1
|
Maccora I, Ebert JJ, Schulert GS, Quinlan-Waters M, Duell A, Huggins JL, Sapp CC, Nguyen T, Srivastava SK, Sood AB, Angeles-Han ST. Treatment and Visual Outcomes in Pediatric Patients with Autosomal Dominant Neovascular Inflammatory Vitreoretinopathy: A Cohort Study. Ocul Immunol Inflamm 2024; 32:2441-2448. [PMID: 39254738 PMCID: PMC11598639 DOI: 10.1080/09273948.2024.2401146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/09/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Autosomal dominant neovascular inflammatory vitreoretinopathy (NIV), formerly called "ADNIV," is a rare autoinflammatory condition mainly of adulthood caused by mutations in calcium-activated calpain-5 protease (CAPN5). Our aim is to report the treatment and visual outcomes of children newly diagnosed with NIV after systemic treatment. METHODS We reviewed charts of patients ≤18 years old with CAPN5 gene mutation, ocular findings consistent with NIV, and treated with systemic immunosuppression for a minimum of 6 months. Treatment response was based on ophthalmic examination, ultra-widefield fluorescein-angiography (UWFFA), and optical coherence tomography (OCT). RESULTS Eight children (16 eyes) were diagnosed with NIV at a median age of 14 (Range [R] 9-16) years, with a median follow-up of 18 months (R6-20). At diagnosis, one patient had impaired visual acuity (VA > 0.4), eight had vascular leakage, two had neovascularization, and three had macular edema. All responded to oral or local glucocorticoids but was not sustained. Systemic immunosuppression was started in seven patients with methotrexate and infliximab after a median time from diagnosis of 1.5 months (R0.5-2) and 3.2 months (R2.5-3.1), respectively. Infliximab was discontinued in all after a median time of 7 months (R3.5-10) for ineffectiveness, and 5/7 switched to tocilizumab and 1 to adalimumab. Five failed to respond (4 tocilizumab, 1 adalimumab) and one had a minimal response to tocilizumab. CONCLUSIONS We report on the systemic treatment response of seven children with ADNIV treated with methotrexate, infliximab, and tocilizumab. None were able to control disease. Further studies are needed to understand long-term outcomes and the utility of systemic immunosuppression.
Collapse
Affiliation(s)
- Ilaria Maccora
- Rheumatology Unit, ERN ReConnet Center, Meyer Children's Hospital IRCCS, Florence, Italy
- NeuroFARBA Department, University of Florence, Florence, Italy
| | - Jared J Ebert
- Department of Pediatric Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Ophthalmology Department, Cincinnati Eye Institute, Cincinnati, Ohio, USA
| | - Grant S Schulert
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, USA
| | - Megan Quinlan-Waters
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, USA
| | - Alexandra Duell
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, USA
| | - Jennifer L Huggins
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, USA
| | - Cameron C Sapp
- Ophthalmology Department, Cincinnati Eye Institute, Cincinnati, Ohio, USA
| | - Tiffany Nguyen
- Ophthalmology Department, Cincinnati Eye Institute, Cincinnati, Ohio, USA
- University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | - Arjun B Sood
- Retina Associates of Western NY, PC, Rochester, New York, USA
| | - Sheila T Angeles-Han
- Department of Pediatric Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Titialii-Torres KF, Morris AC. Embryonic hyperglycemia perturbs the development of specific retinal cell types, including photoreceptors. J Cell Sci 2022; 135:jcs259187. [PMID: 34851372 PMCID: PMC8767273 DOI: 10.1242/jcs.259187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Diabetes is linked to various long-term complications in adults, such as neuropathy, nephropathy and diabetic retinopathy. Diabetes poses additional risks for pregnant women, because glucose passes across the placenta, and excess maternal glucose can result in diabetic embryopathy. While many studies have examined the teratogenic effects of maternal diabetes on fetal heart development, little is known about the consequences of maternal hyperglycemia on the development of the embryonic retina. To address this question, we investigated retinal development in two models of embryonic hyperglycemia in zebrafish. Strikingly, we found that hyperglycemic larvae displayed a significant reduction in photoreceptors and horizontal cells, whereas other retinal neurons were not affected. We also observed reactive gliosis and abnormal optokinetic responses in hyperglycemic larvae. Further analysis revealed delayed retinal cell differentiation in hyperglycemic embryos that coincided with increased reactive oxygen species (ROS). Our results suggest that embryonic hyperglycemia causes abnormal retinal development via altered timing of cell differentiation and ROS production, which is accompanied by visual defects. Further studies using zebrafish models of hyperglycemia will allow us to understand the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Kayla F. Titialii-Torres
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| |
Collapse
|
3
|
Calpains as mechanistic drivers and therapeutic targets for ocular disease. Trends Mol Med 2022; 28:644-661. [PMID: 35641420 PMCID: PMC9345745 DOI: 10.1016/j.molmed.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Ophthalmic neurodegenerative diseases encompass a wide array of molecular pathologies unified by calpain dysregulation. Calpains are calcium-dependent proteases that perpetuate cellular death and inflammation when hyperactivated. Calpain inhibition trials in other organs have faced pharmacological challenges, but the eye offers many advantages for the development and testing of targeted molecular therapeutics, including small molecules, peptides, engineered proteins, drug implants, and gene-based therapies. This review highlights structural mechanisms underlying calpain activation, distinct cellular expression patterns, and in vivo models that link calpain hyperactivity to human retinal and developmental disease. Optimizing therapeutic approaches for calpain-mediated eye diseases can help accelerate clinically feasible strategies for treating calpain dysregulation in other diseased tissues.
Collapse
|
4
|
BOYCE TIMOTHYM, WHITMORE SSCOTT, VARZAVAND KATAYOUN, RUSSELL STEPHENR, SOHN ELLIOTTH, FOLK JAMESC, STONE EDWINM, HAN IANC. Long-Term Outcomes and Risk Factors for Severe Vision Loss in Autosomal Dominant Neovascular Inflammatory Vitreoretinopathy (ADNIV). Am J Ophthalmol 2022; 233:144-152. [PMID: 34302771 PMCID: PMC9177238 DOI: 10.1016/j.ajo.2021.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) is a rare disorder characterized by uveitis, retinal neovascularization, and retinal degeneration. We sought to describe the course of treated and untreated ADNIV and to identify risk factors for severe vision loss. DESIGN Observational case series. METHODS Clinical data from ADNIV patients from 4 families seen from 1967 through 2019 at a single academic, tertiary referral center were reviewed. The main outcome measures were visual acuity at baseline and follow-up, as well as risk factors for vision loss. RESULTS A total of 130 eyes from 65 ADNIV patients (45 female, 20 male; mean age 40.8 years, range 6-77 years) were included. Mean best corrected visual acuity (BCVA) at presentation was LogMAR 0.59 (about Snellen 20/80). Longitudinal analysis included 84 eyes from 42 patients (31 female, 11 male), with mean follow-up of 17.3 years (range 2-43.6 years). Mean BCVA at last follow-up was LogMAR 1.48 (about Snellen 20/600). The disease accelerated in the fifth decade of life, during which the majority of eyes went from normal vision or mild vision loss to at least moderate vision loss (20/70 Snellen equivalent); 25 eyes from 16 patients (29.8%;) showed a steep trajectory of vision loss to no light perception. Tractional retinal detachment was the greatest risk factor for severe vision loss (BCVA <20/200) on multivariable analysis (P < .05). CONCLUSIONS Patients with ADNIV have a high lifetime risk of severe vision loss. Tractional retinal detachment is an important risk factor for poor vision.
Collapse
|
5
|
Quiroz J, Yazdanyar A. Animal models of diabetic retinopathy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1272. [PMID: 34532409 PMCID: PMC8421981 DOI: 10.21037/atm-20-6737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
The retina is the posterior neuro-integrated layer of the eye that conducts impulses induced by light to the optic nerve for human vision. Diseases of the retina often leads to diminished vision and in some cases blindness. Diabetes mellitus (DM) is a worldwide public health issue and globally, there is an estimated 463 million people that are affected by DM and its consequences. Diabetic retinopathy (DR) is a blinding complication of chronic uncontrolled DM and is the most common cause of blindness in the United States between the ages 24-75. It is estimated that the global prevalence of DR will increase to 191.0 million by 2030, of those 56.3 million possessing vision-threatening diabetic retinopathy (VTDR). For the most part, current treatment modalities control the complications of DR without addressing the underlying pathophysiology of the disease. Therefore, there is an unmet need for new therapeutics that not only repair the damaged retinal tissue, but also reverse the course of DR. The key element in developing these treatments is expanding our basic knowledge by studying DR pathogenesis in animal models of proliferative and non-proliferative DR (PDR and NPDR). There are numerous models available for the research of both PDR and NPDR with substantial overlap. Animal models available include those with genetic backgrounds prone to hyperglycemic states, immunologic etiologies, or environmentally induced disease. In this review we aimed to comprehensively summarize the available animal models for DR while also providing insight to each model's ocular therapeutic potential for drug discovery.
Collapse
Affiliation(s)
- Jose Quiroz
- Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amirfarbod Yazdanyar
- Department of Ophthalmology and Visual Sciences, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
6
|
Bondada V, Gal J, Mashburn C, Rodgers DW, Larochelle KE, Croall DE, Geddes JW. The C2 domain of calpain 5 contributes to enzyme activation and membrane localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119019. [PMID: 33811937 DOI: 10.1016/j.bbamcr.2021.119019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
The enzymatic characteristics of the ubiquitous calpain 5 (CAPN5) remain undescribed despite its high expression in the central nervous system and links to eye development and disease. CAPN5 contains the typical protease core domains but lacks the C terminal penta-EF hand domain of classical calpains, and instead contains a putative C2 domain. This study used the SH-SY5Y neuroblastoma cell line stably transfected with CAPN5-3xFLAG variants to assess the potential roles of the CAPN5 C2 domain in Ca2+ regulated enzyme activity and intracellular localization. Calcium dependent autoproteolysis of CAPN5 was documented and characterized. Mutation of the catalytic Cys81 to Ala or addition of EGTA prevented autolysis. Eighty μM Ca2+ was sufficient to stimulate half-maximal CAPN5 autolysis in cellular lysates. CAPN5 autolysis was inhibited by tri-leucine peptidyl aldehydes, but less effectively by di-Leu aldehydes, consistent with a more open conformation of the protease core relative to classical calpains. In silico modeling revealed a type II topology C2 domain including loops with the potential to bind calcium. Mutation of the acidic amino acid residues predicted to participate in Ca2+ binding, particularly Asp531 and Asp589, resulted in a decrease of CAPN5 membrane association. These residues were also found to be invariant in several genomes. The autolytic fragment of CAPN5 was prevalent in membrane-enriched fractions, but not in cytosolic fractions, suggesting that membrane association facilitates the autoproteolytic activity of CAPN5. Together, these results demonstrate that CAPN5 undergoes Ca2+-activated autoproteolytic processing and suggest that CAPN5 association with membranes enhances CAPN5 autolysis.
Collapse
Affiliation(s)
- Vimala Bondada
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jozsef Gal
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charles Mashburn
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Dorothy E Croall
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021; 10:cells10030633. [PMID: 33809186 PMCID: PMC8000332 DOI: 10.3390/cells10030633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative retinal diseases, such as glaucoma and diabetic retinopathy, involve a gradual loss of neurons in the retina as the disease progresses. Central nervous system neurons are not able to regenerate in mammals, therefore, an often sought after course of treatment for neuronal loss follows a neuroprotective or regenerative strategy. Neuroprotection is the process of preserving the structure and function of the neurons that have survived a harmful insult; while regenerative approaches aim to replace or rewire the neurons and synaptic connections that were lost, or induce regrowth of damaged axons or dendrites. In order to test the neuroprotective effectiveness or the regenerative capacity of a particular agent, a robust experimental model of retinal neuronal damage is essential. Zebrafish are being used more often in this type of study because their eye structure and development is well-conserved between zebrafish and mammals. Zebrafish are robust genetic tools and are relatively inexpensive to maintain. The large array of functional and behavioral tests available in zebrafish makes them an attractive model for neuroprotection studies. Some common insults used to model retinal disease and study neuroprotection in zebrafish include intense light, chemical toxicity and mechanical damage. This review covers the existing retinal neuroprotection and regeneration literature in the zebrafish and highlights their potential for future studies.
Collapse
|
8
|
Chen Y, Su Z, Liu F. Effects of functionally diverse calpain system on immune cells. Immunol Res 2021; 69:8-17. [PMID: 33483937 DOI: 10.1007/s12026-021-09177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Calpains are a family of nonlysosomal cysteine proteases, which play important roles in numerous physiological and pathological processes. Locations of them dictates the functions so that they are classified as ubiquitously expressed calpains and tissue-specific calpains. Recent studies are mainly focused on conventional calpains (calpain-1,2) in development and diseases, and increasing people pay attention to other subtypes of calpains but may not been summarized appropriately. Growing evidence suggests that calpains are also involved in immune regulation. However, seldom articles review the regulation of calpains on immune cells. The aim of this article is to review the research progress of each calpain isozyme and the effect of calpains on immune cells, especially the promotion effect of calpains on the immune response of macrophage, neutrophils, dendritic cells, mast cells, natural killed cells, and lymphocytes. These effects would hold great promise for the clinical application of calpains as a practicable therapeutic option in the treatment of immune related diseases.
Collapse
Affiliation(s)
- Yueqi Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
Kent MR, Kara N, Patton JG. Inhibition of GABA A-ρ receptors induces retina regeneration in zebrafish. Neural Regen Res 2021; 16:367-374. [PMID: 32859800 PMCID: PMC7896201 DOI: 10.4103/1673-5374.286972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A potential treatment for retinal diseases is to induce an endogenous Müller glia (MG)-derived regenerative response to replace damaged neurons. In contrast to mammalian MG, zebrafish MG are capable of mediating spontaneous regeneration. We seek to define the mechanisms that enable retina regeneration in zebrafish in order to identify therapeutic targets to induce mammalian retina regeneration. We previously used pharmacological and genetic methods to inhibit gamma aminobutyric acid A (GABAA) receptors in undamaged zebrafish retinas and showed that such inhibition could induce initiation of retina regeneration, as measured by the dedifferentiation of MG and the appearance of MG-derived proliferating progenitor cells. Here, we show that inhibition of a pharmacologically distinct subset of GABAA receptors (GABAA-ρ) can also induce retina regeneration. Dual inhibition of both GABA receptor subtypes led to enhanced retina regeneration. Gene expression analyses indicate that inhibition of GABAA-ρ receptors induces a canonical retinal regenerative response. Our results support a model in which decreased levels of GABA, such as would occur after retinal cell death or damage, induce dedifferentiation of MG and the generation of proliferating progenitor cells during zebrafish retina regeneration. Animal experiments were approved by the Vanderbilt's Institutional Animal Care and Use Committee (Protocol M1800200) on January 29, 2019.
Collapse
Affiliation(s)
- Matthew R Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nergis Kara
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Piedade WP, Titialii-Torres K, Morris AC, Famulski JK. Proteasome-Mediated Regulation of Cdhr1a by Siah1 Modulates Photoreceptor Development and Survival in Zebrafish. Front Cell Dev Biol 2020; 8:594290. [PMID: 33330480 PMCID: PMC7719784 DOI: 10.3389/fcell.2020.594290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023] Open
Abstract
Congenital retinal dystrophies are a major cause of unpreventable and incurable blindness worldwide. Mutations in CDHR1, a retina specific cadherin, are associated with cone-rod dystrophy. The ubiquitin proteasome system (UPS) is responsible for mediating orderly and precise targeting of protein degradation to maintain biological homeostasis and coordinate proper development, including retinal development. Recently, our lab uncovered that the seven in absentia (Siah) family of E3 ubiquitin ligases play a role in optic fissure fusion and identified Cdhr1a as a potential target of Siah. Using two-color whole mount in situ hybridization and immunohistochemistry, we detected siah1 and cdhr1a co-expression as well as protein localization in the retinal outer nuclear layer (ONL), and more precisely in the connecting cilium of rods and cones between 3-5 days post fertilization (dpf). We confirmed that Siah1 targets Cdhr1a for proteasomal degradation by co-transfection and co-immunoprecipitation in cell culture. To analyze the functional importance of this interaction, we created two transgenic zebrafish lines that express siah1 or an inactive siah1 (siah1ΔRING) under the control of the heat shock promoter to modulate Siah activity during photoreceptor development. Overexpression of siah1, but not siah1ΔRING, resulted in a decrease in the number of rods and cones at 72 h post fertilization (hpf). The number of retinal ganglion cells, amacrine and bipolar cells was not affected by Siah1 overexpression, and there was no significant reduction of proliferating cells in the Siah1 overexpressing retina. We did, however, detect increased cell death, confirmed by an increase in the number of TUNEL + cells in the ONL, which was proteasome-dependent, as proteasome inhibition rescued the cell death phenotype. Furthermore, reduction in rods and cones resulting from increased Siah1 expression was rescued by injection of cdhr1a mRNA, and to an even greater extent by injection of a Siah1-insensitive cdhr1a variant mRNA. Lastly, CRISPR induced loss of Cdhr1a function phenocopied Siah1 overexpression resulting in a significant reduction of rods and cones. Taken together, our work provides the first evidence that Cdhr1a plays a role during early photoreceptor development and that Cdhr1a is regulated by Siah1 via the UPS.
Collapse
Affiliation(s)
| | | | | | - Jakub K. Famulski
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
Her9/Hes4 is required for retinal photoreceptor development, maintenance, and survival. Sci Rep 2020; 10:11316. [PMID: 32647335 PMCID: PMC7347560 DOI: 10.1038/s41598-020-68172-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
The intrinsic and extrinsic factors that regulate vertebrate photoreceptor specification and differentiation are complex, and our understanding of all the players is far from complete. Her9, the zebrafish ortholog of human HES4, is a basic helix-loop-helix-orange transcriptional repressor that regulates neurogenesis in several developmental contexts. We have previously shown that her9 is upregulated during chronic rod photoreceptor degeneration and regeneration in adult zebrafish, but little is known about the role of her9 during retinal development. To better understand the function of Her9 in the retina, we generated zebrafish her9 CRISPR mutants. Her9 homozygous mutants displayed striking retinal phenotypes, including decreased numbers of rods and red/green cones, whereas blue and UV cones were relatively unaffected. The reduction in rods and red/green cones correlated with defects in photoreceptor subtype lineage specification. The remaining rods and double cones displayed abnormal outer segments, and elevated levels of apoptosis. In addition to the photoreceptor defects, her9 mutants also possessed a reduced proliferative ciliary marginal zone, and decreased and disorganized Müller glia. Mutation of her9 was larval lethal, with no mutants surviving past 13 days post fertilization. Our results reveal a previously undescribed role for Her9/Hes4 in photoreceptor differentiation, maintenance, and survival.
Collapse
|