1
|
Li T, Zhang W, Wang J, Liu B, Gao Q, Zhang J, Qian H, Pan J, Liu M, Huang Q, Fang A, Zhang Q, Gong X, Cui R, Liang Y, Lu Q, Wu W, Chi Z. Circulating Small Extracellular Vesicles Involved in Systemic Regulation Respond to RGC Degeneration in Glaucoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309307. [PMID: 38923329 PMCID: PMC11348076 DOI: 10.1002/advs.202309307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive retinal ganglion cell (RGC) degeneration and vision loss. Since irreversible neurodegeneration occurs before diagnosable, early diagnosis and effective neuroprotection are critical for glaucoma management. Small extracellular vesicles (sEVs) are demonstrated to be potential novel biomarkers and therapeutics for a variety of diseases. In this study, it is found that intravitreal injection of circulating plasma-derived sEVs (PDEV) from glaucoma patients ameliorated retinal degeneration in chronic ocular hypertension (COH) mice. Moreover, it is found that PDEV-miR-29s are significantly upregulated in glaucoma patients and are associated with visual field defects in progressed glaucoma. Subsequently, in vivo and in vitro experiments are conducted to investigate the possible function of miR-29s in RGC pathophysiology. It is showed that the overexpression of miR-29b-3p effectively prevents RGC degeneration in COH mice and promotes the neuronal differentiation of human induced pluripotent stem cells (hiPSCs). Interestingly, engineered sEVs with sufficient miR-29b-3p delivery exhibit more effective RGC protection and neuronal differentiation efficiency. Thus, elevated PDEV-miR-29s may imply systemic regulation to prevent RGC degeneration in glaucoma patients. This study provides new insights into PDEV-based glaucoma diagnosis and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Wen‐Meng Zhang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Jie Wang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Bai‐Jing Liu
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qiao Gao
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Jing Zhang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Hai‐Dong Qian
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Jun‐Yi Pan
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ming Liu
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qing Huang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ai‐Wu Fang
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qi Zhang
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian‐Hui Gong
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ren‐Zhe Cui
- Department of OphthalmologyAffiliated Hospital of Yanbian UniversityYanji136200China
| | - Yuan‐Bo Liang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qin‐Kang Lu
- Department of OphthalmologyYinzhou People's HospitalMedical School of Ningbo UniversityNingbo315040China
| | - Wen‐Can Wu
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Zai‐Long Chi
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
2
|
Zhang Q, Xiong Y, Li R, Wang X, Lin X, Tong Y. Targeting cGAS-STING signaling protects retinal ganglion cells from DNA damage-induced cell loss and promotes visual recovery in glaucoma. Aging (Albany NY) 2024; 16:9813-9823. [PMID: 38848144 PMCID: PMC11210238 DOI: 10.18632/aging.205900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/13/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Glaucoma is an optic neurodegenerative disease. Retinal ganglion cells (RGCs) are the fundamental neurons in the trabecular meshwork, and their loss is the main pathological reason for glaucoma. The present study was to investigate mechanisms that regulate RGCs survival. METHODS A mouse model of glaucoma was established by injecting hypertonic saline into the limbal veins. RGCs apoptosis was detected by using flow cytometry. Protein expressions in RGCs in response to DNA damage inducer cisplatin treatment were detected by immunofluorescence and western blot. The expressions of inflammatory cytokines were determined using ELISA and real-time PCR. RESULTS In the hypertonic saline-injected mice, we found visual function was impaired followed by the increased expression of γH2AX and activation of cGAS-STING signaling. We found that DNA damage inducer cisplatin treatment incurred significant DNA damage, cell apoptosis, and inflammatory response. Mechanistically, cisplatin treatment triggered activation of the cGAS-STING signaling by disrupting mitochondrial function. Suppression of cGAS-STING ameliorated inflammation and protected visual function in glaucoma mice. CONCLUSIONS The data demonstrated that cGAS-STING signaling is activated in the damaged retinal ganglion cells, which is associated with increased inflammatory responses, DNA damage, and mitochondrial dysfunction. Targeting the cGAS-STING signaling pathway represents a potential way to alleviate glaucoma-related visual function.
Collapse
Affiliation(s)
- Qiuli Zhang
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Yinghuan Xiong
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Ruizhuang Li
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Xiuqin Wang
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Xu Lin
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Ya’ni Tong
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| |
Collapse
|
3
|
Chen Y, Zhang H, Jiang L, Cai W, Kuang J, Geng Y, Xu H, Li Y, Yang L, Cai Y, Wang X, Xiao J, Ni W, Zhou K. DADLE promotes motor function recovery by inhibiting cytosolic phospholipase A 2 mediated lysosomal membrane permeabilization after spinal cord injury. Br J Pharmacol 2024; 181:712-734. [PMID: 37766498 DOI: 10.1111/bph.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Autophagy is a protective factor for controlling neuronal damage, while necroptosis promotes neuroinflammation after spinal cord injury (SCI). DADLE (D-Ala2 , D-Leu5 ]-enkephalin) is a selective agonist for delta (δ) opioid receptor and has been identified as a promising drug for neuroprotection. The aim of this study was to investigate the mechanism/s by which DADLE causes locomotor recovery following SCI. EXPERIMENTAL APPROACH Spinal cord contusion model was used and DADLE was given by i.p. (16 mg·kg-1 ) in mice for following experiments. Motor function was assessed by footprint and Basso mouse scale (BMS) score analysis. Western blotting used to evaluate related protein expression. Immunofluorescence showed the protein expression in each cell and its distribution. Network pharmacology analysis was used to find the related signalling pathways. KEY RESULTS DADLE promoted functional recovery after SCI. In SCI model of mice, DADLE significantly increased autophagic flux and inhibited necroptosis. Concurrently, DADLE restored autophagic flux by decreasing lysosomal membrane permeabilization (LMP). Additionally, chloroquine administration reversed the protective effect of DADLE to inhibit necroptosis. Further analysis showed that DADLE decreased phosphorylated cPLA2 , overexpression of cPLA2 partially reversed DADLE inhibitory effect on LMP and necroptosis, as well as the promotion autophagy. Finally, AMPK/SIRT1/p38 pathway regulating cPLA2 is involved in the action DADLE on SCI and naltrindole inhibited DADLE action on δ receptor and on AMPK signalling pathway. CONCLUSION AND IMPLICATION DADLE causes its neuroprotective effects on SCI by promoting autophagic flux and inhibiting necroptosis by decreasing LMP via activating δ receptor/AMPK/SIRT1/p38/cPLA2 pathway.
Collapse
Affiliation(s)
- Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiaxuan Kuang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Iwai T, Mishima R, Hirayama S, Nakajima H, Oyama M, Watanabe S, Fujii H, Tanabe M. SYK-623, a δ Opioid Receptor Inverse Agonist, Mitigates Chronic Stress-Induced Behavioral Abnormalities and Disrupted Neurogenesis. J Clin Med 2024; 13:608. [PMID: 38276114 PMCID: PMC10817044 DOI: 10.3390/jcm13020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The δ opioid receptor (DOR) inverse agonist has been demonstrated to improve learning and memory impairment in mice subjected to restraint stress. Here, we investigated the effects of SYK-623, a new DOR inverse agonist, on behavioral, immunohistochemical, and biochemical abnormalities in a mouse model of imipramine treatment-resistant depression. Male ddY mice received daily treatment of adrenocorticotropic hormone (ACTH) combined with chronic mild stress exposure (ACMS). SYK-623, imipramine, or the vehicle was administered once daily before ACMS. After three weeks, ACMS mice showed impaired learning and memory in the Y-maze test and increased immobility time in the forced swim test. SYK-623, but not imipramine, significantly suppressed behavioral abnormalities caused by ACMS. Based on the fluorescent immunohistochemical analysis of the hippocampus, ACMS induced a reduction in astrocytes and newborn neurons, similar to the reported findings observed in the postmortem brains of depressed patients. In addition, the number of parvalbumin-positive GABA neurons, which play a crucial role in neurogenesis, was reduced in the hippocampus, and western blot analysis showed decreased glutamic acid decarboxylase protein levels. These changes, except for the decrease in astrocytes, were suppressed by SYK-623. Thus, SYK-623 mitigates behavioral abnormalities and disturbed neurogenesis caused by chronic stress.
Collapse
Affiliation(s)
- Takashi Iwai
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Rei Mishima
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Shigeto Hirayama
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Honoka Nakajima
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Misa Oyama
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Hideaki Fujii
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| |
Collapse
|
5
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
6
|
Twenty Novel MicroRNAs in the Aqueous Humor of Pseudoexfoliation Glaucoma Patients. Cells 2023; 12:cells12050737. [PMID: 36899874 PMCID: PMC10000531 DOI: 10.3390/cells12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The microRNAs (miRNAs) are short non-coding RNAs (19-25 nt) that regulate the level of gene expression at the post-transcriptional stage. Altered miRNAs expression can lead to the development of various diseases, e.g., pseudoexfoliation glaucoma (PEXG). In this study, we assessed the levels of miRNA expression in the aqueous humor of PEXG patients using the expression microarray method. Twenty new miRNA molecules have been selected as having the potential to be associated with the development or progression of PEXG. Ten miRNAs were downregulated in PEXG (hsa-miR-95-5p, hsa-miR-515-3p, hsa-mir-802, hsa-miR-1205, hsa-miR-3660, hsa-mir-3683, hsa -mir-3936, hsa-miR-4774-5p, hsa-miR-6509-3p, hsa-miR-7843-3p) and ten miRNAs were upregulated in PEXG (hsa-miR-202 -3p, hsa-miR-3622a-3p, hsa-mir-4329, hsa-miR-4524a-3p, hsa-miR-4655-5p, hsa-mir-6071, hsa-mir-6723-5p, hsa-miR-6847-5p, hsa-miR-8074, and hsa-miR-8083). Functional analysis and enrichment analysis showed that the mechanisms that can be regulated by these miRNAs are: extracellular matrix (ECM) imbalance, cell apoptosis (possibly retinal ganglion cells (RGCs)), autophagy, and elevated calcium cation levels. Nevertheless, the exact molecular basis of PEXG is unknown and further research is required on this topic.
Collapse
|
7
|
Sheng S, Ma Y, Zou Y, Hu F, Chen L. Protective effects of blocking PD-1 pathway on retinal ganglion cells in a mouse model of chronic ocular hypertension. Front Immunol 2023; 13:1094132. [PMID: 36741384 PMCID: PMC9889850 DOI: 10.3389/fimmu.2022.1094132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Purpose In this study, we aimed to investigate whether Programmed cell death 1 ligand 1/programmed cell death 1 ligand 2 (PD-L1/PD-L2) double knockout (dKO) has a protective effect on RGCs in a mouse model of chronic ocular hypertension (COHT). Methods We used superparamagnetic iron oxide to induce COHT in mice. Apoptosis of retinal ganglion cells (RGCs) and activation of microglia were evaluated using western blotting (WB) and immunofluorescence staining of the mouse retina. In addition, we also conducted transcriptome sequencing and further gene expression analyses using the gene ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) database. Results In the mouse model of COHT, PD-L1/PD-L2 prevented the apoptosis of RGCs to some extent. Blocking the programmed cell death 1 (PD-1) pathway also increased the number of anti-inflammatory M2-activated microglia and enhanced the phosphorylation of its related pathway signal transducer and activator of transcription (STAT)6. Sequencing results showed that this protective effect may have been achieved by regulating the NF-B, tumour necrosis factor (TNF), PI3K/Akt and toll-like receptor signaling pathway etc. Conclusion Blocking the PD-1 pathway has a protective effect on RGCs in the mouse model of COHT induced by superparamagnetic iron oxide.
Collapse
Affiliation(s)
- Siqi Sheng
- Department of Ophthalmology & Vision Science, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China,Key National Health Coucil (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Yixian Ma
- Department of Ophthalmology & Vision Science, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China,Key National Health Coucil (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Yue Zou
- Department of Ophthalmology & Vision Science, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China,Key National Health Coucil (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Fangyuan Hu
- Department of Ophthalmology & Vision Science, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China,Key National Health Coucil (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ling Chen
- Department of Ophthalmology & Vision Science, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China,Key National Health Coucil (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & Ears, Nose and Throat (ENT) Hospital, Shanghai Medical School, Fudan University, Shanghai, China,*Correspondence: Ling Chen,
| |
Collapse
|
8
|
You M, Rong R, Zeng Z, Fan C, Li H, Yang Q, Ji D. Integrated analysis of long non-coding RNAs and mRNAs associated with glaucoma in vitro. Front Endocrinol (Lausanne) 2023; 14:1087442. [PMID: 36923213 PMCID: PMC10008935 DOI: 10.3389/fendo.2023.1087442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION In recent years, the biological functions and important roles of long non-coding RNAs (lncRNAs) have been widely reported in many diseases. Although glaucoma is the leading cause of blindness worldwide, the specific mechanisms of lncRNAs in the pathogenesis and progression of glaucoma remain unclear. Our research aims to elucidate the differentially expressed lncRNAs and mRNAs in glaucoma and to provide a basis for further exploration of the specific mechanism of action of lncRNAs in the progression of glaucoma. METHODS We performed RNA sequencing on samples from a pressurized model of R28 cells and performed bioinformatics analyses on the sequencing results. The expression consistency of lncRNAs in clinical samples from patients with glaucoma or cataracts was detected using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS RNA sequencing results showed that lncRNAs in cluster 5 were upregulated with increasing stress after typing all significantly altered lncRNAs using k-means in a cellular stress model. KEGG analysis indicated that they were associated with neurodegenerative diseases. Differentially expressed lncRNAs were verified by RT-qPCR, and the lncRNA expression levels of AC120246.2 and XLOC_006247 were significantly higher in the aqueous humor (AH) of patients with glaucoma than in those with cataracts. For LOC102551819, there was almost no expression in the AH and trabecular meshwork in patients with glaucoma but high expression was observed in the iris. CONCLUSION Our research proposes potential diagnostic or intervention targets for clinical applications as well as a theoretical basis for more in-depth research on the function of lncRNAs in glaucoma.
Collapse
Affiliation(s)
- Mengling You
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Rong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Zeng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Fan
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Yang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dan Ji,
| |
Collapse
|
9
|
Wang L, Tian Y, Cao Y, Ma Q, Zhao S. PBX1 attenuates H 2O 2-induced oxidant stress in human trabecular meshwork cells via promoting NANOG-mediated PI3K/AKT signaling pathway. Cell Stress Chaperones 2022; 27:673-684. [PMID: 36253638 PMCID: PMC9672266 DOI: 10.1007/s12192-022-01304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress-induced excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) tissue is considered the major pathological procedure of glaucoma. This study aimed to explore the role and regulatory mechanism of pre-B-cell leukemia transcription factor 1 (PBX1) in H2O2-induced human trabecular meshwork cells (HTMCs). Expressions of PBX1, NANOG, ECM, and pathway-related factors were detected by qRT-PCR and western blot. Cell viability and apoptosis of HTMCs were measured using CCK-8 and flow cytometry assays. Reactive oxygen species (ROS), superoxide dismutase (SOD), and L-glutathione (GSH) levels were detected to evaluate oxidative stress. Through luciferase reporter assay, the association between PBX1 and NANOG was verified. Results presented that PBX1 was significantly upregulated in H2O2-induced HTMCs. Functionally, PBX1 and NANOG promoted cell viability, inhibited cell apoptosis and ECM deposition, suppressed ROS accumulation, and enhanced the productions of SOD and GSH in H2O2-stimulated HTMCs, while PBX1 inhibition showed the opposite effects. In addition, PBX1 promoted the transcription of NANOG by upregulating the promoter activity of NANOG which activated the PI3K-AKT signaling pathway. What's more, the inhibitions of PI3K-AKT signaling pathway or NANOG reversed the protective effect of PBX1 on H2O2-stimulated HTMCs. In summary, our study firstly revealed that PBX1 attenuated the oxidative damage in HTMCs via regulating NANOG-mediated PI3K/AKT signaling, suggesting that PBX1 might be a potential treatment target for glaucoma patients.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Ying Tian
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Yan Cao
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Qiang Ma
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Shuai Zhao
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China.
| |
Collapse
|
10
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
11
|
DZNep protects against retinal ganglion cell death in an NMDA-induced mouse model of retinal degeneration. Exp Eye Res 2021; 212:108785. [PMID: 34600894 DOI: 10.1016/j.exer.2021.108785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Epigenetic gene enhancer of zeste homolog-2 (Ezh2) is reported to be associated with ocular neurodegenerative diseases; however, its underlying mechanism is poorly understood. The present study aimed to determine the role of 3-deazaneplanocin A (DZNep), which inhibits the transcription of Ezh2 by reducing the trimethylation of histone 3 lysine 27 (H3K27me3), in a retinal ganglion cell (RGC) degeneration model. Retinal damage was caused by intravitreal injection of N-methyl-D-aspartate (NMDA). DZNep and the vehicle control were intravitreally applied immediately post-NMDA injection. The severity of retinal damage was evaluated by immunofluorescence and terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining, and retinal function was determined by electroretinogram (ERG). The transcriptome was examined by RNA sequencing and quantitative PCR (qPCR). Microglial cells were detected by immunohistochemistry. DZNep significantly prevented the cell death in the ganglion cell layer (GCL) and inner nuclear layer (INL) induced by NMDA. DZNep preserved the ERG b- and a-wave amplitudes and the b/a ratio in NMDA-treated mice. Moreover, RNA sequencing and qPCR revealed that neuroprotective genes were upregulated and played an important role in preserving retinal cells. In addition, DZNep inhibited the NMDA-induced activation of microglial cells. Our results suggest that H3K27me3 controls RGC survival at the transcriptional and epigenetic levels. The absence of H3K27me3 deposition upregulates neuroprotective genes to protect RGCs. Therefore, DZNep, which inhibits Ezh2 activity, could be a novel therapeutic treatment for ocular neurodegenerative diseases.
Collapse
|
12
|
Reiss D, Maurin H, Audouard E, Martínez-Navarro M, Xue Y, Herault Y, Maldonado R, Cabañero D, Gaveriaux-Ruff C. Delta Opioid Receptor in Astrocytes Contributes to Neuropathic Cold Pain and Analgesic Tolerance in Female Mice. Front Cell Neurosci 2021; 15:745178. [PMID: 34602984 PMCID: PMC8483180 DOI: 10.3389/fncel.2021.745178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023] Open
Abstract
Background: The delta opioid receptor (DOR) contributes to pain control, and a major challenge is the identification of DOR populations that control pain, analgesia, and tolerance. Astrocytes are known as important cells in the pathophysiology of chronic pain, and many studies report an increased prevalence of pain in women. However, the implication of astrocytic DOR in neuropathic pain and analgesia, as well as the influence of sex in this receptor activity, remains unknown. Experimental Approach: We developed a novel conditional knockout (cKO) mouse line wherein DOR is deleted in astrocytes (named GFAP-DOR-KO), and investigated neuropathic mechanical allodynia as well as analgesia and analgesic tolerance in mutant male and female mice. Neuropathic cold allodynia was also characterized in mice of both sexes lacking DOR either in astrocytes or constitutively. Results: Neuropathic mechanical allodynia was similar in GFAP-DOR-KO and floxed DOR control mice, and the DOR agonist SNC80 produced analgesia in mutant mice of both sexes. Interestingly, analgesic tolerance developed in cKO males and was abolished in cKO females. Cold neuropathic allodynia was reduced in mice with decreased DOR in astrocytes. By contrast, cold allodynia was exacerbated in full DOR KO females. Conclusions: These findings show that astrocytic DOR has a prominent role in promoting cold allodynia and analgesic tolerance in females, while overall DOR activity was protective. Altogether this suggests that endogenous- and exogenous-mediated DOR activity in astrocytes worsens neuropathic allodynia while DOR activity in other cells attenuates this form of pain. In conclusion, our results show a sex-specific implication of astrocytic DOR in neuropathic pain and analgesic tolerance. These findings open new avenues for developing tailored DOR-mediated analgesic strategies.
Collapse
Affiliation(s)
- David Reiss
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Hervé Maurin
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Emilie Audouard
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Miriam Martínez-Navarro
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yaping Xue
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández Elche, Alicante, Spain
| | - Claire Gaveriaux-Ruff
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| |
Collapse
|
13
|
Xu K, Li S, Yang Q, Zhou Z, Fu M, Yang X, Hao K, Liu Y, Ji H. MicroRNA-145-5p targeting of TRIM2 mediates the apoptosis of retinal ganglion cells via the PI3K/AKT signaling pathway in glaucoma. J Gene Med 2021; 23:e3378. [PMID: 34291866 DOI: 10.1002/jgm.3378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There is accumulating evidence to suggest that microRNAs (miRNAs) are associated with the progressive optic neuropathy including glaucoma. Apoptosis of retinal ganglion cells (RGCs) is a hallmark of glaucoma. The present study focused on the effects of miR-145-5p on RGC apoptosis in glaucoma. METHODS We established a glaucoma rat model by intraocular injection of N-methyl-d-aspartic acid (NMDA). RGCs were isolated from newborn rats and treated with NMDA. Hematoxylin and eosin staining was performed to detect morphological changes in the retinas of rats. The expression of miR-145-5p and tripartite motif-containing 2 (TRIM2) in RGCs was measured by RT-qPCR. The viability of RGCs was measured by MTT assay. Flow cytometry analysis and TUNEL assays were conducted to assess the apoptosis of RGCs. The interaction between miR-145-5p and TRIM2 was investigated using a luciferase reporter assay. RESULTS Rats injected with NMDA showed a thinner ganglion cell layer (GCL) and inner plexiform layer (IPL) as well as increased expression of miR-145-5p. Silencing of miR-145-5p significantly increased the GCL and IPL in the glaucoma rat model. Moreover, miR-145-5p expression was upregulated in RGCs ex vivo in response to NMDA. Silencing of miR-145-5p promoted cell viability and suppressed apoptosis in NMDA-treated RGCs. Mechanistically, miR-145-5p targeted the TRIM2 3' untranslated region to suppress its expression. TRIM2 was upregulated in NMDA-treated RGCs and protected RGCs against NMDA-induced apoptosis. Furthermore, miR-145-5p suppressed the PI3K/AKT pathway by downregulating TRIM2 in NMDA-treated RGCs. CONCLUSIONS Suppression of miR-145-5p inhibited the apoptosis of RGCs via TRIM2-mediated activation of the PI3K/AKT signaling pathway in NMDA-induced glaucoma.
Collapse
Affiliation(s)
- Kai Xu
- Department of Ophthalmology, Taizhou Second People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Sizhen Li
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Qingsong Yang
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Zixiu Zhou
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Min Fu
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Xiaodong Yang
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Kuanxiao Hao
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Yating Liu
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Heqing Ji
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| |
Collapse
|
14
|
Ji K, Li Z, Lei Y, Xu W, Ouyang L, He T, Xing Y. Resveratrol attenuates retinal ganglion cell loss in a mouse model of retinal ischemia reperfusion injury via multiple pathways. Exp Eye Res 2021; 209:108683. [PMID: 34181937 DOI: 10.1016/j.exer.2021.108683] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Resveratrol (RES) is a natural polyphenol that has been shown to protect retinal ganglion cells (RGCs) following retinal ischemia reperfusion (I/R) injury. However, the molecular mechanisms of resveratrol function are yet to be fully elucidated. Thus, this study explored the potential mechanisms of resveratrol in vivo. METHODS A retinal ischemia reperfusion injury model was established in adult male C57BL/6 J mice. Intraperitoneal injection of resveratrol was administered continuously for 5 days. RGC survival was determined by immunofluorescence staining with Brn3a. Flash electroretinography (ERG) was conducted to assess visual function. Proteins of HIF-1a, VEGF, p38, p53, PI3K, Akt, Bax, Bcl2, and Cleaved Caspase3 were detected using Western blot. RESULTS RES administration significantly ameliorated retinal thickness damage and increased Brn3a stained RGCs 7 days after I/R injury. We also found that administration of RES remarkably inhibited the upregulation of mitochondrial apoptosis-related protein Bax and Cleaved Caspase3, as well as increased the expression of Bcl2. Furthermore, RES administration significantly suppressed the I/R injury-induced upregulation of the HIF-1a/VEGF and p38/p53 pathways, while activating the I/R injury-induced downregulation of the PI3K/Akt pathway. Moreover, RES administration remarkably improved retinal function after I/R injury-induced functional impairment. CONCLUSIONS Our data demonstrated that resveratrol can mitigate retinal ischemic injury induced RGC loss and retinal function impairment by inhibiting the HIF-1a/VEGF and p38/p53 pathways while activating the PI3K/Akt pathway. Therefore, our results further reinforce that resveratrol has potential for treating glaucoma.
Collapse
Affiliation(s)
- Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Zongyuan Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Yiming Lei
- Nanchang University School of Ophthalmology & Optometry, Nanchang, China
| | - Wanxin Xu
- Department of Clinical Laboratory, Jingdezhen Second People's Hospital, Jiangxi, China
| | - Lingyi Ouyang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China.
| |
Collapse
|
15
|
Solanki AK, Biswal MR, Walterhouse S, Martin R, Kondkar AA, Knölker HJ, Rahman B, Arif E, Husain S, Montezuma SR, Nihalani D, Lobo GP. Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function. Cells 2021; 10:cells10061322. [PMID: 34073294 PMCID: PMC8229726 DOI: 10.3390/cells10061322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization, leading to impaired visual function. Electroretinogram analysis of Myo1c knockout (Myo1c-KO) mice showed a progressive loss of photoreceptor function. Immunohistochemistry and binding assays demonstrated MYO1C localization to photoreceptor inner and outer segments (OS) and identified a direct interaction of rhodopsin with MYO1C. In Myo1c-KO retinas, rhodopsin mislocalized to rod inner segments (IS) and cell bodies, while cone opsins in OS showed punctate staining. In aged mice, the histological and ultrastructural examination of the phenotype of Myo1c-KO retinas showed progressively shorter photoreceptor OS. These results demonstrate that MYO1C is important for rhodopsin localization to the photoreceptor OS, and for normal visual function.
Collapse
Affiliation(s)
- Ashish K. Solanki
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Manas R. Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
| | - Stephen Walterhouse
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Hans-Joachim Knölker
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Bushra Rahman
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Ehtesham Arif
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 516 Delaware Street S.E., 9th Floor, Minneapolis, MN 55455, USA;
| | - Deepak Nihalani
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bldg. 2DEM, Room 6085, 6707 Democracy Blvd., Bethesda, MD 20817, USA
- Correspondence: (D.N.); (G.P.L.)
| | - Glenn Prazere Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Ophthalmology and Visual Neurosciences, Lions Research Building, University of Minnesota, 2001 6th Street S.E., Room 225, Minneapolis, MN 55455, USA
- Correspondence: (D.N.); (G.P.L.)
| |
Collapse
|
16
|
Kamel K, O'Brien CJ, Zhdanov AV, Papkovsky DB, Clark AF, Stamer WD, Irnaten M. Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells. Invest Ophthalmol Vis Sci 2021; 61:4. [PMID: 33137197 PMCID: PMC7645202 DOI: 10.1167/iovs.61.13.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose The lamina cribrosa (LC) is a key site of damage in glaucomatous optic neuropathy. We previously found that glaucoma LC cells have an increased profibrotic gene expression, with mitochondrial dysfunction in the form of decreased mitochondrial membrane potential. Altered cell bioenergetics have recently been reported in organ fibrosis and in cancer. In this study, we carried out a systematic mitochondrial bioenergetic assessment and measured markers of alternative sources of cellular energy in normal and glaucoma LC cells. Methods LC cells from three glaucoma donors and three age-matched normal controls were assessed using VICTOR X4 Perkin Elmer (Waltham, MA) plate reader with different phosphorescent and luminescent probes. adenosine triphosphate levels, oxygen consumption rate, and extracellular acidification were measured and normalized to total protein content. RNA and protein expression levels of MCT1, MCT4, MTFHD2, and GLS2 were quantified using real-time RT-PCR and Western blotting. Results Glaucoma LC cells contain significantly less adenosine triphosphate (P < .05) when supplied with either glucose or galactose. They also showed significantly diminished oxygen consumption in both basal and maximal respiration with more lactic acid contribution in ECA. Both mRNA and protein expression levels of MCT1, MCT4, MTHFD2, and GLS2 were significantly increased in glaucoma LC cells. Conclusions We demonstrate evidence of metabolic reprogramming (The Warburg effect) in glaucoma LC cells. Expression of markers of glycolysis, glutamine, and one carbon metabolism are elevated in glaucoma cells at both the mRNA and protein levels. A better understanding of bioenergetics in glaucoma may help in the development of new therapeutics.
Collapse
Affiliation(s)
- Khalid Kamel
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Colm J O'Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Abbot F Clark
- Department of Pharmacology & Neuroscience and the North Texas Eye Research Institute, University of North Texas, Health Science Center, Fort Worth, Texas, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
17
|
Zaidi SAH, Thakore N, Singh S, Guzman W, Mehrotra S, Gangaraju V, Husain S. Histone Deacetylases Regulation by δ-Opioids in Human Optic Nerve Head Astrocytes. Invest Ophthalmol Vis Sci 2021; 61:17. [PMID: 32915982 PMCID: PMC7488628 DOI: 10.1167/iovs.61.11.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose We determined whether δ-opioid receptor agonist (SNC-121) regulates acetylation homeostasis via controlling histone deacetylases (HDACs) activity and expression in optic nerve head (ONH) astrocytes. Methods ONH astrocytes were treated with SNC-121 (1 µM) for 24 hours. The HDAC activity was measured using HDAC-specific fluorophore-conjugated synthetic substrates, Boc-Lys(Ac)-AMC and (Boc-Lys(Tfa)-AMC). Protein and mRNA expression of each HDAC was determined by Western blotting and quantitative real-time PCR. IOP in rats was elevated by injecting 2.0 M hypertonic saline into the limbal veins. Results Delta opioid receptor agonist, SNC-121 (1 µM), treatment increased acetylation of histone H3, H2B, and H4 by 128 ± 3%, 45 ± 1%, and 68 ± 2%, respectively. The addition of Garcinol, a histone-acetyltransferase inhibitor, fully blocked SNC-121–induced histone H3 acetylation. SNC-121 reduced the activities of class I and IIb HDACs activities significantly (17 ± 3%) and this decrease in HDACs activities was fully blocked by a selective δ-opioid receptors antagonist, naltrindole. SNC-121 also decrease the mRNA expression of HDAC-3 and HDAC-6 by 19% and 18%, respectively. Furthermore, protein expression of HDAC 1, 2, 3, and 6 was significantly (P < 0.05) decreased by SNC-121 treatment. SNC-121 treatment also reduced lipopolysaccharide-induced TNF-α production from ONH astrocytes and glial fibrillary acidic protein immunostaining in the optic nerve of ocular hypertensive animals. Conclusions We provided evidence that δ-opioid receptor agonist activation increased histone acetylation, decrease HDACs class I and class IIb activities, mRNA, and protein expression, lipopolysaccharide-induced TNF-α production in ONH astrocytes. Our data also demonstrate that SNC-121 treatment decrease glial fibrillary acidic protein immunostaining in the optic nerves of animals with ocular hypertension.
Collapse
Affiliation(s)
- Syed A H Zaidi
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Nakul Thakore
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Sudha Singh
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Wendy Guzman
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Vamsi Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Shahid Husain
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
18
|
Zeng Y, Li M, Zou T, Chen X, Li Q, Li Y, Ge L, Chen S, Xu H. The Impact of Particulate Matter (PM2.5) on Human Retinal Development in hESC-Derived Retinal Organoids. Front Cell Dev Biol 2021; 9:607341. [PMID: 33644046 PMCID: PMC7907455 DOI: 10.3389/fcell.2021.607341] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence demonstrated that PM2.5 could cross the placenta and fetal blood-brain barrier, causing neurotoxicity of embryonic development. The retina, an embryologic extension of the central nervous system, is extremely sensitive and vulnerable to environmental insults. The adverse effects of PM2.5 exposure on the retina during embryonic neurodevelopment are still largely unknown. Our goal was to investigate the effect of PM2.5 on human retinal development, which was recapitulated by human embryonic stem cell (hESC)-derived retinal organoids (hEROs). In the present study, using the hEROs as the model, the influences and the mechanisms of PM2.5 on the developing retina were analyzed. It demonstrated that the formation rate of the hERO-derived neural retina (NR) was affected by PM2.5 in a concentration dosage-dependent manner. The areas of hEROs and the thickness of hERO-NRs were significantly reduced after PM2.5 exposure at the concentration of 25, 50, and 100 μg/ml, which was due to the decrease of proliferation and the increase of apoptosis. Although we did not spot significant effects on retinal differentiation, PM2.5 exposure did lead to hERO-NR cell disarranging and structural disorder, especially retinal ganglion cell dislocation. Transcriptome analysis showed that PM2.5 treatment was significantly associated with the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways and reduced the level of the fibroblast growth factors (FGFs), particularly FGF8 and FGF10. These results provided evidence that PM2.5 exposure potentially inhibited proliferation and increased apoptosis at the early development stage of the human NR, probably through the MAPK and PI3K/Akt pathway. Our study suggested that exposure to PM2.5 suppressed cell proliferation and promoted cell apoptosis, thereby contributing to abnormal human retinal development.
Collapse
Affiliation(s)
- Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
19
|
Husain S, Zaidi SAH, Singh S, Guzman W, Mehrotra S. Reduction of Neuroinflammation by δ-Opioids Via STAT3-Dependent Pathway in Chronic Glaucoma Model. Front Pharmacol 2021; 12:601404. [PMID: 33628191 PMCID: PMC7898062 DOI: 10.3389/fphar.2021.601404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
The main objective of this study was to determine the inhibition of pro-inflammatory cytokines and their associated signaling molecules by δ-opioid receptor activation by a selective ligand, SNC-121 in chronic rat glaucoma model. Intraocular pressure was raised in rat eyes by injecting 2 M hypertonic saline into the limbal veins. SNC-121 (1 mg/kg; i. p) or Stattic (5 mg/kg; i. p) was administered in Brown Norway rats daily for 7 days. The mRNA expression of IL-1β, TNF-α, Fas, IL-6, leukemia inhibitory factor, and IFN-γ was increased significantly in the retina of ocular hypertensive animals at day 7, post injury. Administration of SNC-121 (1 mg/kg; i. p. injection) for 7 days (once a day) completely inhibited the increase in the mRNA and protein expression of pro-inflammatory cytokines. Mechanistically, we provide data showing a significant increase in the phosphorylation of STAT3 at tyrosine 705 whereas a moderate but significant increase in the total STAT3 protein expression was also seen in the retina of ocular hypertensive animals. Data illustrated that SNC-121 administration completely abrogated ocular hypertension-induced increase in STAT3Y705 phosphorylation. Interestingly, acetylation of STAT3 at lysine 685 (AcK685) was reduced in ocular hypertensive animals and subsequently increased significantly by SNC-121 treatment. Stattic, a selective STAT3 inhibitor, administration resulted in a complete attenuation in the production of IL-1β and IL-6 in ocular hypertensive animals. In conclusion, δ-opioid receptor activation suppressed the phosphorylation of STAT3 at tyrosine 705 and increased acetylation at lysine 686 and these posttranslational modifications can regulate the production of some but not all pro-inflammatory cytokines in response to glaucomatous injury.
Collapse
Affiliation(s)
- Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Syed A H Zaidi
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Sudha Singh
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Wendy Guzman
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
20
|
Zaidi SAH, Guzman W, Singh S, Mehrotra S, Husain S. Changes in Class I and IIb HDACs by δ-Opioid in Chronic Rat Glaucoma Model. Invest Ophthalmol Vis Sci 2020; 61:4. [PMID: 33263714 PMCID: PMC7718808 DOI: 10.1167/iovs.61.14.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose This study determines if δ-opioid receptor agonist (i.e. SNC-121)-induced epigenetic changes via regulation of histone deacetylases (HDACs) for retinal ganglion cell (RGC) neuroprotection in glaucoma model. Methods Intraocular pressure was raised in rat eyes by injecting 2M hypertonic saline into the limbal veins. SNC-121 (1 mg/kg; i.p.) was administered to the animals for 7 days. Retinas were collected at days 7 and 42, post-injury followed by measurement of HDAC activities, mRNA, and protein expression by enzyme assay, quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemistry. Results The visual acuity, contrast sensitivity, and pattern electroretinograms (ERGs) were declined in ocular hypertensive animals, which were significantly improved by SNC-121 treatment. Class I and IIb HDACs activities were significantly increased at days 7 and 42 in ocular hypertensive animals. The mRNA and protein expression of HDAC 1 was increased by 1.33 ± 0.07-fold and 20.2 ± 2.7%, HDAC 2 by 1.4 ± 0.05-fold and 17.0 ± 2.4%, HDAC 3 by 1.4 ± 0.06-fold and 17.4 ± 3.4%, and HDAC 6 by 1.5 ± 0.09-fold and 15.1 ± 3.3% at day 7, post-injury. Both the mRNA and protein expression of HDACs were potentiated further at day 42 in ocular hypertensive animals. HDAC activities, mRNA, and protein expression were blocked by SNC-121 treatment at days 7 and 42 in ocular hypertensive animals. Conclusions Data suggests that class I and IIb HDACs are activated and upregulated during early stages of glaucoma. Early intervention with δ-opioid receptor activation resulted in the prolonged suppression of class I and IIb HDACs activities and expression, which may, in part, play a crucial role in RGC neuroprotection.
Collapse
Affiliation(s)
- Syed A H Zaidi
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Wendy Guzman
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sudha Singh
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
21
|
Liang Q, Huang X, Zeng C, Li D, Shi Y, Zhao G, Zhong M. BW373U86 upregulates autophagy by inhibiting the PI3K/Akt pathway and regulating the mTOR pathway to protect cardiomyocytes from hypoxia-reoxygenation injury. Can J Physiol Pharmacol 2020; 98:684-690. [PMID: 32955950 DOI: 10.1139/cjpp-2019-0684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to explore the protective effect of BW373U86 (a δ-opioid receptor (DOR) agonist) on ischemia-reperfusion (I/R) injury in rat cardiomyocytes and its underlying mechanism. Primary rat cardiomyocytes were cultured and pretreated with BW373U86 for intervention. The cardiomyocytes were cultured under the condition of 94% N2 and 5% CO2 for 24 h to perform hypoxia culture and conventionally cultured for 12 h to perform reoxygenation culture. The cell viability of cardiomyocytes was detected by an MTT assay (Sigma-Aldrich). The autophagy lysosome levels in cardiomyocytes were evaluated by acidic vesicular organelles with dansylcadaverine (MDC) staining (autophagy test kit, Kaiji Biology, kgatg001). The protein expression levels of LC3, p62, and factors in the PI3K/Akt/mTOR signaling pathway were detected by Western blot. Pretreatment with BW373U86 could improve the cell viability of cardiomyocytes with hypoxia-reoxygenation (H/R) injury (p < 0.05). Interestingly, after coculture of BW373U86 and PI3K inhibitor (3-methyladenine), the protein expression levels of p-Akt in cardiomyocytes were markedly increased in comparison with those in the BW373U86 group (p < 0.05). However, there were no significant differences in the protein expression levels of mTOR between the coculture group and the BW373U86 group (p > 0.05). BW373U86 upregulated autophagy to protect cardiomyocytes from H/R injury, which may be related to the PI3K/Akt/m TOR pathway.
Collapse
Affiliation(s)
- Qianyi Liang
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoling Huang
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chaokun Zeng
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Dewei Li
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yongyong Shi
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Gaofeng Zhao
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Min Zhong
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
22
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
23
|
Abstract
Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels. Despite having advancement in the use of thrombolytic and clot removal medicine, significant numbers of stroke patients are still left out without option for treatment. In this review, we summarize recent research work on the activation of δ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury. Moreover, as activation of δ-opioid receptor by a non-peptidic δ-opioid receptor agonist also modulates the expression, maturation and processing of amyloid precursor protein and β-secretase activity, the potential role of these effects on ischemic stroke caused dementia or Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
24
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|