
Affiliation(s)
- Tyler G. Rowsey
- University of Oklahoma, College of Medicine, Norman, OK USA
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
27
|
Yagi-Yaguchi Y, Yamaguchi T, Higa K, Suzuki T, Aketa N, Dogru M, Satake Y, Shimazaki J. Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. Sci Rep 2017; 7:13603. [PMID: 29051590 PMCID: PMC5648880 DOI: 10.1038/s41598-017-14131-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Annual reduction rate of corneal endothelial cell density (ECD) varies among etiologies, however, the cause of chronic endothelial cell loss is still unknown. We recently reported the elevation of inflammatory cytokines in the aqueous humor (AqH) in eyes with bullous keratopathy and low ECD. To evaluate the association between ECD and aqueous cytokine levels, we collected a total of 157 AqH samples prospectively. The AqH levels of cytokines were measured and multivariate analyses were conducted to find the correlation between ECD, aqueous cytokine levels and clinical factors, such as number of previous intraocular surgeries and protein concentration in AqH. As a result, ECD was negatively correlated with specific cytokine levels, including IL-1α, IL-4, IL-13, MIP-1β, TNF-α and E-selectin (all P < 0.05). The aqueous cytokine levels showed different correlations with these clinical factors; the number of previous intraocular surgeries was associated with all cytokines except MIP-1α. The AqH protein concentration and the status of intraocular lens showed similar patterns of elevation of IL-1α, IL-4, IL-6, IL-8, IL-10, IL-13, IL-17A, MIP-1β, MCP-1, E-selectin, P-selectin and sICAM-1. In conclusion, elevation of AqH cytokine levels was associated with reduced ECDs. AqH cytokine levels showed significant correlations with clinical factors associated with low ECDs.
Collapse
Affiliation(s)
- Yukari Yagi-Yaguchi
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan.
| | - Kazunari Higa
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| | - Terumasa Suzuki
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| | - Naohiko Aketa
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| | - Murat Dogru
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| | - Yoshiyuki Satake
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| | - Jun Shimazaki
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| |
Collapse
|