1
|
Gong Z, Shi Y, Liu J, Zhang Y, Johnstone MA, Wang RK. Volumetric imaging of trabecular meshwork dynamic motion using 600 kHz swept source optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2025; 16:267-281. [PMID: 39816136 PMCID: PMC11729298 DOI: 10.1364/boe.544521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal intraocular pressure. As such, characterizing the TM motion is valuable for assessing the functionality of the aqueous outflow system, as demonstrated by previous phase-sensitive optical coherence tomography (OCT) studies. Current methods typically acquire motion from a single cross-sectional plane along the circumference of the anterior chamber. While effective, the lateral scan pattern only intersects one spatial location on the TM at a time, significantly limiting examination throughput. In this study, we introduce the first volumetric imaging approach for assessing TM motion. Rather than monitoring a single cross-sectional plane, our method employs repeated volumetric scans, allowing for simultaneous observation of a continuous TM band spanning two millimeters. We also show that the field of view could be further expanded by stitching multiple scans. To ensure robust data processing, we developed a customized volume registration algorithm to correct motion artifacts and an automated segmentation algorithm to identify the TM boundary based on the correlation of OCT phase dynamics with heartbeats. Imaging results from a healthy subject confirmed the feasibility of our approach, revealing considerable variation in TM motions at different spatial locations through the stitching process. This proposed methodology offers unprecedented capabilities and examination throughput in the biomechanical imaging of the TM, providing significant scientific insights and diagnostic value for identifying abnormalities in aqueous outflow.
Collapse
Affiliation(s)
- Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Jian Liu
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yi Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Murray A. Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
2
|
Acott TS, Fautsch MP, Mao W, Ethier CR, Huang AS, Kelley MJ, Aga M, Bhattacharya SK, Borras T, Bovenkamp D, Chowdhury UR, Clark AF, Dibas MI, Du Y, Elliott MH, Faralli JA, Gong H, Herberg S, Johnstone MA, Kaufman PL, Keller KE, Kelly RA, Krizaj D, Kuehn MH, Li HL, Lieberman R, Lin SC, Liu Y, McDonnell FS, McDowell CM, McLellan GJ, Mzyk P, Nair KS, Overby DR, Peters DM, Raghunathan V, Rao PV, Roddy GW, Sharif NA, Shim MS, Sun Y, Thomson BR, Toris CB, Willoughby CE, Zhang HF, Freddo TF, Fuchshofer R, Hill KR, Karimi A, Kizhatil K, Kopcyznski CC, Liton P, Patel G, Peng M, Pattabiraman PP, Prasanna G, Reina-Torres E, Samples EG, Samples JR, Steel CL, Strohmaier CA, Subramanian P, Sugali CK, van Batenburg-Sherwood J, Wong C, Youngblood H, Zode GS, White E, Stamer WD. Consensus Recommendations for Studies of Outflow Facility and Intraocular Pressure Regulation Using Ex Vivo Perfusion Approaches. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 39693082 PMCID: PMC11708870 DOI: 10.1167/iovs.65.14.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/16/2024] [Indexed: 12/19/2024] Open
Abstract
Intraocular pressure (IOP) elevation is the primary risk factor and currently the main treatable factor for progression of glaucomatous optic neuropathy. In addition to direct clinical and living animal in vivo studies, ex vivo perfusion of anterior segments and whole eyes is a key technique for studying conventional outflow function as it is responsible for IOP regulation. We present well-tested experimental details, protocols, considerations, advantages, and limitations of several ex vivo model systems for studying IOP regulation. These include: (1) perfused whole globes, (2) stationary anterior segment organ culture, (3) perfused human anterior segment organ culture, (4) perfused animal anterior segment organ culture, (5) perfused human corneal rims, and (6) perfused human anterior segment wedges. These methods, with due consideration paid to their strengths and limitations, comprise a set of very strong tools for extending our understanding of IOP regulation.
Collapse
Affiliation(s)
- Ted S. Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Michael P. Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Weiming Mao
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - C. Ross Ethier
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Alex S. Huang
- Hamilton Glaucoma Center, The Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, California, United States
| | - Mary J. Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Florida, United States
| | - Terete Borras
- University of North Carolina, Chapel Hill, North Carolina, United States
| | | | - Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Abbot F. Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Mohammed I. Dibas
- Glaucoma Research, Ophthalmology Discovery, AbbVie, Irvine, California, United States
| | - Yiqin Du
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Michael H. Elliott
- Department of Ophthalmology and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Samuel Herberg
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Murray A. Johnstone
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Kate E. Keller
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ruth A. Kelly
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - David Krizaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Markus H. Kuehn
- Department Ophthalmology and Visual Sciences, Iowa City VA Center for Prevention and Treatment of Visual Loss, University of Iowa, Iowa City, Iowa, United States
| | - Hoi Lam Li
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Raquel Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Shan C. Lin
- Glaucoma Center of San Francisco, San Francisco, California, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Fiona S. McDonnell
- John Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Gillian J. McLellan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Philip Mzyk
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Kayarat Saidas Nair
- Deptartment of Ophthalmology, University of California, San Francisco, San Francisco CA, United States
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College of London, London, England
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - VijayKrishna Raghunathan
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Gavin W. Roddy
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Najam A. Sharif
- Global Alliances and Collaborations, Ophthalmology Innovation Center, Santen Inc., Emeryville, California, United States
| | - Myoung Sup Shim
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States
| | - Benjamin R. Thomson
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Carol B. Toris
- Department of Ophthalmology and Visual Sciences, Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Thomas F. Freddo
- MCP Health Sciences University, Westport, Massachusetts, United States
| | - Rudolf Fuchshofer
- Institute for Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Kamisha R. Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Krishnakumar Kizhatil
- Department of Ophthalmology and Visual Science, Ohio State University, Columbus, Ohio, United States
| | | | - Paloma Liton
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Gaurang Patel
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Ophthalmology and Genetics Medicine Research, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States
| | - Michael Peng
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Padmanabhan P. Pattabiraman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ganesh Prasanna
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Ester Reina-Torres
- Department of Bioengineering, Imperial College of London, London, England
| | | | - John R. Samples
- Washington State College of Medicine, Spokane, Washington, United States
| | | | - Clemens A. Strohmaier
- Department of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | | | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | | | - Cydney Wong
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Hannah Youngblood
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Gulab S. Zode
- Department of Ophthalmology, University of California at Irvine, Irvine, California, United States
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| |
Collapse
|
3
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
4
|
Irnaten M, Gaynor E, O’Brien C. The Role of αvβ3 Integrin in Lamina Cribrosa Cell Mechanotransduction in Glaucoma. Cells 2024; 13:1487. [PMID: 39273058 PMCID: PMC11394537 DOI: 10.3390/cells13171487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Purpose: Glaucoma, one of the leading causes of irreversible blindness, is a common progressive optic neuropathy characterised by visual field defects and structural changes to the optic nerve head (ONH). There is extracellular matrix (ECM) accumulation and fibrosis of the lamina cribrosa (LC) in the ONH, and consequently increased tissue stiffness of the LC connective tissue. Integrins are cell surface proteins that provide the key molecular link connecting cells to the ECM and serve as bidirectional sensors transmitting signals between cells and their environment to promote cell adhesion, proliferation, and remodelling of the ECM. Here, we investigated the expression of αVβ3 integrin in glaucoma LC cell, and its effect on stiffness-induced ECM gene transcription and cellular proliferation rate in normal (NLC) and glaucoma (GLC) LC cells, by down-regulating αVβ3 integrin expression using cilengitide (a known potent αVβ3 and αVβ5 inhibitor) and β3 integrin siRNA knockdown. Methods: GLC cells were compared to age-matched controls NLC to determine differential expression levels of αVβ3 integrin, ECM genes (Col1A1, α-SMA, fibronectin, vitronectin), and proliferation rates. The effects of αVβ3 integrin blockade (with cilengitide) and silencing (with a pool of four predesigned αVβ3 integrin siRNAs) on ECM gene expression and proliferation rates were evaluated using both reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting in the human NLC cells cultured on soft (4 kPa) and stiff (100 kPa) substrate and in GLC cells grown on standard plastic plates. Results: αVβ3 integrin gene and protein expression were enhanced (p < 0.05) in GLC cells as compared to NLC. Both cilengitide and siRNA significantly reduced αVβ3 expression in GLC. When NLC were grown in the stiff substrate, cilengitide and siRNA also significantly reduced the increased expression in αVβ3, ECM components, and proliferation rate. Conclusions: Here, we provide evidence of cilengitide- and siRNA-mediated silencing of αVβ3 integrin expression, and inhibition of ECM synthesis in LC cells. Therefore, αVβ3 integrin may be a promising target for the development of novel anti-fibrotic therapies for treating the LC cupping of the ONH in glaucoma.
Collapse
Affiliation(s)
- Mustapha Irnaten
- Clinical Research Centre, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (E.G.); (C.O.)
| | - Ellen Gaynor
- Clinical Research Centre, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (E.G.); (C.O.)
| | - Colm O’Brien
- Clinical Research Centre, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (E.G.); (C.O.)
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
5
|
Niu Y, Ji J, Yao K, Fu Q. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:52-64. [PMID: 38586868 PMCID: PMC10997875 DOI: 10.1016/j.aopr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024]
Abstract
Background Degenerate eye disorders, such as glaucoma, cataracts and age-related macular degeneration (AMD), are prevalent causes of blindness and visual impairment worldwide. Other eye disorders, including limbal stem cell deficiency (LSCD), dry eye diseases (DED), and retinitis pigmentosa (RP), result in symptoms such as ocular discomfort and impaired visual function, significantly impacting quality of life. Traditional therapies are limited, primarily focus on delaying disease progression, while emerging stem cell therapy directly targets ocular tissues, aiming to restore ocular function by reconstructing ocular tissue. Main text The utilization of stem cells for the treatment of diverse degenerative ocular diseases is becoming increasingly significant, owing to the regenerative and malleable properties of stem cells and their functional cells. Currently, stem cell therapy for ophthalmopathy involves various cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In the current article, we will review the current progress regarding the utilization of stem cells for the regeneration of ocular tissue covering key eye tissues from the cornea to the retina. These therapies aim to address the loss of functional cells, restore damaged ocular tissue and or in a paracrine-mediated manner. We also provide an overview of the ocular disorders that stem cell therapy is targeting, as well as the difficulties and opportunities in this field. Conclusions Stem cells can not only promote tissue regeneration but also release exosomes to mitigate inflammation and provide neuroprotection, making stem cell therapy emerge as a promising approach for treating a wide range of eye disorders through multiple mechanisms.
Collapse
Affiliation(s)
- Yifei Niu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Neuhaus K, Khan S, Thaware O, Ni S, Aga M, Jia Y, Redd T, Chen S, Huang D, Jian Y. Real-time line-field optical coherence tomography for cellular resolution imaging of biological tissue. BIOMEDICAL OPTICS EXPRESS 2024; 15:1059-1073. [PMID: 38404311 PMCID: PMC10890841 DOI: 10.1364/boe.511187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
A real-time line-field optical coherence tomography (LF-OCT) system is demonstrated with image acquisition rates of up to 5000 B-frames or 2.5 million A-lines per second for 500 A-lines per B-frame. The system uses a high-speed low-cost camera to achieve continuous data transfer rates required for real-time imaging, allowing the evaluation of future applications in clinical or intraoperative environments. The light source is an 840 nm super-luminescent diode. Leveraging parallel computing with GPU and high speed CoaXPress data transfer interface, we were able to acquire, process, and display OCT data with low latency. The studied system uses anamorphic beam shaping in the detector arm, optimizing the field of view and sensitivity for imaging biological tissue at cellular resolution. The lateral and axial resolution measured in air were 1.7 µm and 6.3 µm, respectively. Experimental results demonstrate real-time inspection of the trabecular meshwork and Schlemm's canal on ex vivo corneoscleral wedges and real-time imaging of endothelial cells of human subjects in vivo.
Collapse
Affiliation(s)
- Kai Neuhaus
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
| | - Shanjida Khan
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Omkar Thaware
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shuibin Ni
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mini Aga
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Travis Redd
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
| | - Siyu Chen
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
7
|
Li H, Kuhn M, Kelly RA, Singh A, Palanivel KK, Salama I, De Ieso ML, Stamer WD, Ganapathy PS, Herberg S. Targeting YAP/TAZ mechanosignaling to ameliorate stiffness-induced Schlemm's canal cell pathobiology. Am J Physiol Cell Physiol 2024; 326:C513-C528. [PMID: 38105758 PMCID: PMC11192480 DOI: 10.1152/ajpcell.00438.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Pathological alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared with that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell mechanosignaling via YAP and transcriptional coactivator with PDZ-binding motif (TAZ) in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP/TAZ activity in primary human SC cells, and whether disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP/TAZ activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP/TAZ mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Finally, we found that perfusion of the clinically used, small molecule YAP/TAZ inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP/TAZ mechanosignaling in SC cell dysfunction and suggest that YAP/TAZ inhibition has therapeutic value for treating ocular hypertension in glaucoma.NEW & NOTEWORTHY Pathologically altered biomechanical properties of the Schlemm's canal (SC) inner wall microenvironment were recently validated as the cause for increased outflow resistance in ocular hypertensive glaucoma. However, the involvement of specific mechanotransduction pathways in these disease processes is largely unclear. Here, we demonstrate that Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) are central regulators of glaucoma-like SC cell dysfunction in response to extracellular matrix stiffening and that targeted disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and enhances outflow function.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Ruth A Kelly
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Kavipriya Kovai Palanivel
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Izzy Salama
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Preethi S Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States
| |
Collapse
|
8
|
Karimi A, Khan S, Razaghi R, Aga M, Rahmati SM, White E, Kelley MJ, Jian Y, Acott TS. Segmental biomechanics of the normal and glaucomatous human aqueous outflow pathway. Acta Biomater 2024; 173:148-166. [PMID: 37944773 PMCID: PMC10841915 DOI: 10.1016/j.actbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The conventional aqueous outflow pathway, encompassing the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and inner wall endothelium of Schlemm's canal (SC), governs intraocular pressure (IOP) regulation. This study targets the biomechanics of low-flow (LF) and high-flow (HF) regions within the aqueous humor outflow pathway in normal and glaucomatous human donor eyes, using a combined experimental and computational approach. LF and HF TM/JCT/SC complex tissues from normal and glaucomatous eyes underwent uniaxial tensile testing. Dynamic motion of the TM/JCT/SC complex was recorded using customized green-light optical coherence tomography during SC pressurization in cannulated anterior segment wedges. A hyperviscoelastic model quantified TM/JCT/SC complex properties. A fluid-structure interaction model simulated tissue-aqueous humor interaction. FluoSpheres were introduced into the pathway via negative pressure in the SC, with their motion tracked using two-photon excitation microscopy. Tensile test results revealed that the elastic moduli of the LF and HF regions in glaucomatous eyes are 3.5- and 1.5-fold stiffer than the normal eyes, respectively. The FE results also showed significantly larger shear moduli in the TM, JCT, and SC of the glaucomatous eyes compared to the normal subjects. The LF regions in normal eyes demonstrated larger elastic moduli compared to the HF regions in glaucomatous eyes. The resultant strain in the outflow tissues and velocity of the aqueous humor in the FSI models were in good agreement with the digital volume correlation and 3D particle image velocimetry data, respectively. This study uncovers stiffer biomechanical responses in glaucomatous eyes, with LF regions stiffer than HF regions in both normal and glaucomatous eyes. STATEMENT OF SIGNIFICANCE: This study delves into the biomechanics of the conventional aqueous outflow pathway, a crucial regulator of intraocular pressure and ocular health. By analyzing mechanical differences in low-flow and high-flow regions of normal and glaucomatous eyes, this research unveils the stiffer response in glaucomatous eyes. The distinction between regions' properties offers insights into aqueous humor outflow regulation, while the integration of experimental and computational methods enhances credibility. These findings have potential implications for disease management and present a vital step toward innovative ophthalmic interventions. This study advances our understanding of glaucoma's biomechanical basis and its broader impact on ocular health.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Shanjida Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Yifan Jian
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
9
|
Sang Q, Du R, Xin C, Wang N. Effects of Schlemm's Canal Suture Implantation Surgery and Pilocarpine Eye Drops on Trabecular Meshwork Pulsatile Motion. Biomedicines 2023; 11:2932. [PMID: 38001932 PMCID: PMC10669483 DOI: 10.3390/biomedicines11112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The trabecular meshwork is an important structure in the outflow pathway of aqueous humor, and its movement ability directly affects the resistance of aqueous humor outflow, thereby affecting the steady state of intraocular pressure (IOP). (1) Objective: The purpose of this study was to preliminarily estimate the effects of pilocarpine eye drops and trabeculotomy tunneling trabeculoplasty (3T) on trabecular meshwork (TM) pulsatile motion via phase-sensitive optical coherence tomography (Phs-OCT). (2) Method: In a prospective single-arm study, we mainly recruited patients with primary open-angle glaucoma who did not have a history of glaucoma surgery, and mainly excluded angle closure glaucoma and other diseases that may cause visual field damage. The maximum velocity (MV) and cumulative displacement (CDisp) of the TM were quantified via Phs-OCT. All subjects underwent Phs-OCT examinations before and after the use of pilocarpine eye drops. Then, all subjects received 3T surgery and examinations of IOP at baseline, 1 day, 1 week, 1 month, 3 months, and 6 months post-surgery. Phaco-OCT examinations were performed at 3 and 6 months post-surgery, and the measurements were compared and analyzed. (3) Results: The MV of TM before and after the use of pilocarpine eye drops was 21.32 ± 2.63 μm/s and 17.00 ± 2.43 μm/s. The CDisp of TM before and after the use of pilocarpine eye drops was 0.204 ± 0.034 μm and 0.184 ± 0.035 μm. After the use of pilocarpine eye drops, both the MV and CDisp significantly decreased compared to those before use (p < 0.001 and 0.013, respectively). The IOP decreased from baseline at 22.16 ± 5.23 mmHg to 15.85 ± 3.71 mmHg after 3 months post-surgery and from 16.33 ± 2.51 mmHg at 6 months post-surgery, showing statistically significant differences (p < 0.001). The use of glaucoma medication decreased from baseline at 3.63 ± 0.65 to 1.17 ± 1.75 at 3 months and 1.00 ± 1.51 at 6 months post-surgery; the differences were statistically significant (p < 0.001). Additionally, there was no statistically significant difference in the MV between 3 and 6 months after surgery compared to baseline (p = 0.404 and 0.139, respectively). Further, there was no statistically significant difference in the CDisp between 3 and 6 months after surgery compared to baseline (p = 0.560 and 0.576, respectively) (4) Conclusions: After the preliminary study, we found that pilocarpine eye drops can attenuate TM pulsatile motion, and that 3T surgery may reduce IOP without affecting the pulsatile motion status of the TM.
Collapse
Affiliation(s)
| | | | - Chen Xin
- Department of Ophthalmology, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing 100730, China; (Q.S.); (R.D.)
| | - Ningli Wang
- Department of Ophthalmology, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing 100730, China; (Q.S.); (R.D.)
| |
Collapse
|
10
|
Ruiz-Lopera S, Restrepo R, Cannon TM, Villiger M, Bouma BE, Uribe-Patarroyo N. Computational refocusing in phase-unstable polarization-sensitive optical coherence tomography. OPTICS LETTERS 2023; 48:4765-4768. [PMID: 37707897 PMCID: PMC10871002 DOI: 10.1364/ol.499051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
We present computational refocusing in polarization-sensitive optical coherence tomography (PS-OCT) to improve spatial resolution in the calculated polarimetric parameters and extend the depth-of-field in phase-unstable, fiber-based PS-OCT systems. To achieve this, we successfully adapted short A-line range phase-stability adaptive optics (SHARP), a computational aberration correction technique compatible with phase-unstable systems, into a Stokes-based PS-OCT system with inter-A-line polarization modulation. Together with the spectral binning technique to mitigate system-induced chromatic polarization effects, we show that computational refocusing improves image quality in tissue polarimetry of swine eye anterior segment ex vivo with PS-OCT. The benefits, drawbacks, and potential applications of computational refocusing in anterior segment imaging are discussed.
Collapse
Affiliation(s)
- Sebastián Ruiz-Lopera
- Applied Optics Group, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, Colombia
- MIT Graduate Program in Electrical Engineering and Computer Science, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - René Restrepo
- Applied Optics Group, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, Colombia
| | - Taylor M. Cannon
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
11
|
Li H, Kuhn M, Kelly RA, Singh A, Palanivel KK, Salama I, De Ieso ML, Stamer WD, Ganapathy PS, Herberg S. Targeting YAP mechanosignaling to ameliorate stiffness-induced Schlemm's canal cell pathobiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556840. [PMID: 37781615 PMCID: PMC10541092 DOI: 10.1101/2023.09.08.556840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pathologic alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared to that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell YAP mechanosignaling in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP activity in primary human SC cells, and whether disruption of YAP mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Lastly, we found that perfusion of the clinically-used, small molecule YAP inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP mechanosignaling in SC cell dysfunction and suggest that YAP inhibition has therapeutic value for treating ocular hypertension in glaucoma.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
| | - Ruth A. Kelly
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Kavipriya Kovai Palanivel
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Izzy Salama
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
12
|
Karimi A, Khan S, Razaghi R, Rahmati SM, Gathara M, Tudisco E, Aga M, Kelley MJ, Jian Y, Acott TS. Developing an experimental-computational workflow to study the biomechanics of the human conventional aqueous outflow pathway. Acta Biomater 2023; 164:346-362. [PMID: 37072067 PMCID: PMC10226761 DOI: 10.1016/j.actbio.2023.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023]
Abstract
The aqueous humor actively interacts with the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and Schlemm's canal (SC) through a dynamic fluid-structure interaction (FSI) coupling. Despite the fact that intraocular pressure (IOP) undergoes significant fluctuations, our understanding of the hyperviscoelastic biomechanical properties of the aqueous outflow tissues is limited. In this study, a quadrant of the anterior segment from a normal human donor eye was dynamically pressurized in the SC lumen, and imaged using a customized optical coherence tomography (OCT). The TM/JCT/SC complex finite element (FE) with embedded collagen fibrils was reconstructed based on the segmented boundary nodes in the OCT images. The hyperviscoelastic mechanical properties of the outflow tissues' extracellular matrix with embedded viscoelastic collagen fibrils were calculated using an inverse FE-optimization method. Thereafter, the 3D microstructural FE model of the TM, with adjacent JCT and SC inner wall, from the same donor eye was constructed using optical coherence microscopy and subjected to a flow load-boundary from the SC lumen. The resultant deformation/strain in the outflow tissues was calculated using the FSI method, and compared to the digital volume correlation (DVC) data. TM showed larger shear modulus (0.92 MPa) compared to the JCT (0.47 MPa) and SC inner wall (0.85 MPa). Shear modulus (viscoelastic) was larger in the SC inner wall (97.65 MPa) compared to the TM (84.38 MPa) and JCT (56.30 MPa). The conventional aqueous outflow pathway is subjected to a rate-dependent IOP load-boundary with large fluctuations. This necessitates addressing the biomechanics of the outflow tissues using hyperviscoelastic material-model. STATEMENT OF SIGNIFICANCE: While the human conventional aqueous outflow pathway is subjected to a large-deformation and time-dependent IOP load-boundary, we are not aware of any studies that have calculated the hyperviscoelastic mechanical properties of the outflow tissues with embedded viscoelastic collagen fibrils. A quadrant of the anterior segment of a normal humor donor eye was dynamically pressurized from the SC lumen with relatively large fluctuations. The TM/JCT/SC complex were OCT imaged and the mechanical properties of the tissues with embedded collagen fibrils were calculated using the inverse FE-optimization algorithm. The resultant displacement/strain in the FSI outflow model was validated versus the DVC data. The proposed experimental-computational workflow may significantly contribute to understanding of the effects of different drugs on the biomechanics of the conventional aqueous outflow pathway.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shanjida Khan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Michael Gathara
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Lund, Sweden
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Yifan Jian
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
13
|
Sharif NA. Recently Approved Drugs for Lowering and Controlling Intraocular Pressure to Reduce Vision Loss in Ocular Hypertensive and Glaucoma Patients. Pharmaceuticals (Basel) 2023; 16:791. [PMID: 37375739 DOI: 10.3390/ph16060791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Serious vision loss occurs in patients affected by chronically raised intraocular pressure (IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components causes progressive degeneration of retinal and brain neurons involved in visual perception. While many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON), the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this asymptomatic and progressive degenerative eye disease. Since clinical evidence has revealed a strong correlation between the reduction in elevated IOP/OHT and GON progression, many drugs, devices, and surgical techniques have been developed to lower and control IOP. The constant quest for new pharmaceuticals and other modalities with superior therapeutic indices has recently yielded health authority-approved novel drugs with unique pharmacological signatures and mechanism(s) of action and AQH drainage microdevices for effectively and durably treating OHT. A unique nitric oxide-donating conjugate of latanoprost, an FP-receptor prostaglandin (PG; latanoprostene bunod), new rho kinase inhibitors (ripasudil; netarsudil), a novel non-PG EP2-receptor-selective agonist (omidenepag isopropyl), and a form of FP-receptor PG in a slow-release intracameral implant (Durysta) represent the additions to the pharmaceutical toolchest to mitigate the ravages of OHT. Despite these advances, early diagnosis of OHT and glaucoma still lags behind and would benefit from further concerted effort and attention.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore 169856, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Imperial College of Science and Technology, St. Mary's Campus, London SW7 2BX, UK
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
14
|
Ai S, Zhang Y, Shi G, Wang Y, Liu G, Han X, Zhao Y, Yang H, He X. Acoustic radiation force optical coherence elastography: A preliminary study on biomechanical properties of trabecular meshwork. JOURNAL OF BIOPHOTONICS 2023; 16:e202200317. [PMID: 36602423 DOI: 10.1002/jbio.202200317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 05/17/2023]
Abstract
Evaluating biomechanical properties of trabecular meshwork (TM) is of great significance for understanding the mechanism of aqueous humor circulation and its relationship to some eye diseases such as glaucoma; however, there is almost no relevant study due to the lack of clinical measurement tool. In this paper, an acoustic radiation force optical coherence elastography (ARF-OCE) system is developed with the advantages of noninvasive detection, high resolution, high sensitivity, and high-speed imaging, by which elastic modulus of the porcine and human TMs is accurately quantified. As the first OCE imaging of TM, our study demonstrates that ARF-OCE may be an effective approach to advance the research of diseases related to aqueous humor circulation.
Collapse
Affiliation(s)
- Sizhu Ai
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Gang Shi
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Yidi Wang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Guo Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Xiao Han
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | | | | | - Xingdao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
15
|
Abstract
Glaucoma is a progressive, age-related optic neuropathy, whereby the prevalence increases sharply over the age of 60 and is associated with increased systemic tissue stiffness. On a molecular basis, this is associated with increased deposition of collagen and loss of elastin structure, resulting in aberrant biomechanical compliance and reduced tissue elasticity. Increased tissue stiffness is a known driver of myofibroblast activation and persistence, especially in chronic cellular injuries via mechanotransduction pathways mediated by integrins and focal adhesion kinases. Evidence from histological and imaging studies plus force measurements of glaucomatous eyes show that several ocular tissues are stiffer than normal, healthy age-matched controls including the trabecular meshwork, Schlemm's canal, cornea, sclera and the lamina cribrosa. This is associated with increased extracellular matrix deposition and fibrosis. This review reports on the evidence to support the concept that glaucoma represents 'a stiff eye in a stiff body' and addresses potential mechanisms to attenuate this.
Collapse
Affiliation(s)
- Sarah Powell
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Catherine McAuley Research Centre, University College Dublin, Dublin, Ireland
| | - Mustapha Irnaten
- Catherine McAuley Research Centre, University College Dublin, Dublin, Ireland
| | - Colm O'Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Catherine McAuley Research Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Douglass A, Dattilo M, Feola AJ. Evidence for Menopause as a Sex-Specific Risk Factor for Glaucoma. Cell Mol Neurobiol 2023; 43:79-97. [PMID: 34981287 PMCID: PMC9250947 DOI: 10.1007/s10571-021-01179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive loss of visual function and retinal ganglion cells (RGC). Current epidemiological, clinical, and basic science evidence suggest that estrogen plays a role in the aging of the optic nerve. Menopause, a major biological life event affecting all women, coincides with a decrease in circulating sex hormones, such as estrogen. While 59% of the glaucomatous population are females, sex is not considered a risk factor for developing glaucoma. In this review, we explore whether menopause is a sex-specific risk factor for glaucoma. First, we investigate how menopause is defined as a sex-specific risk factor for other pathologies, including cardiovascular disease, osteoarthritis, and bone health. Next, we discuss clinical evidence that highlights the potential role of menopause in glaucoma. We also highlight preclinical studies that demonstrate larger vision and RGC loss following surgical menopause and how estrogen is protective in models of RGC injury. Lastly, we explore how surgical menopause and estrogen signaling are related to risk factors associated with developing glaucoma (e.g., intraocular pressure, aqueous outflow resistance, and ocular biomechanics). We hypothesize that menopause potentially sets the stage to develop glaucoma and therefore is a sex-specific risk factor for this disease.
Collapse
Affiliation(s)
- Amber Douglass
- grid.484294.7Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA USA
| | - Michael Dattilo
- grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA 30322 USA ,grid.414026.50000 0004 0419 4084Department of Ophthalmology, Atlanta Veterans Affairs Medical Center, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| | - Andrew J. Feola
- grid.484294.7Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA USA ,grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA 30322 USA ,grid.213917.f0000 0001 2097 4943Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| |
Collapse
|
17
|
Zhao Y, Hu G, Yan Y, Wang Z, Liu X, Shi H. Biomechanical analysis of ocular diseases and its in vitro study methods. Biomed Eng Online 2022; 21:49. [PMID: 35870978 PMCID: PMC9308301 DOI: 10.1186/s12938-022-01019-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
Ocular diseases are closely related to the physiological changes in the eye sphere and its contents. Using biomechanical methods to explore the relationship between the structure and function of ocular tissue is beneficial to reveal the pathological processes. Studying the pathogenesis of various ocular diseases will be helpful for the diagnosis and treatment of ocular diseases. We provide a critical review of recent biomechanical analysis of ocular diseases including glaucoma, high myopia, and diabetes. And try to summarize the research about the biomechanical changes in ocular tissues (e.g., optic nerve head, sclera, cornea, etc.) associated with those diseases. The methods of ocular biomechanics research in vitro in recent years are also reviewed, including the measurement of biomechanics by ophthalmic equipment, finite element modeling, and biomechanical analysis methods. And the preparation and application of microfluidic eye chips that emerged in recent years were summarized. It provides new inspiration and opportunity for the pathogenesis of eye diseases and personalized and precise treatment.
Collapse
|
18
|
Karimi A, Razaghi R, Rahmati SM, Downs JC, Acott TS, Kelley MJ, Wang RK, Johnstone M. The Effect of Intraocular Pressure Load Boundary on the Biomechanics of the Human Conventional Aqueous Outflow Pathway. Bioengineering (Basel) 2022; 9:672. [PMID: 36354583 PMCID: PMC9687513 DOI: 10.3390/bioengineering9110672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Aqueous humor outflow resistance in the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) endothelium of the conventional outflow pathway actively contribute to intraocular pressure (IOP) regulation. Outflow resistance is actively affected by the dynamic outflow pressure gradient across the TM, JCT, and SC inner wall tissues. The resistance effect implies the presence of a fluid-structure interaction (FSI) coupling between the outflow tissues and the aqueous humor. However, the biomechanical interactions between viscoelastic outflow tissues and aqueous humor dynamics are largely unknown. METHODS A 3D microstructural finite element (FE) model of a healthy human eye TM/JCT/SC complex was constructed with elastic and viscoelastic material properties for the bulk extracellular matrix and embedded elastic cable elements. The FE models were subjected to both idealized and a physiologic IOP load boundary using the FSI method. RESULTS The elastic material model for both the idealized and physiologic IOP load boundary at equal IOPs showed similar stresses and strains in the outflow tissues as well as pressure in the aqueous humor. However, outflow tissues with viscoelastic material properties were sensitive to the IOP load rate, resulting in different mechanical and hydrodynamic responses in the tissues and aqueous humor. CONCLUSIONS Transient IOP fluctuations may cause a relatively large IOP difference of ~20 mmHg in a very short time frame of ~0.1 s, resulting in a rate stiffening in the outflow tissues. Rate stiffening reduces strains and causes a rate-dependent pressure gradient across the outflow tissues. Thus, the results suggest it is necessary to use a viscoelastic material model in outflow tissues that includes the important role of IOP load rate.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ted S. Acott
- Departments of Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary J. Kelley
- Departments of Ophthalmology and Integrative Biosciences, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Karimi A, Razaghi R, Padilla S, Rahmati SM, Downs JC, Acott TS, Kelley MJ, Wang RK, Johnstone M. Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes. J Clin Med 2022; 11:6049. [PMID: 36294371 PMCID: PMC9605362 DOI: 10.3390/jcm11206049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Although the tissues comprising the ocular conventional outflow pathway have shown strong viscoelastic mechanical response to aqueous humor pressure dynamics, the viscoelastic mechanical properties of the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) inner wall are largely unknown. METHODS A quadrant of the anterior segment from two human donor eyes at low- and high-flow (LF and HF) outflow regions was pressurized and imaged using optical coherence tomography (OCT). A finite element (FE) model of the TM, the adjacent JCT, and the SC inner wall was constructed and viscoelastic beam elements were distributed in the extracellular matrix (ECM) of the TM and JCT to represent anisotropic collagen. An inverse FE-optimization algorithm was used to calculate the viscoelastic properties of the ECM/beam elements such that the TM/JCT/SC model and OCT imaging data best matched over time. RESULTS The ECM of the glaucoma tissues showed significantly larger time-dependent shear moduli compared to the heathy tissues. Significantly larger shear moduli were also observed in the LF regions of both the healthy and glaucoma eyes compared to the HF regions. CONCLUSIONS The outflow tissues in both glaucoma eyes and HF regions are stiffer and less able to respond to dynamic IOP.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Steven Padilla
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | | | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ted S. Acott
- Departments of Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary J. Kelley
- Departments of Ophthalmology and Integrative Biosciences, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
20
|
Soundararajan A, Wang T, Sundararajan R, Wijeratne A, Mosley A, Harvey FC, Bhattacharya S, Pattabiraman PP. Multiomics analysis reveals the mechanical stress-dependent changes in trabecular meshwork cytoskeletal-extracellular matrix interactions. Front Cell Dev Biol 2022; 10:874828. [PMID: 36176278 PMCID: PMC9513235 DOI: 10.3389/fcell.2022.874828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trabecular meshwork (TM) tissue is subjected to constant mechanical stress due to the ocular pulse created by the cardiac cycle. This brings about alterations in the membrane lipids and associated cell-cell adhesion and cell-extracellular matrix (ECM) interactions, triggering intracellular signaling responses to counter mechanical insults. A loss of such response can lead to elevated intraocular pressure (IOP), a major risk factor for primary open-angle glaucoma. This study is aimed to understand the changes in signaling responses by TM subjected to mechanical stretch. We utilized multiomics to perform an unbiased mRNA sequencing to identify changes in transcripts, mass spectrometry- (MS-) based quantitative proteomics for protein changes, and multiple reaction monitoring (MRM) profiling-based MS and high-performance liquid chromatography (HPLC-) based MS to characterize the lipid changes. We performed pathway analysis to obtain an integrated map of TM response to mechanical stretch. The human TM cells subjected to mechanical stretch demonstrated an upregulation of protein quality control, oxidative damage response, pro-autophagic signal, induction of anti-apoptotic, and survival signaling. We propose that mechanical stretch-induced lipid signaling via increased ceramide and sphingomyelin potentially contributes to increased TM stiffness through actin-cytoskeleton reorganization and profibrotic response. Interestingly, increased phospholipids and diacylglycerol due to mechanical stretch potentially enable cell membrane remodeling and changes in signaling pathways to alter cellular contractility. Overall, we propose the mechanistic interplay of macromolecules to bring about a concerted cellular response in TM cells to achieve mechanotransduction and IOP regulation when TM cells undergo mechanical stretch.
Collapse
Affiliation(s)
- Avinash Soundararajan
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ting Wang
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rekha Sundararajan
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Faith Christine Harvey
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, United States
- Miami Integrative Metabolomics Research Center, Miami, FL, United States
| | - Sanjoy Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, United States
- Miami Integrative Metabolomics Research Center, Miami, FL, United States
| | - Padmanabhan Paranji Pattabiraman
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
21
|
Włodarczyk-Biegun MK, Villiou M, Koch M, Muth C, Wang P, Ott J, del Campo A. Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork. ACS Biomater Sci Eng 2022; 8:3899-3911. [PMID: 35984428 PMCID: PMC9472227 DOI: 10.1021/acsbiomaterials.2c00623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125-500 μm and fiber diameters of 10-12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6-360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8-14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.
Collapse
Affiliation(s)
| | - Maria Villiou
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christina Muth
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Peixi Wang
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| | - Jenna Ott
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Aranzazu del Campo
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
22
|
Coulon SJ, Schuman JS, Du Y, Bahrani Fard MR, Ethier CR, Stamer WD. A novel glaucoma approach: Stem cell regeneration of the trabecular meshwork. Prog Retin Eye Res 2022; 90:101063. [PMID: 35398015 PMCID: PMC9464663 DOI: 10.1016/j.preteyeres.2022.101063] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
Glaucoma is the leading cause of global irreversible blindness, necessitating research for new, more efficacious treatment options than currently exist. Trabecular meshwork (TM) cells play an important role in the maintenance and function of the aqueous outflow pathway, and studies have found that there is decreased cellularity of the TM in glaucoma. Regeneration of the TM with stem cells has been proposed as a novel therapeutic option by several reports over the last few decades. Stem cells have the capacity for self-renewal and the potential to differentiate into adult functional cells. Several types of stem cells have been investigated in ocular regenerative medicine: tissue specific stem cells, embryonic stem cells, induced pluripotent stem cells, and adult mesenchymal stem cells. These cells have been used in various glaucoma animal models and ex vivo models and have shown success in IOP homeostasis and TM cellularity restoration. They have also demonstrated stability without serious side effects for a significant period of time. Based on current knowledge of TM pathology in glaucoma and existing literature regarding stem cell regeneration of this tissue, we propose a human clinical study as the next step in understanding this potentially revolutionary treatment paradigm. The ability to protect and replace TM cells in glaucomatous eyes could change the field forever.
Collapse
Affiliation(s)
- Sara J Coulon
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA; Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA; Departments of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA; Department of Physiology and Neuroscience, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammad Reza Bahrani Fard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, USA
| | - W Daniel Stamer
- Departments of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Phillips SS, Patnaik JL, Capitena Young CE, Ertel MK, SooHoo JR, Seibold LK, Kahook MY, Pantcheva MB. Selective Laser Trabeculoplasty and Outcomes of Subsequent Phacoemulsification Combined with Kahook Dual Blade Goniotomy. Ophthalmol Ther 2022; 11:1883-1893. [PMID: 35922711 PMCID: PMC9437157 DOI: 10.1007/s40123-022-00554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction To investigate the relationship between intraocular pressure (IOP)-lowering success of selective laser trabeculoplasty (SLT) and combined phacoemulsification/Kahook Dual Blade (phaco/KDB) goniotomy in eyes with mild to severe open angle glaucoma (OAG). Methods Eyes undergoing combined phaco/KDB goniotomy and that had previously undergone SLT were analyzed. Data collected included demographics, glaucoma type and severity, IOP, and topical IOP-lowering medications before and after both procedures. Eyes were divided into two groups based on success of SLT, defined as IOP reduction of at least 20% maintained on at least two consecutive follow-up visits without any subsequent medication additions or interventions. Phaco/KDB goniotomy success was defined as IOP reduction of at least 20% and/or reduction in the number of IOP-lowering medications of at least one up to 12 months of follow-up. Results Overall, SLT was successful in 20 of 43 eyes (46.5%), of which 63.6% (7/11) had successful phaco/KDB goniotomy at 12 months follow-up. Among eyes with unsuccessful SLT, 60.0% (9/15) had successful phaco/KDB at 12 months follow-up. Phaco/KDB success rate was similar in patients regardless of their previous response to SLT at all postoperative time points up to 12 months follow-up (p = 0.87). Conclusions The presence or lack of IOP-lowering response to SLT did not influence the success rate of subsequent phaco/KDB goniotomy in eyes with mild to severe OAG. Patients who did not respond to SLT still benefited from phaco/KDB goniotomy at a later date.
Collapse
Affiliation(s)
- Stephen S Phillips
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA.
- Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, Aurora, CO, 80045, USA.
| | - Jennifer L Patnaik
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cara E Capitena Young
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Monica K Ertel
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey R SooHoo
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Leonard K Seibold
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Malik Y Kahook
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mina B Pantcheva
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
24
|
Li H, Henty-Ridilla JL, Bernstein AM, Ganapathy PS, Herberg S. TGFβ2 Regulates Human Trabecular Meshwork Cell Contractility via ERK and ROCK Pathways with Distinct Signaling Crosstalk Dependent on the Culture Substrate. Curr Eye Res 2022; 47:1165-1178. [PMID: 35481448 PMCID: PMC9782738 DOI: 10.1080/02713683.2022.2071943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Transforming growth factor-beta 2 (TGFβ2) is a major contributor to the pathologic changes occurring in human trabecular meshwork (HTM) cells in primary open-angle glaucoma (POAG). TGFβ2 activates extracellular-signal-regulated kinase (ERK) and Rho-associated kinase (ROCK) signaling pathways, both affecting HTM cell behavior. However, exactly how these signaling pathways converge to regulate HTM cell contractility is unclear. Here, we investigated the molecular mechanism underlying TGFβ2-induced pathologic HTM cell contractility, and the crosstalk between ERK and ROCK signaling pathways with different culture substrates. METHODS Hydrogels were engineered by mixing collagen type I, elastin-like polypeptide, and hyaluronic acid, each containing photoactive functional groups, followed by UV crosslinking. Primary HTM cells were seeded atop pre-formed hydrogels for comparisons with glass, or encapsulated within the hydrogels. Changes in actin cytoskeleton, extracellular matrix (ECM) production, phospho-myosin light chain (p-MLC) levels, and hydrogel contraction were assessed. RESULTS HTM cell morphology and filamentous (F)-actin organization were affected by the underlying culture substrates. TGFβ2 increased HTM cell contractility via ERK and ROCK signaling pathways by differentially regulating F-actin, α-smooth muscle actin (αSMA), fibronectin (FN), and p-MLC in HTM cells. ERK inhibition, even as short as 4 h, further increased TGFβ2-induced p-MLC in HTM cells on hydrogels, but not on glass. This translated into hypercontractility of HTM cell-laden hydrogels. ROCK inhibition had precisely the opposite effects and potently relaxed the TGFβ2-induced hydrogels. CONCLUSIONS Our data suggest that ERK signaling negatively regulates ROCK-mediated HTM cell contractility. These findings emphasize the critical importance of using tissue-mimetic ECM substrates for investigating HTM cell physiology and glaucomatous pathophysiology in vitro.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Jessica L. Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Audrey M. Bernstein
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA,To whom correspondence should be addressed: Samuel Herberg, PhD, Assistant Professor; Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 505 Irving Avenue, Neuroscience Research Building Room 4609, Syracuse, NY 13210, USA,
| |
Collapse
|
25
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
26
|
Karimi A, Rahmati SM, Razaghi R, Crawford Downs J, Acott TS, Wang RK, Johnstone M. Biomechanics of human trabecular meshwork in healthy and glaucoma eyes via dynamic Schlemm's canal pressurization. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106921. [PMID: 35660943 PMCID: PMC10424782 DOI: 10.1016/j.cmpb.2022.106921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVE The trabecular meshwork (TM) consists of extracellular matrix (ECM) with embedded collagen and elastin fibers providing its mechanical support. TM stiffness is considerably higher in glaucoma eyes. Emerging data indicates that the TM moves dynamically with transient intraocular pressure (IOP) fluctuations, implying the viscoelastic mechanical behavior of the TM. However, little is known about TM viscoelastic behavior. We calculated the viscoelastic mechanical properties of the TM in n = 2 healthy and n = 2 glaucoma eyes. METHODS A quadrant of the anterior segment was submerged in a saline bath, and a cannula connected to an adjustable saline reservoir was inserted into Schlemm's canal (SC). A spectral domain-OCT (SD-OCT) provided continuous cross-sectional B-scans of the TM/JCT/SC complex during pressure oscillation from 0 to 30 mmHg at two locations. The TM/JCT/SC complex boundaries were delineated to construct a 20-µm-thick volume finite element (FE) mesh. Pre-tensioned collagen and elastin fibrils were embedded in the model using a mesh-free penalty-based cable-in-solid algorithm. SC pressure was represented by a position- and time-dependent pressure boundary; floating boundary conditions were applied to the other cut edges of the model. An FE-optimization algorithm was used to adjust the ECM/fiber mechanical properties such that the TM/JCT/SC model and SD-OCT imaging data best matched over time. RESULTS Significantly larger short- and long-time ECM shear moduli (p = 0.0032), and collagen (1.82x) and elastin (2.72x) fibril elastic moduli (p = 0.0001), were found in the TM of glaucoma eyes compared to healthy controls. CONCLUSIONS These findings provide additional clarity on the mechanical property differences in healthy and glaucomatous outflow pathway under dynamic loading. Understanding the viscoelastic properties of the TM may serve as a new biomarker in early diagnosis of glaucoma.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Ted S Acott
- Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | - Ruikang K Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Karimi A, Razaghi R, Rahmati SM, Downs JC, Acott TS, Wang RK, Johnstone M. Modeling the biomechanics of the conventional aqueous outflow pathway microstructure in the human eye. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106922. [PMID: 35660940 PMCID: PMC10424784 DOI: 10.1016/j.cmpb.2022.106922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Intraocular pressure (IOP) is determined by aqueous humor outflow resistance, which is a function of the combined resistance of Schlemm's canal (SC) endothelium and the trabecular meshwork (TM) and their interactions in the juxtacanalicular connective tissue (JCT) region. Aqueous outflow in the conventional outflow pathway results in pressure gradient across the TM, JCT, and SC inner wall, and induces mechanical stresses and strains that influence the geometry and homeostasis of the outflow system. The outflow resistance is affected by alteration in tissues' geometry, so there is potential for active, two-way, fluid-structure interaction (FSI) coupling between the aqueous humor (fluid) and the TM, JCT, and SC inner wall (structure). However, our understanding of the biomechanical interactions of the aqueous humor with the outflow connective tissues and its contribution to the outflow resistance regulation is incomplete. METHODS In this study, a microstructural finite element (FE) model of a human eye TM, JCT, and SC inner wall was constructed from a segmented, high-resolution histologic 3D reconstruction of the human outflow system. Three different elastic moduli (0.004, 0.128, and 51.5 MPa based on prior reports) were assigned to the TM/JCT complex while the elastic modulus of the SC inner wall was kept constant at 0.00748 MPa. The hydraulic conductivity was programmed separately for the TM, JCT, and SC inner wall using a custom subroutine. Cable elements were embedded into the TM and JCT extracellular matrix to represent the directional stiffness imparted by anisotropic collagen fibril orientation. The resultant stresses and strains in the outflow system were calculated using fluid-structure interaction method. RESULTS The higher TM/JCT stiffness resulted in larger stresses, but smaller strains in the outflow connective tissues, and resulted in a 4- and 5-fold larger pressure drop across the SC inner wall, respectively, compared to the most compliant model. Funneling through µm-sized SC endothelial pores was evident in the models at lower tissue stiffness, but aqueous flow was more turbulent in models with higher TM/JCT stiffness. CONCLUSIONS The mechanical properties of the outflow tissues play a crucial role in the hydrodynamics of the aqueous humor in the conventional outflow system.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 372B, Birmingham, AL 35294, USA.
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 372B, Birmingham, AL 35294, USA
| | | | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 372B, Birmingham, AL 35294, USA
| | - Ted S Acott
- Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ruikang K Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Duan Z, Huang K, Luo Z, Ma K, Wang G, Hu X, Zhang J, Luo X, Huang Y, Liu G, Ding X, Xiao P, Yuan J. Portable boom-type ultrahigh-resolution OCT with an integrated imaging probe for supine position retinal imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:3295-3310. [PMID: 35781965 PMCID: PMC9208590 DOI: 10.1364/boe.456435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
To expand the clinical applications and improve the ease of use of ultrahigh-resolution optical coherence tomography (UHR-OCT), we developed a portable boom-type ophthalmic UHR-OCT operating in supine position that can be used for pediatric subjects, bedridden patients and perioperative conditions. By integrating the OCT sample arm probe with real-time iris display and automatic focusing electric lens for easy alignment, coupling the probe on a self-locking multi-directional manipulator to reduce motion artifacts and operator fatigue, and installing the OCT module on a moveable cart for system mobility, our customized portable boom-type UHR-OCT enables non-contact, high-resolution and high-stability retinal examinations to be performed on subjects in supine position. The spectral-domain UHR-OCT operates at a wavelength of 845 nm with 130 nm FWHM (full width at half maximum) bandwidth, achieving an axial resolution of ≈2.3µm in tissue with an A-line acquisition rate up to 128 kHz. A high-definition two-dimensional (2D) raster protocol was used for high-quality cross-sectional imaging while a cube volume three-dimensional (3D) scan was used for three-dimensional imaging and en-face reconstruction, resolving major layer structures of the retina. The feasibility of the system was demonstrated by performing supine position 2D/3D retinal imaging on healthy human subjects, sedated infants, and non-sedated awake neonates.
Collapse
Affiliation(s)
- Zhengyu Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
- the authors contributed equally to this paper
| | - Kai Huang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhongzhou Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ke Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Gengyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaodong Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jinze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoling Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuancong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Gangjun Liu
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- the authors contributed equally to this paper
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
29
|
Corneal Hysteresis, Intraocular Pressure, and Progression of Glaucoma: Time for a “Hyst-Oric” Change in Clinical Practice? J Clin Med 2022; 11:jcm11102895. [PMID: 35629021 PMCID: PMC9148097 DOI: 10.3390/jcm11102895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 12/04/2022] Open
Abstract
It is known that as people age their tissues become less compliant and the ocular structures are no different. Corneal Hysteresis (CH) is a surrogate marker for ocular compliance. Low hysteresis values are associated with optic nerve damage and visual field loss, the structural and functional components of glaucomatous optic neuropathy. Presently, a range of parameters are measured to monitor and stratify glaucoma, including intraocular pressure (IOP), central corneal thickness (CCT), optical coherence tomography (OCT) scans of the retinal nerve fibre layer (RNFL) and the ganglion cell layer (GCL), and subjective measurement such as visual fields. The purpose of this review is to summarise the current evidence that CH values area risk factor for the development of glaucoma and are a marker for its progression. The authors will explain what precisely CH is, how it can be measured, and the influence that medication and surgery can have on its value. CH is likely to play an integral role in glaucoma care and could potentially be incorporated synergistically with IOP, CCT, and visual field testing to establish risk stratification modelling and progression algorithms in glaucoma management in the future.
Collapse
|
30
|
Du R, Xin C, Xu J, Hu J, Wang H, Wang N, Johnstone M. Pulsatile Trabecular Meshwork Motion: An Indicator of Intraocular Pressure Control in Primary Open-Angle Glaucoma. J Clin Med 2022; 11:jcm11102696. [PMID: 35628823 PMCID: PMC9142929 DOI: 10.3390/jcm11102696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 01/03/2023] Open
Abstract
(1) Background: To investigate the value of pulsatile trabecular meshwork (TM) motion in predicting the diurnal intraocular pressure (IOP) fluctuation of primary open-angle glaucoma (POAG). (2) Methods: This cross-sectional study recruited 20 normal patients and 30 patients with POAG. Of the POAG group, 20 had stable diurnal IOP and 10 had high IOP fluctuation. A clinical prototype phase-sensitive optical coherence tomography (PhS-OCT) model was used to measure TM pulsatile motion with maximum velocity (MV) and cumulative displacement (CDisp). (3) Results: MV and CDisp were higher in the external region in both normal and POAG patients. All MV and CDisp reduced significantly in the POAG group (p < 0.001). In the POAG group, except MV in the external region (p = 0.085), MV and CDisp in the nasal area were significantly higher than those in the temporal area (p < 0.05). The MV and CDisp in the external region in the nasal area of POAG patients with high IOP fluctuation were much lower than those with stable IOP (pEMV3 = 0.031, pECDisp3 < 0.001); (4) Conclusions: Pulsatile TM motion reduced in POAG patients relevant to the level of diurnal IOP fluctuation. This study presents the segmental variance of TM stiffness in human living eyes and suggests the clinical potential of the measurement of pulsatile TM motion with PhS-OCT for the evaluation of diurnal IOP fluctuation.
Collapse
Affiliation(s)
- Rong Du
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.D.); (J.H.); (H.W.); (N.W.)
| | - Chen Xin
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.D.); (J.H.); (H.W.); (N.W.)
- Correspondence:
| | - Jingjiang Xu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China;
| | - Jianping Hu
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.D.); (J.H.); (H.W.); (N.W.)
| | - Huaizhou Wang
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.D.); (J.H.); (H.W.); (N.W.)
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.D.); (J.H.); (H.W.); (N.W.)
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
31
|
Johnstone M, Xin C, Acott T, Vranka J, Wen J, Martin E, Wang RK. Valve-Like Outflow System Behavior With Motion Slowing in Glaucoma Eyes: Findings Using a Minimally Invasive Glaucoma Surgery–MIGS-Like Platform and Optical Coherence Tomography Imaging. Front Med (Lausanne) 2022; 9:815866. [PMID: 35572956 PMCID: PMC9099151 DOI: 10.3389/fmed.2022.815866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 01/01/2023] Open
Abstract
PurposeThis study aimed to investigate anatomic relationships and biomechanics of pressure-dependent trabecular meshwork and distal valve-like structure deformation in normal and glaucoma eyes using high-resolution optical coherence tomography (HR-OCT).MethodsWe controlled Schlemm’s canal (SC) pressure during imaging with HR-OCT in segments of three normal (NL) and five glaucomatous (GL) ex vivo eyes. The dissected limbal wedges were studied from 15 locations (5 NL and 10 GL). A minimally invasive glaucoma surgery (MIGS)-like cannula was inserted into the SC lumen, whereas the other end was attached to a switch between two reservoirs, one at 0, the other at 30 mm Hg. A steady-state pressure of 30 mm Hg was maintained to dilate SC and collector channels (CC) during 3D volume imaging. The resulting 3D lumen surface relationships were correlated with internal structural features using an image mask that excluded tissues surrounding SC and CC. While imaging with HR-OCT, real-time motion responses in SC and CC areas were captured by switching pressure from 0 to 30 or 30 to 0 mm Hg. NL vs. GL motion differences were compared.ResultsLumen surface and internal relationships were successfully imaged. We identified SC inlet and outlet valve-like structures. In NL and GL, the mean SC areas measured at the steady-state of 0 and 30 mm Hg were each significantly different (p < 0.0001). Synchronous changes in SC and CC lumen areas occurred in <200 ms. Measured SC area differences at the steady-state 0 and 30 mmHg, respectively, were larger in NL than GL eyes (p < 0.0001). The SC motion curves rose significantly more slowly in GL than NL (p < 0.001). Pressure waves traveled from the cannula end along the SC lumen to CC and deep intrascleral channels.ConclusionHR-OCT provided simultaneous measurements of outflow pathway lumen surfaces, internal structures, and biomechanics of real-time pressure-dependent dimension changes. We identified SC inlet and outlet valve-like structures. GL tissues underwent less motion and responded more slowly than NL, consistent with increased tissue stiffness. A MIGS-like shunt to SC permitted pulse waves to travel distally along SC lumen and into CC.
Collapse
Affiliation(s)
- Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
- *Correspondence: Murray Johnstone,
| | - Chen Xin
- Department of Ophthalmology, Tongren Hospital, Beijing, China
| | - Ted Acott
- Department of Ophthalmology, Casey Eye Institute, Portland, OR, United States
| | - Janice Vranka
- Department of Ophthalmology, Casey Eye Institute, Portland, OR, United States
| | - Joanne Wen
- Department of Ophthalmology, Duke Eye Center, Durham, NC, United States
| | - Elizabeth Martin
- Department of Ophthalmology, Indiana University, Indianapolis, IN, United States
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Biomechanics is an important aspect of the complex family of diseases known as the glaucomas. Here, we review recent studies of biomechanics in glaucoma. RECENT FINDINGS Several tissues have direct and/or indirect biomechanical roles in various forms of glaucoma, including the trabecular meshwork, cornea, peripapillary sclera, optic nerve head/sheath, and iris. Multiple mechanosensory mechanisms and signaling pathways continue to be identified in both the trabecular meshwork and optic nerve head. Further, the recent literature describes a variety of approaches for investigating the role of tissue biomechanics as a risk factor for glaucoma, including pathological stiffening of the trabecular meshwork, peripapillary scleral structural changes, and remodeling of the optic nerve head. Finally, there have been advances in incorporating biomechanical information in glaucoma prognoses, including corneal biomechanical parameters and iridial mechanical properties in angle-closure glaucoma. SUMMARY Biomechanics remains an active aspect of glaucoma research, with activity in both basic science and clinical translation. However, the role of biomechanics in glaucoma remains incompletely understood. Therefore, further studies are indicated to identify novel therapeutic approaches that leverage biomechanics. Importantly, clinical translation of appropriate assays of tissue biomechanical properties in glaucoma is also needed.
Collapse
Affiliation(s)
- Babak N. Safa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| | - Cydney A. Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| | - Jungmin Ha
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| |
Collapse
|
33
|
Li H, Raghunathan V, Stamer WD, Ganapathy PS, Herberg S. Extracellular Matrix Stiffness and TGFβ2 Regulate YAP/TAZ Activity in Human Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:844342. [PMID: 35300422 PMCID: PMC8923257 DOI: 10.3389/fcell.2022.844342] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Primary open-angle glaucoma progression is associated with increased human trabecular meshwork (HTM) stiffness and elevated transforming growth factor beta 2 (TGFβ2) levels in the aqueous humor. Increased transcriptional activity of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), central players in mechanotransduction, are implicated in glaucomatous HTM cell dysfunction. Yet, the detailed mechanisms underlying YAP/TAZ modulation in HTM cells in response to alterations in extracellular matrix (ECM) stiffness and TGFβ2 levels are not well understood. Using biomimetic ECM hydrogels with tunable stiffness, here we show that increased ECM stiffness elevates YAP/TAZ nuclear localization potentially through modulating focal adhesions and cytoskeletal rearrangement. Furthermore, TGFβ2 increased nuclear YAP/TAZ in both normal and glaucomatous HTM cells, which was prevented by inhibiting extracellular-signal-regulated kinase and Rho-associated kinase signaling pathways. Filamentous (F)-actin depolymerization reversed TGFβ2-induced YAP/TAZ nuclear localization. YAP/TAZ depletion using siRNA or verteporfin decreased focal adhesions, ECM remodeling and cell contractile properties. Similarly, YAP/TAZ inactivation with verteporfin partially blocked TGFβ2-induced hydrogel contraction and stiffening. Collectively, our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in glaucomatous HTM cell dysfunction, and may help inform strategies for the development of novel multifactorial approaches to prevent progressive ocular hypertension in glaucoma.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, University of Houston, Houston, TX, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
34
|
Dhamodaran K, Baidouri H, Nartey A, Staverosky J, Keller K, Acott T, Vranka J, Raghunathan V. Endogenous expression of Notch pathway molecules in human trabecular meshwork cells. Exp Eye Res 2022; 216:108935. [PMID: 35033558 PMCID: PMC8885976 DOI: 10.1016/j.exer.2022.108935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Cells in the trabecular meshwork sense and respond to a myriad of physical forces through a process known as mechanotransduction. Whilst the effect of substratum stiffness or stretch on TM cells have been investigated in the context of transforming growth factor (TGF-β), Wnt and YAP/TAZ pathways, the role of Notch signaling, an evolutionarily conserved pathway, recently implicated in mechanotransduction, has not been investigated in trabecular meshwork (TM) cells. Here, we compare the endogenous expression of Notch pathway molecules in TM cells from glaucomatous and non-glaucomatous donors, segmental flow regions, and when subjected to cyclical strain, or grown on hydrogels of varying rigidity. METHODS Primary TM from glaucomatous (GTM), non-glaucomatous (NTM) donors, and from segmental flow regions [high flow (HF), low flow (LF)], were utilized between passages 2-6. Cells were (i) plated on tissue culture plastic, (ii) subjected to cyclical strain (6 h and 24 h), or (iii) cultured on 3 kPa and 80 kPa hydrogels. mRNA levels of Notch receptors/ligands/effectors in the TM cells was determined by qRT-PCR. Phagocytosis was determined as a function of substratum stiffness in NTM-HF/LF cells in the presence or absence of 100 nM Dexamethasone treatment. RESULTS Innate expression of Notch pathway genes were significantly overexpressed in GTM cells with no discernible differences observed between HF/LF cells in either NTM or GTM cells cultured on plastic substrates. With 6 h of cyclical strain, a subset of Notch pathway genes presented with altered expression. Expression of Notch receptors/ligands/receptors/inhibitors progressively declined with increasing stiffness and this correlated with phagocytic ability of NTM cells. Dexamethasone treatment decreased phagocytosis regardless of stiffness or cells isolated from segmental outflow regions. CONCLUSIONS We demonstrate here that the Notch expression in cultured TM cells differ intrinsically between GTM vs NTM, and by substratum cues (cyclical strain and stiffness). Of import, the most apparent differences in gene expression were observed as a function of substratum stiffness which closely followed phagocytic ability of cells. Interestingly, on soft substrates (mimicking normal TM stiffness) Notch expression and phagocytosis was highest, while both expression and phagocytosis was significantly lower on stiffer substrates (mimicking glaucomatous stiffness) regardless of DEX treatment. Such context dependent changes suggest Notch pathway may play differing roles in disease vs homeostasis. Studies focused on understanding the mechanistic role of Notch (if any) in outflow homeostasis are thus warranted.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Andrews Nartey
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Julia Staverosky
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Kate Keller
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Ted Acott
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA,Department of Biomedical Engineering, University of Houston, Houston, TX, USA,Correspondence should be sent to: VijayKrishna Raghunathan, Ph.D., University of Houston, College of Optometry, 4901 Calhoun Rd, Houston, TX, 77204, Phone: (713)-743-8331,
| |
Collapse
|
35
|
Murphy R, Irnaten M, Hopkins A, O'Callaghan J, Stamer WD, Clark AF, Wallace D, O'Brien CJ. Matrix Mechanotransduction via Yes-Associated Protein in Human Lamina Cribrosa Cells in Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:16. [PMID: 35015027 PMCID: PMC8762700 DOI: 10.1167/iovs.63.1.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Extracellular matrix stiffening is characteristic of both aging and glaucoma, and acts as a promoter and perpetuator of pathological fibrotic remodeling. Here, we investigate the role of a mechanosensitive transcriptional coactivator, Yes-associated protein (YAP), a downstream effector of multiple signaling pathways, in lamina cribrosa (LC) cell activation to a profibrotic, glaucomatous state. Methods LC cells isolated from glaucomatous human donor eyes (GLC; n = 3) were compared to LC cells from age-matched nonglaucomatous controls (NLC; n = 3) to determine differential YAP expression, protein levels, and proliferation rates. NLC cells were then cultured on soft (4 kPa), and stiff (100 kPa), collagen-1 coated polyacrylamide hydrogel substrates. Quantitative real-time RT-PCR, immunoblotting, and immunofluorescence microscopy were used to measure the expression, activity, and subcellular location of YAP and its downstream targets, respectively. Proliferation rates were examined in NLC and GLC cells by methyl thiazolyl tetrazolium salt assays, across a range of incrementally increased substrate stiffness. Endpoints were examined in the presence or absence of a YAP inhibitor, verteporfin (2 µM). Results GLC cells show significantly (P < 0.05) increased YAP gene expression and total-YAP protein compared to NLC cells, with significantly increased proliferation. YAP regulation is mechanosensitive, because NLC cells cultured on pathomimetic, stiff substrates (100 kPa) show significantly upregulated YAP gene and protein expression, increased YAP phosphorylation at tyrosine 357, reduced YAP phosphorylation at serine 127, increased nuclear pooling, and increased transcriptional target, connective tissue growth factor. Accordingly, myofibroblastic markers, α-smooth muscle actin (α-SMA) and collagen type I, alpha 1 (Col1A1) are increased. Proliferation rates are elevated on 50 kPa substrates and tissue culture plastic. Verteporfin treatment significantly inhibits YAP-mediated cellular activation and proliferation despite a stiffened microenvironment. Conclusions These data demonstrate how YAP plays a pivotal role in LC cells adopting a profibrotic and proliferative phenotype in response to the stiffened LC present in aging and glaucoma. YAP provides an attractive and novel therapeutic target, and its inhibition via verteporfin warrants further clinical investigation.
Collapse
Affiliation(s)
- Rory Murphy
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan Hopkins
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey O'Callaghan
- Ocular Genetics Unit, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | | - Abbot F Clark
- Department of Cell Biology & Immunology and the North Texas Eye Research Institute, U. North Texas Health Science Centre, Ft. Worth, Texas, United States
| | - Deborah Wallace
- Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Colm J O'Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Choy KC, Li G, Stamer WD, Farsiu S. Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images. Exp Eye Res 2022; 214:108844. [PMID: 34793828 PMCID: PMC8792324 DOI: 10.1016/j.exer.2021.108844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to develop an automatic deep learning-based approach and corresponding free, open-source software to perform segmentation of the Schlemm's canal (SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes. A novel convolutional neural network (CNN) for semantic segmentation grounded in a U-Net architecture was developed by incorporating a late fusion scheme, multi-scale input image pyramid, dilated residual convolution blocks, and attention-gating. 163 pairs of intensity and speckle variance (SV) OCT B-scans acquired from 32 living mouse eyes were used for training, validation, and testing of this CNN model for segmentation of the SC lumen. The proposed model achieved a mean Dice Similarity Coefficient (DSC) of 0.694 ± 0.256 and median DSC of 0.791, while manual segmentation performed by a second expert grader achieved a mean and median DSC of 0.713 ± 0.209 and 0.763, respectively. This work presents the first automatic method for segmentation of the SC lumen in OCT images of living mouse eyes. The performance of the proposed model is comparable to the performance of a second human grader. Open-source automatic software for segmentation of the SC lumen is expected to accelerate experiments for studying treatment efficacy of new drugs affecting intraocular pressure and related diseases such as glaucoma, which present as changes in the SC area.
Collapse
Affiliation(s)
- Kevin C Choy
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - W Daniel Stamer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Ophthalmology, Duke University, Durham, NC, United States.
| |
Collapse
|
37
|
Han B, Song M, Li L, Sun X, Lei Y. The Application of Nitric Oxide for Ocular Hypertension Treatment. Molecules 2021; 26:molecules26237306. [PMID: 34885889 PMCID: PMC8659272 DOI: 10.3390/molecules26237306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
Despite of various therapeutic methods for treating ocular hypertension and glaucoma, it still remains the leading cause of irreversible blindness. Intraocular pressure (IOP) lowering is the most effective way to slow disease progression and prevent blindness. Among the ocular hypotensive drugs currently in use, only a couple act on the conventional outflow system, which is the main pathway for aqueous humor outflow and the major lesion site resulting in ocular hypertension. Nitric oxide (NO) is a commendable new class of glaucoma drugs that acts on the conventional outflow pathway. An increasing number of nitric oxide donors have been developed for glaucoma and ocular hypertension treatment. Here, we will review how NO lowers IOP and the types of nitric oxide donors that have been developed. And a brief analysis of the advantages and challenges associated with the application will be made. The literature used in this review is based on Pubmed database search using ‘nitric oxide’ and ‘glaucoma’ as key words.
Collapse
|
38
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
39
|
Maddineni P, Kasetti RB, Kodati B, Yacoub S, Zode GS. Sodium 4-Phenylbutyrate Reduces Ocular Hypertension by Degrading Extracellular Matrix Deposition via Activation of MMP9. Int J Mol Sci 2021; 22:10095. [PMID: 34576258 PMCID: PMC8465971 DOI: 10.3390/ijms221810095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ocular hypertension (OHT) is a serious adverse effect of the widely prescribed glucocorticoid (GC) therapy and, if left undiagnosed, it can lead to glaucoma and complete blindness. Previously, we have shown that the small chemical chaperone, sodium-4-phenylbutyrate (PBA), rescues GC-induced OHT by reducing ocular endoplasmic reticulum (ER) stress. However, the exact mechanism of how PBA rescues GC-induced OHT is not completely understood. The trabecular meshwork (TM) is a filter-like specialized contractile tissue consisting of TM cells embedded within extracellular matrix (ECM) that controls intraocular pressure (IOP) by constantly regulating aqueous humor (AH) outflow. Induction of abnormal ECM deposition in TM is a hallmark of GC-induced OHT. Here, we investigated whether PBA reduces GC-induced OHT by degrading abnormal ECM deposition in TM using mouse model of GC-induced OHT, ex vivo cultured human TM tissues and primary human TM cells. We show that topical ocular eye drops of PBA (1%) significantly lowers elevated IOP in mouse model of GC-induced OHT. Importantly, PBA prevents synthesis and deposition of GC-induced ECM in TM. We report for the first time that PBA can degrade existing abnormal ECM in normal human TM cells/tissues by inducing matrix metalloproteinase (MMP)9 expression and activity. Furthermore, inhibition of MMPs activity by chemical-inhibitor (minocycline) abrogated PBA's effect on ECM reduction and its associated ER stress. Our study indicates a non-chaperone activity of PBA via activation of MMP9 that degrades abnormal ECM accumulation in TM.
Collapse
Affiliation(s)
| | | | | | | | - Gulab S. Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA; (P.M.); (R.B.K.); (B.K.); (S.Y.)
| |
Collapse
|
40
|
Johnstone M, Xin C, Tan J, Martin E, Wen J, Wang RK. Aqueous outflow regulation - 21st century concepts. Prog Retin Eye Res 2021; 83:100917. [PMID: 33217556 PMCID: PMC8126645 DOI: 10.1016/j.preteyeres.2020.100917] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
We propose an integrated model of aqueous outflow control that employs a pump-conduit system in this article. Our model exploits accepted physiologic regulatory mechanisms such as those of the arterial, venous, and lymphatic systems. Here, we also provide a framework for developing novel diagnostic and therapeutic strategies to improve glaucoma patient care. In the model, the trabecular meshwork distends and recoils in response to continuous physiologic IOP transients like the ocular pulse, blinking, and eye movement. The elasticity of the trabecular meshwork determines cyclic volume changes in Schlemm's canal (SC). Tube-like SC inlet valves provide aqueous entry into the canal, and outlet valve leaflets at collector channels control aqueous exit from SC. Connections between the pressure-sensing trabecular meshwork and the outlet valve leaflets dynamically control flow from SC. Normal function requires regulation of the trabecular meshwork properties that determine distention and recoil. The aqueous pump-conduit provides short-term pressure control by varying stroke volume in response to pressure changes. Modulating TM constituents that regulate stroke volume provides long-term control. The aqueous outflow pump fails in glaucoma due to the loss of trabecular tissue elastance, as well as alterations in ciliary body tension. These processes lead to SC wall apposition and loss of motion. Visible evidence of pump failure includes a lack of pulsatile aqueous discharge into aqueous veins and reduced ability to reflux blood into SC. These alterations in the functional properties are challenging to monitor clinically. Phase-sensitive OCT now permits noninvasive, quantitative measurement of pulse-dependent TM motion in humans. This proposed conceptual model and related techniques offer a novel framework for understanding mechanisms, improving management, and development of therapeutic options for glaucoma.
Collapse
Affiliation(s)
| | - Chen Xin
- Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, China.
| | - James Tan
- Doheny Eye Institute and UCLA Department of Ophthalmology, USA.
| | | | | | - Ruikang K Wang
- Department of Ophthalmology, University of Washington, USA; Department of Bioengineering, University of Washington, USA.
| |
Collapse
|
41
|
Gao K, Song S, Johnstone MA, Zhang Q, Xu J, Zhang X, Wang RK, Wen JC. Reduced Pulsatile Trabecular Meshwork Motion in Eyes With Primary Open Angle Glaucoma Using Phase-Sensitive Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2021; 61:21. [PMID: 33326017 PMCID: PMC7745620 DOI: 10.1167/iovs.61.14.21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose The purpose of this study was to investigate the difference in pulsatile trabecular meshwork (TM) motion between normal and eyes with POAG using phase-sensitive optical coherence tomography (PhS-OCT). Methods In this cross-sectional study, eight healthy subjects (16 eyes) and nine patients with POAG (18 eyes) were enrolled. A laboratory-based prototype PhS-OCT system was used to measure pulsatile TM motion. PhS-OCT images were analyzed to obtain parameters of pulsatile TM motion (i.e. maximum velocity [MV] and cumulative displacement [CDisp]). Outflow facility and ocular pulse amplitude were measured using pneumotonography. Detection sensitivity was compared among various parameters by calculating the area under the receiver operating characteristic curves (AUCs). Results A pulsatile TM motion waveform synchronous with digital pulse was observed using PhS-OCT in both healthy and POAG eyes. The mean MV in eyes with glaucoma was significantly lower than healthy eyes (P < 0.001). The mean CDisp in POAG eyes was also significantly lower than healthy eyes (P < 0.001). CDisp showed a significant correlation (r = 0.46; P = 0.0088) with ocular pulse amplitude in the study. Compared with the outflow facility, both the MV and CDisp were found to have a better discrimination of glaucoma (P < 0.001 and P = 0.0074, respectively). Conclusions Pulsatile TM motion was reduced in patients with POAG compared to healthy subjects. The underlying mechanism may be due to the altered tissue stiffness or other biomechanical properties of the TM in POAG eyes. Our evidence suggests that the measurement of pulsatile TM motion with PhS-OCT may help in characterizing outflow pathway abnormalities.
Collapse
Affiliation(s)
- Kai Gao
- Department of Bioengineering, University of Washington, Seattle, Washington, United States.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shaozhen Song
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Murray A Johnstone
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Jingjiang Xu
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States.,Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Joanne C Wen
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Duke Eye Center, Durham, North Carolina, United States
| |
Collapse
|
42
|
Kowal TJ, Prosseda PP, Ning K, Wang B, Alvarado J, Sendayen BE, Jabbehdari S, Stamer WD, Hu Y, Sun Y. Optogenetic Modulation of Intraocular Pressure in a Glucocorticoid-Induced Ocular Hypertension Mouse Model. Transl Vis Sci Technol 2021; 10:10. [PMID: 34111256 PMCID: PMC8107493 DOI: 10.1167/tvst.10.6.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Steroid-induced glaucoma is a common form of secondary open angle glaucoma characterized by ocular hypertension (elevated intraocular pressure [IOP]) in response to prolonged glucocorticoid exposure. Elevated IOP occurs with increased outflow resistance and altered trabecular meshwork (TM) function. Recently, we used an optogenetic approach in TM to regulate the 5-phosphatase, OCRL, which contributes to regulating PI(4,5)P2 levels. Here, we applied this system with the aim of reversing compromised outflow function in a steroid-induced ocular hypertension mouse model. Methods Elevated IOP was induced by chronic subconjunctival dexamethasone injections in wild-type C57Bl/6j mice. AAV2 viruses containing optogenetic modules of cryptochrome 2 (Cry2)-OCRL-5ptase and CIBN-GFP were injected into the anterior chamber. Four weeks after viral expression and dexamethasone exposure, IOP was measured by tonometer and outflow facility was measured by perfusion apparatus. Human TM cells were treated with dexamethasone, stimulated by light and treated with rhodamine-phalloidin to analyze actin structure. Results Dexamethasone treatment elevated IOP and decreased outflow facility in wild-type mice. Optogenetic constructs were expressed in the TM of mouse eyes. Light stimulation caused CRY2-OCRL-5ptase to translocate to plasma membrane (CIBN-CAAX-GFP) and cilia (CIBN-SSTR3-GFP) in TM cells, which rescued the IOP and outflow facility. In addition, aberrant actin structures formed by dexamethasone treatment were reduced by optogenetic stimulation in human TM cells in culture. Conclusions Subcellular targeting of inositol phosphatases to remove PIP2 represents a promising strategy to reverse defective TM function in steroid-induced ocular hypertension. Translational Relevance Targeted modulation of OCRL may be used to decrease steroid-induced elevated IOP.
Collapse
Affiliation(s)
- Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Philipp P. Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Biao Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jorge Alvarado
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Brent E. Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - W. Daniel Stamer
- Duke Eye Center, Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| |
Collapse
|
43
|
Acott TS, Vranka JA, Keller KE, Raghunathan V, Kelley MJ. Normal and glaucomatous outflow regulation. Prog Retin Eye Res 2021; 82:100897. [PMID: 32795516 PMCID: PMC7876168 DOI: 10.1016/j.preteyeres.2020.100897] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Glaucoma remains only partially understood, particularly at the level of intraocular pressure (IOP) regulation. Trabecular meshwork (TM) and Schlemm's canal inner wall endothelium (SCE) are key to IOP regulation and their characteristics and behavior are the focus of much investigation. This is becoming more apparent with time. We and others have studied the TM and SCE's extracellular matrix (ECM) extensively and unraveled much about its functions and role in regulating aqueous outflow. Ongoing ECM turnover is required to maintain IOP regulation and several TM ECM manipulations modulate outflow facility. We have established clearly that the outflow pathway senses sustained pressure deviations and responds by adjusting the outflow resistance correctively to keep IOP within an appropriately narrow range which will not normally damage the optic nerve. The glaucomatous outflow pathway has in many cases lost this IOP homeostatic response, apparently due at least in part, to loss of TM cells. Depletion of TM cells eliminates the IOP homeostatic response, while restoration of TM cells restores it. Aqueous outflow is not homogeneous, but rather segmental with regions of high, intermediate and low flow. In general, glaucomatous eyes have more low flow regions than normal eyes. There are distinctive molecular differences between high and low flow regions, and during the response to an IOP homeostatic pressure challenge, additional changes in segmental molecular composition occur. In conjunction with these changes, the biomechanical properties of the juxtacanalicular (JCT) segmental regions are different, with low flow regions being stiffer than high flow regions. The JCT ECM of glaucomatous eyes is around 20 times stiffer than in normal eyes. The aqueous humor outflow resistance has been studied extensively, but neither the exact molecular components that comprise the resistance nor their exact location have been established. Our hypothetical model, based on considerable available data, posits that the continuous SCE basal lamina, which lies between 125 and 500 nm beneath the SCE basal surface, is the primary source of normal resistance. On the surface of JCT cells, small and highly controlled focal degradation of its components by podosome- or invadopodia-like structures, PILS, occurs in response to pressure-induced mechanical stretching. Sub-micron sized basement membrane discontinuities develop in the SCE basement membrane and these discontinuities allow passage of aqueous humor to and through SCE giant vacuoles and pores. JCT cells then relocate versican with its highly charged glycosaminoglycan side chains into the discontinuities and by manipulation of their orientation and concentration, the JCT and perhaps the SCE cells regulate the amount of fluid passage. Testing this outflow resistance hypothesis is ongoing in our lab and has the potential to advance our understanding of IOP regulation and of glaucoma.
Collapse
Affiliation(s)
- Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Janice A Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kate E Keller
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR, 97239, USA
| |
Collapse
|
44
|
King J, Lee D, Thomsen S, Hirabayashi MT, An J. Relationship between selective laser trabeculoplasty and excisional goniotomy outcomes in glaucomatous eyes. CANADIAN JOURNAL OF OPHTHALMOLOGY 2021; 57:112-117. [PMID: 33839069 DOI: 10.1016/j.jcjo.2021.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/17/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate the relationship between intraocular pressure (IOP)-lowering success with selective laser trabeculoplasty (SLT) and Kahook Dual Blade (KDB) goniotomy in eyes with glaucoma. DESIGN Retrospective chart review. PARTICIPANTS 30 eyes of 24 patients undergoing phacoemulsification combined with a KDB with 6 months follow-up and who had previously undergone SLT in the same eye. METHODS Data collected from electronic health records included demographic and glaucoma status, IOP and IOP-lowering medication after SLT and KDB. SLT and KDB success were defined as IOP reduction ≥20% or medication reduction ≥1 at 2 and 6 months, respectively. MAIN OUTCOME Association between SLT success and KDB success. RESULTS Overall, SLT was successful in 17 of 30 eyes (56.7%) at 2 months, and KDB was successful in 18 of 30 eyes (60%) at 6 months. Nine of 17 eyes (52.9%) with prior successful SLT had successful subsequent KDB, whereas 9 of 13 (69.2%) with prior unsuccessful SLT had successful KDB. There was no significant relationship between SLT and KDB outcome in these 30 eyes (p = 0.465 by Fisher's exact test). CONCLUSION No relationship between success of SLT and subsequent KDB was observed. However, patients with history of failed SLT still benefited from subsequent KDB.
Collapse
Affiliation(s)
- Joshua King
- University of Missouri, Columbia School of Medicine, Columbia, Mo
| | - Dayeong Lee
- University of Missouri, Columbia School of Medicine, Columbia, Mo
| | - Samuel Thomsen
- University of Missouri, University Eye Institute East, Columbia, Mo
| | | | - Jella An
- University of Missouri, Columbia School of Medicine, Columbia, Mo; University of Missouri, University Eye Institute East, Columbia, Mo.
| |
Collapse
|
45
|
Li H, Bagué T, Kirschner A, Strat AN, Roberts H, Weisenthal RW, Patteson AE, Annabi N, Stamer WD, Ganapathy PS, Herberg S. A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling. Exp Eye Res 2021; 205:108472. [PMID: 33516765 PMCID: PMC11097970 DOI: 10.1016/j.exer.2021.108472] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Abnormal human trabecular meshwork (HTM) cell function and extracellular matrix (ECM) remodeling contribute to HTM stiffening in primary open-angle glaucoma (POAG). Most current cellular HTM model systems do not sufficiently replicate the complex native three dimensional (3D) cell-ECM interface, limiting their use for investigating POAG pathology. Tissue-engineered hydrogels are ideally positioned to overcome shortcomings of current models. Here, we report a novel biomimetic HTM hydrogel and test its utility as a POAG disease model. HTM hydrogels were engineered by mixing normal donor-derived HTM cells with collagen type I, elastin-like polypeptide and hyaluronic acid, each containing photoactive functional groups, followed by UV crosslinking. Glaucomatous conditions were induced with dexamethasone (DEX), and effects of the Rho-associated kinase (ROCK) inhibitor Y27632 on cytoskeletal organization and tissue-level function, contingent on HTM cell-ECM interactions, were assessed. DEX exposure increased HTM hydrogel contractility, f-actin and alpha smooth muscle actin abundance and rearrangement, ECM remodeling, and fibronectin deposition - all contributing to HTM hydrogel condensation and stiffening consistent with glaucomatous HTM tissue behavior. Y27632 treatment produced precisely the opposite effects and attenuated the DEX-induced pathologic changes, resulting in HTM hydrogel relaxation and softening. For model validation, confirmed glaucomatous HTM (GTM) cells were encapsulated; GTM hydrogels showed increased contractility, fibronectin deposition, and stiffening vs. normal HTM hydrogels despite reduced GTM cell proliferation. We have developed a biomimetic HTM hydrogel model for detailed investigation of 3D cell-ECM interactions under normal and simulated glaucomatous conditions. Its bidirectional responsiveness to pharmacological challenge and rescue suggests promising potential to serve as screening platform for new POAG treatments with focus on HTM biomechanics.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Tyler Bagué
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexander Kirschner
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Ana N Strat
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haven Roberts
- Duke Eye Center, Duke University, Durham, NC, 27708, USA
| | - Robert W Weisenthal
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alison E Patteson
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA; Department of Physics, Syracuse University, Syracuse, NY, 13244, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Preethi S Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
46
|
Li G, Lee C, Read AT, Wang K, Ha J, Kuhn M, Navarro I, Cui J, Young K, Gorijavolu R, Sulchek T, Kopczynski C, Farsiu S, Samples J, Challa P, Ethier CR, Stamer WD. Anti-fibrotic activity of a rho-kinase inhibitor restores outflow function and intraocular pressure homeostasis. eLife 2021; 10:60831. [PMID: 33783352 PMCID: PMC8009676 DOI: 10.7554/elife.60831] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoids are widely used as an ophthalmic medication. A common, sight-threatening adverse event of glucocorticoid usage is ocular hypertension, caused by dysfunction of the conventional outflow pathway. We report that netarsudil, a rho-kinase inhibitor, decreased glucocorticoid-induced ocular hypertension in patients whose intraocular pressures were poorly controlled by standard medications. Mechanistic studies in our established mouse model of glucocorticoid-induced ocular hypertension show that netarsudil both prevented and reduced intraocular pressure elevation. Further, netarsudil attenuated characteristic steroid-induced pathologies as assessed by quantification of outflow function and tissue stiffness, and morphological and immunohistochemical indicators of tissue fibrosis. Thus, rho-kinase inhibitors act directly on conventional outflow cells to prevent or attenuate fibrotic disease processes in glucocorticoid-induced ocular hypertension in an immune-privileged environment. Moreover, these data motivate the need for a randomized prospective clinical study to determine whether netarsudil is indeed superior to first-line anti-glaucoma drugs in lowering steroid-induced ocular hypertension.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, United States
| | - Chanyoung Lee
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - A Thomas Read
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - Ke Wang
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - Jungmin Ha
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke University, Durham, United States
| | - Iris Navarro
- Department of Ophthalmology, Duke University, Durham, United States
| | - Jenny Cui
- Department of Ophthalmology, Duke University, Durham, United States
| | - Katherine Young
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - Rahul Gorijavolu
- Department of Ophthalmology, Duke University, Durham, United States
| | - Todd Sulchek
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | | | - Sina Farsiu
- Department of Ophthalmology, Duke University, Durham, United States.,Department of Biomedical Engineering, Duke University, Durham, United States
| | - John Samples
- Washington State University Floyd Elson School of Medicine, Spokane, United States
| | - Pratap Challa
- Department of Ophthalmology, Duke University, Durham, United States
| | - C Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States.,Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, United States.,Department of Biomedical Engineering, Duke University, Durham, United States
| |
Collapse
|
47
|
Xin C, Song S, Wang N, Wang R, Johnstone M. Effects of Schlemm's Canal Expansion: Biomechanics and MIGS Implications. Life (Basel) 2021; 11:life11020176. [PMID: 33672433 PMCID: PMC7926642 DOI: 10.3390/life11020176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: To evaluate the change of biomechanical properties of the trabecular meshwork (TM) and configuration of collector channels (CC) by high-resolution optical coherence tomography (HR-OCT) induced by Schlemm’s canal (SC) dilation. Methods: The anterior segments of two human eyes were divided into four quadrants. One end of a specially designed cannula was placed in SC and the other end connected to a perfusion reservoir. HR-OCT provided three-dimensional (3D) volumetric and two-dimensional (2D) cross-sectional imaging permitting assessment of the biomechanical properties of the TM. A large fluid bolus was introduced into SC. Same-sample, pre and post deformation and disruption of SC and CC lumen areas were analyzed. Results: Morphologic 3D reconstructions documented pressure-dependent changes in lumen dimension of SC, CC, and circumferential intrascleral channels. 2D imaging established volumetric stress-strain curves (elastance curves) of the TM in quadrants. The curves of TM elastance shift to the right with an increase in pressure-dependent steady-state SC area. After a bolus disruption, the SC area increased, while the CC area decreased. Conclusion: Our experimental setup permits the study of the biomechanical properties of TM by examining elastance, which differs segmentally and is altered by mechanical expansion of SC by a fluid bolus. The study may shed light on mechanisms of intraocular pressure control of some glaucoma surgery.
Collapse
Affiliation(s)
- Chen Xin
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China or (C.X.); or (N.W.)
| | - Shaozhen Song
- Department of Bioengineering, University of Washington, Seattle, Washington, WA 98195, USA; (S.S.); (R.W.)
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China or (C.X.); or (N.W.)
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, WA 98195, USA; (S.S.); (R.W.)
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, Washington, WA 98195, USA
- Correspondence: or
| |
Collapse
|
48
|
Kasetti RB, Patel PD, Maddineni P, Patil S, Kiehlbauch C, Millar JC, Searby CC, Raghunathan V, Sheffield VC, Zode GS. ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load. Nat Commun 2020; 11:5594. [PMID: 33154371 PMCID: PMC7644693 DOI: 10.1038/s41467-020-19352-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
The underlying pathological mechanisms of glaucomatous trabecular meshwork (TM) damage and elevation of intraocular pressure (IOP) are poorly understood. Here, we report that the chronic endoplasmic reticulum (ER) stress-induced ATF4-CHOP-GADD34 pathway is activated in TM of human and mouse glaucoma. Expression of ATF4 in TM promotes aberrant protein synthesis and ER client protein load, leading to TM dysfunction and cell death. These events lead to IOP elevation and glaucomatous neurodegeneration. ATF4 interacts with CHOP and this interaction is essential for IOP elevation. Notably, genetic depletion or pharmacological inhibition of ATF4-CHOP-GADD34 pathway prevents TM cell death and rescues mouse models of glaucoma by reducing protein synthesis and ER client protein load in TM cells. Importantly, glaucomatous TM cells exhibit significantly increased protein synthesis along with induction of ATF4-CHOP-GADD34 pathway. These studies indicate a pathological role of ATF4-CHOP-GADD34 pathway in glaucoma and provide a possible treatment for glaucoma by targeting this pathway.
Collapse
Affiliation(s)
- Ramesh B Kasetti
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Pinkal D Patel
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Prabhavathi Maddineni
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Shruti Patil
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Charles Kiehlbauch
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Charles C Searby
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences and the Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Val C Sheffield
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA.
| |
Collapse
|
49
|
Wang X, Zhai Y, Liu X, Zhu W, Gao J. Level-Set Method for Image Analysis of Schlemm's Canal and Trabecular Meshwork. Transl Vis Sci Technol 2020; 9:7. [PMID: 32953247 PMCID: PMC7476667 DOI: 10.1167/tvst.9.10.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To evaluate different segmentation methods in analyzing Schlemm's canal (SC) and the trabecular meshwork (TM) in ultrasound biomicroscopy (UBM) images. Methods Twenty-six healthy volunteers were recruited. The intraocular pressure (IOP) was measured while study subjects blew a trumpet. Images were obtained at different IOPs by 50-MHz UBM. ImageJ software and three segmentation methods—K-means, fuzzy C-means, and level set—were applied to segment the UBM images. The quantitative analysis of the TM-SC region was based on the segmentation results. The relative error and the interclass correlation coefficient (ICC) were used to quantify the accuracy and the repeatability of measurements. Pearson correlation analysis was conducted to evaluate the associations between the IOP and the TM and SC geometric measurements. Results A total of 104 UBM images were obtained. Among them, 84 were adequately clear to be segmented. The level-set method results had a higher similarity to ImageJ results than the other two methods. The ICC values of the level-set method were 0.97, 0.95, 0.9, and 0.57, respectively. Pearson correlation coefficients for the IOP to the SC area, SC perimeter, SC length, and TM width were −0.91, −0.72, −0.66, and −0.61 (P < 0.0001), respectively. Conclusions The level-set method showed better accuracy than the other two methods. Compared with manual methods, it can achieve similar precision, better repeatability, and greater efficiency. Therefore, the level-set method can be used for reliable UBM image segmentation. Translational Relevance The level-set method can be used to analyze TM and SC region in UBM images semiautomatically.
Collapse
Affiliation(s)
- Xin Wang
- Department of Ophthalmology, Liaocheng People's Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng, Shandong, China.,Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yuxi Zhai
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Xueyan Liu
- Department of Mathematics, Liaocheng University, Liaocheng, Shandong, China
| | - Wei Zhu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China.,Qingdao Haier Biotech Co. Ltd, Qingdao, Shandong, China
| | - Jianlu Gao
- Department of Ophthalmology, Liaocheng People's Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng, Shandong, China.,Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
50
|
Aqueous outflow imaging techniques and what they tell us about intraocular pressure regulation. Eye (Lond) 2020; 35:216-235. [PMID: 32826996 DOI: 10.1038/s41433-020-01136-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the medical and surgical management of open-angle glaucoma have increased the number of treatment options available. Several new intraocular pressure (IOP)-lowering treatments target the conventional aqueous outflow (AO) system. However, success rates are variable and outcomes in individual patients are often difficult to predict. Variable treatment responses remain unexplained and highlight deficiencies in our current understanding of AO regulation and IOP homeostasis. Imaging is often relied upon to confirm diagnoses and monitor treatment responses in other ocular and systemic pathologies. As yet no suitable AO imaging tool has been developed to fulfil this role in glaucoma. A variety of imaging techniques have been used to study the AO tracts of humans and animals in ex vivo and in vivo eyes. In this review, results from novel imaging techniques that assess aqueous drainage through the episcleral venous system are considered and we argue these provide new insights into AO regulation. We suggest that the ability to objectively measure AO responses to interventions would be a significant clinical advance, and we have demonstrated that this can be achieved with direct visualisation of aqueous drainage. We predict that the evolution of AO imaging technology will continue to reveal critical components of AO and IOP regulation, and that personalised IOP-lowering treatment in glaucoma care may well become a reality in the near future.
Collapse
|