1
|
Machado BG, Passos FRS, Antoniolli ÂR, Menezes Pereira EW, Santos TKB, Monteiro BS, de Souza Siqueira Lima P, Matos SS, Duarte MC, de Souza Araújo AA, da Silva Almeida JRG, Oliveira Júnior RG, Coutinho HDM, Quintans-Júnior LJ, de Souza Siqueira Quintans J. Enhancing orofacial pain relief: α-phellandrene complexed with hydroxypropyl-β-cyclodextrin mitigates orofacial nociception in rodents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4513-4524. [PMID: 39495266 DOI: 10.1007/s00210-024-03561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Orofacial pain affects 10-15% of adults and can severely impact quality of life. Despite ongoing treatment challenges, monoterpene alpha-phellandrene (PHE) shows potential therapeutic benefits. This study aimed to develop and evaluate an inclusion complex of PHE with hydroxypropyl-beta-cyclodextrin (PHE-HPβCD) for treating orofacial pain. The PHE-HPβCD complex was created using physical mixing and characterized by differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC) to determine encapsulation efficiency. The complex exhibited a 70.45% encapsulation efficiency. Male Swiss mice were used in models of orofacial pain induced by formalin, cinnamaldehyde, glutamate, and corneal nociception by hypertonic saline. Additionally, cytokine levels (TNF-α and IL-1β) were measured in the upper lip tissue of mice subjected to the formalin model. Both PHE and PHE-HPβCD showed significant antinociceptive effects at a 50 mg/kg dose during formalin-induced pain, reducing both neurogenic and inflammatory phases of pain. PHE-HPβCD also reduced TNF-α and IL-1β levels. For cinnamaldehyde and glutamate-induced nociception, both treatments reduced pain behavior, but only PHE-HPβCD decreased eye wipes in corneal nociception. These results suggest that PHE, especially in complexed form, alleviates orofacial pain by potentially modulating pain-related receptors (TRPA1 and TRPV1), mediators, like glutamate, and reducing pro-inflammatory cytokines. Further research is needed to explore the precise mechanisms of PHE in chronic orofacial pain models, but the study indicates promising avenues for new pain treatments.
Collapse
Affiliation(s)
| | | | | | - Erik W Menezes Pereira
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Brenda Souza Monteiro
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Saulo Santos Matos
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Naderi A, Taketani Y, Wang S, Kahale F, Yung A, Surico PL, Chen Y, Dana R. Topical neurokinin-1 receptor antagonism ameliorates ocular pain and prevents corneal nerve degeneration in an animal model of dry eye disease. Pain Rep 2025; 10:e1232. [PMID: 39839966 PMCID: PMC11745868 DOI: 10.1097/pr9.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Ocular pain is a common complaint to eye care providers, associated with a variety of ocular conditions, among which dry eye disease (DED) is affecting millions of people worldwide. Despite being highly prevalent, ocular pain is not managed adequately in the clinic. Objectives The aim of this study was to investigate the analgesic potential of neurokinin-1 receptor (NK1R) antagonism in DED. Methods Dry eye disease was induced in mice, and an NK1R antagonist L-733,060 was topically administered twice daily throughout the study for 14 days. Hyperalgesia and allodynia were assessed using the eye-wiping test and palpebral ratio measurements. Corneas were collected for measuring substance P (SP) levels by enzyme-linked immunosorbent assay (ELISA) and imaging nerves by immunostaining. Trigeminal ganglions (TG) were collected to determine SP levels by ELISA and transient receptor potential cation channel subfamily V member 1 (TRPV1), transient receptor potential cation channel subfamily M (melastatin) member 8, c-Fos, and activating transcription factor 3 (ATF3) mRNA levels by real-time polymerase chain reaction. Results Treating DED mice with L-733,060 resulted in a significant reduction in eye wipe behavior, a significant increase in palpebral ratio, and significant decreases in SP levels in both the cornea and TG compared with the vehicle-treated group. In addition, NK1R antagonist treatment significantly suppressed the upregulation of TRPV1, ATF3, and c-Fos and prevented corneal nerve loss. Conclusion Neurokinin-1 receptor antagonism effectively reduced ocular nociception, decreased neuronal activation, and preserved corneal nerves in mice with DED. These findings suggest that blockade of SP signaling pathway is a promising therapeutic strategy for managing DED pain.
Collapse
Affiliation(s)
- Amirreza Naderi
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Yukako Taketani
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Shudan Wang
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Francesca Kahale
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Ann Yung
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Pier Luigi Surico
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Yihe Chen
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Reza Dana
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
3
|
Situ P, Begley C, Simpson T. The roles of neural adaptation and sensitization in contact lens discomfort. Ocul Surf 2024; 34:132-139. [PMID: 39047906 DOI: 10.1016/j.jtos.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To investigate the roles of neural adaptation and sensitization in contact lens discomfort (CLD). METHODS Cooling stimuli (20 °C) were applied to the cornea in a group comprising 24 symptomatic and 25 asymptomatic contact lens (CL) wearers as well as 15 non-CL wearing controls, using a computerized Belmonte esthesiometer. The adaptation paradigm consisted of 20 repetitive stimuli at threshold, sub- and supra-threshold levels. The sensitization paradigm involved five levels of suprathreshold stimuli ranging between 1x to 2x threshold. Following each stimulus, participants rated the sensation magnitude regarding intensity, coolness and irritation. Measurements were taken with habitual CL (BL_CL), after 2 weeks of no-CL (No_CL) and after restarting habitual CL wear (ReSt_CL). RESULTS The symptomatic subjects exhibited a lower threshold but reported enhanced sensations during the adaptation and sensitization paradigm, compared to the asymptomatic and control groups (all p ≤ 0.021). At the BL_CL and ReSt_CL visits, they showed increased ratings to repeated subthreshold stimuli (p = 0.025) and greater irritation during the sensitization paradigm (p ≤ 0.032). Ratings in asymptomatic and control groups were relatively unchanged over time (p ≥ 0.181). Logistic regression revealed a link between the augmented sensory responses and increased likelihood with CLD. CONCLUSION The maladaptive sensory responses seen in CLD subjects, with reduced adaptation and heightened sensitization to ocular surface stimulation, suggest an imbalance between sensitization and adaptation in CLD. As CLD may represent a reversible subcategory of dry eye, it can serve as a human dry eye model for studying the neurosensory effect of ocular surface stimulation.
Collapse
Affiliation(s)
- Ping Situ
- School of Optometry, Indiana University, Bloomington, IN, USA.
| | - Carolyn Begley
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Trefford Simpson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Rech L, Dietrich-Ntoukas T, Reinach PS, Brockmann T, Pleyer U, Mergler S. Complement Component C5a and Fungal Pathogen Induce Diverse Responses through Crosstalk between Transient Receptor Potential Channel (TRPs) Subtypes in Human Conjunctival Epithelial Cells. Cells 2024; 13:1329. [PMID: 39195219 PMCID: PMC11352353 DOI: 10.3390/cells13161329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The conjunctiva has immune-responsive properties to protect the eye from infections. Its innate immune system reacts against external pathogens, such as fungi. The complement factor C5a is an important contributor to the initial immune response. It is known that activation of transient-receptor-potential-vanilloid 1 (TRPV1) and TRP-melastatin 8 (TRPM8) channels is involved in different immune reactions and inflammation in the human body. The aim of this study was to determine if C5a and mucor racemosus e voluminae cellulae (MR) modulate Ca2+-signaling through changes in TRPs activity in human conjunctival epithelial cells (HCjECs). Furthermore, crosstalk was examined between C5a and MR in mediating calcium regulation. Intracellular Ca2+-concentration ([Ca2+]i) was measured by fluorescence calcium imaging, and whole-cell currents were recorded using the planar-patch-clamp technique. MR was used as a purified extract. Application of C5a (0.05-50 ng/mL) increased both [Ca2+]i and whole-cell currents, which were suppressed by either the TRPV1-blocker AMG 9810 or the TRPM8-blocker AMTB (both 20 µM). The N-terminal peptide C5L2p (20-50 ng/mL) blocked rises in [Ca2+]i induced by C5a. Moreover, the MR-induced rise in Ca2+-influx was suppressed by AMG 9810 and AMTB, as well as 0.05 ng/mL C5a. In conclusion, crosstalk between C5a and MR controls human conjunctival cell function through modulating interactions between TRPV1 and TRPM8 channel activity.
Collapse
Affiliation(s)
- Loreena Rech
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Tina Dietrich-Ntoukas
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325015, China;
| | - Tobias Brockmann
- Department of Ophthalmology, Universitätsmedizin Rostock, 18057 Rostock, Germany;
- SciTec Department, University of Applied Sciences Jena, 07745 Jena, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| |
Collapse
|
5
|
Huang YZ, Ma JX, Bian YJ, Bai QR, Gao YH, Di SK, Lei YT, Yang H, Yang XN, Shao CY, Wang WH, Cao P, Li CZ, Zhu MX, Sun MY, Yu Y. TRPV1 analgesics disturb core body temperature via a biased allosteric mechanism involving conformations distinct from that for nociception. Neuron 2024; 112:1815-1831.e4. [PMID: 38492574 DOI: 10.1016/j.neuron.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
Efforts on developing transient receptor potential vanilloid 1 (TRPV1) drugs for pain management have been hampered by deleterious hypo- or hyperthermia caused by TRPV1 agonists/antagonists. Here, we compared the effects of four antagonists on TRPV1 polymodal gating and core body temperature (CBT) in Trpv1+/+, Trpv1-/-, and Trpv1T634A/T634A. Neither the effect on proton gating nor drug administration route, hair coverage, CBT rhythmic fluctuations, or inflammation had any influence on the differential actions of TRPV1 drugs on CBT. We identified the S4-S5 linker region exposed to the vanilloid pocket of TRPV1 to be critical for hyperthermia associated with certain TRPV1 antagonists. PSFL2874, a TRPV1 antagonist we discovered, is effective against inflammatory pain but devoid of binding to the S4-S5 linker and inducing CBT changes. These findings implicate that biased allosteric mechanisms exist for TRPV1 coupling to nociception and CBT regulation, opening avenues for the development of non-opioid analgesics without affecting CBT.
Collapse
Affiliation(s)
- Yi-Zhe Huang
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Xian Ma
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Jing Bian
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qin-Ru Bai
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Hao Gao
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shu-Ke Di
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yun-Tao Lei
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Yang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Xiao-Na Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chang-Yan Shao
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Hui Wang
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, Hunan, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Meng-Yang Sun
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ye Yu
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Kaido M, Arita R. Effects of a Long-Acting Diquafosol Ophthalmic Solution on the Ocular Surface, Tolerability, and Usability in Dry Eye Disease. Adv Ther 2024; 41:2477-2485. [PMID: 38709396 DOI: 10.1007/s12325-024-02871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION This study aimed to investigate the tolerability of high-viscosity diquafosol tetrasodium (DQS) ophthalmic solution (DIQUAS LX; DQSLX) and examine its usability and effect on clinical findings in patients with dry eye disease (DED). METHODS This interventional retrospective study included 66 eyes of 66 patients with DED who switched from conventional DQS to DQSLX ophthalmic solution. Tear function assessments (tear film breakup time [BUT], keratoconjunctival vital staining [VS] score), evaluations of DED symptom relief, and a four-item usability questionnaire ("comfort upon instillation," "irritation upon instillation," "eye mucus discharge," "convenience of instillation frequency") assessed using a visual analog scale from 0 (worst) to 10 (best) were administered 4 weeks after switching to DQSLX. Factors associated with drug tolerability were assessed using multiple regression analysis. RESULTS The symptoms improved by 64.2% after switching to DQSLX. The BUT value, VS score, and the questionnaire items "comfort upon instillation" and "convenience of instillation frequency" were significantly improved after switching to DQSLX. DQSLX tolerability was reported as acceptable in 56 (84.8%) and unacceptable in 10 (15.2%) patients. Overall, DQSLX tolerability was significantly associated with "comfort upon instillation" and "convenience of instillation frequency" and tended to be associated with a VS score ≥ 1. DQSLX tolerability depended on symptom and VS score improvements and absence of excessive "eye mucus discharge" in patients with a VS score ≥ 1 (39 patients), but on "comfort upon instillation" and absence of excessive "eye mucus discharge" in patients with a VS score = 0 (27 patients). CONCLUSION The high-viscosity DQSLX ophthalmic solution was generally considered acceptable in the study population. However, drug tolerability seemingly differed between patients with DED with and without epithelial damage. The former were affected by improvements in symptoms and clinical findings, whereas the latter were affected by comfort upon instillation. TRIAL REGISTRATION University Hospital Medical Information Network identifier, UMIN000051390.
Collapse
Affiliation(s)
- Minako Kaido
- Wada Eye Clinic, Houjyo 2578-27, Tateyama-shi, Chiba, 294-0045, Japan.
| | | |
Collapse
|
7
|
Li WW, Zhao Y, Liu HC, Liu J, Chan SO, Zhong YF, Zhang TY, Liu Y, Zhang W, Xia YQ, Chi XC, Xu J, Wang Y, Wang J. Roles of Thermosensitive Transient Receptor Channels TRPV1 and TRPM8 in Paclitaxel-Induced Peripheral Neuropathic Pain. Int J Mol Sci 2024; 25:5813. [PMID: 38892000 PMCID: PMC11171746 DOI: 10.3390/ijms25115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Paclitaxel, a microtubule-stabilizing chemotherapy drug, can cause severe paclitaxel-induced peripheral neuropathic pain (PIPNP). The roles of transient receptor potential (TRP) ion channel vanilloid 1 (TRPV1, a nociceptor and heat sensor) and melastatin 8 (TRPM8, a cold sensor) in PIPNP remain controversial. In this study, Western blotting, immunofluorescence staining, and calcium imaging revealed that the expression and functional activity of TRPV1 were upregulated in rat dorsal root ganglion (DRG) neurons in PIPNP. Behavioral assessments using the von Frey and brush tests demonstrated that mechanical hyperalgesia in PIPNP was significantly inhibited by intraperitoneal or intrathecal administration of the TRPV1 antagonist capsazepine, indicating that TRPV1 played a key role in PIPNP. Conversely, the expression of TRPM8 protein decreased and its channel activity was reduced in DRG neurons. Furthermore, activation of TRPM8 via topical application of menthol or intrathecal injection of WS-12 attenuated the mechanical pain. Mechanistically, the TRPV1 activity triggered by capsaicin (a TRPV1 agonist) was reduced after menthol application in cultured DRG neurons, especially in the paclitaxel-treated group. These findings showed that upregulation of TRPV1 and inhibition of TRPM8 are involved in the generation of PIPNP, and they suggested that inhibition of TRPV1 function in DRG neurons via activation of TRPM8 might underlie the analgesic effects of menthol.
Collapse
Affiliation(s)
- Wen-Wen Li
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yan Zhao
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Huai-Cun Liu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China;
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Fei Zhong
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Tang-Yu Zhang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yu Liu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Wei Zhang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yu-Qi Xia
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Xiao-Chun Chi
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Jian Xu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, Peking University Health Science Center, Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jun Wang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| |
Collapse
|
8
|
Valdés-Arias D, Locatelli EVT, Sepulveda-Beltran PA, Mangwani-Mordani S, Navia JC, Galor A. Recent United States Developments in the Pharmacological Treatment of Dry Eye Disease. Drugs 2024; 84:549-563. [PMID: 38652355 PMCID: PMC11189955 DOI: 10.1007/s40265-024-02031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Dry eye disease (DED) can arise from a variety of factors, including inflammation, meibomian gland dysfunction (MGD), and neurosensory abnormalities. Individuals with DED may exhibit a range of clinical signs, including tear instability, reduced tear production, and epithelial disruption, that are driven by different pathophysiological contributors. Those affected often report a spectrum of pain and visual symptoms that can impact physical and mental aspects of health, placing an overall burden on an individual's well-being. This cumulative impact of DED on an individual's activities and on society underscores the importance of finding diverse and effective management strategies. Such management strategies necessitate an understanding of the underlying pathophysiological mechanisms that contribute to DED in the individual patient. Presently, the majority of approved therapies for DED address T cell-mediated inflammation, with their tolerability and effectiveness varying across different studies. However, there is an emergence of treatments that target additional aspects of the disease, including novel inflammatory pathways, abnormalities of the eyelid margin, and neuronal function. These developments may allow for a more nuanced and precise management strategy for DED. This review highlights the recent pharmacological advancements in DED therapy in the United States. It discusses the mechanisms of action of these new treatments, presents key findings from clinical trials, discusses their current stage of development, and explores their potential applicability to different sub-types of DED. By providing a comprehensive overview of products in development, this review aims to contribute valuable insights to the ongoing efforts in enhancing the therapeutic options available to individuals suffering from DED.
Collapse
Affiliation(s)
- David Valdés-Arias
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
| | - Elyana V T Locatelli
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
- Surgical Services, Miami Veterans Affairs Medical Center, 1201 Northwest 16th Street, Miami, FL, 33125, USA
| | | | | | - Juan Carlos Navia
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA.
- Surgical Services, Miami Veterans Affairs Medical Center, 1201 Northwest 16th Street, Miami, FL, 33125, USA.
| |
Collapse
|
9
|
Pizzano M, Vereertbrugghen A, Cernutto A, Sabbione F, Keitelman IA, Shiromizu CM, Vera Aguilar D, Fuentes F, Giordano MN, Trevani AS, Galletti JG. Transient Receptor Potential Vanilloid-1 Channels Facilitate Axonal Degeneration of Corneal Sensory Nerves in Dry Eye. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:810-827. [PMID: 38325553 DOI: 10.1016/j.ajpath.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown. To explore this, DED was surgically induced in wild-type and TRPV1-knockout mice, which developed comparable corneal epithelial damage and reduced tear secretion. However, corneal mechanosensitivity decreased progressively only in wild-type DED mice. Sensitivity to capsaicin (TRPV1 agonist) increased in wild-type DED mice, and consistently, only this strain displayed DED-induced pain signs. Wild-type DED mice exhibited nerve degeneration throughout the corneal epithelium, whereas TRPV1-knockout DED mice only developed a reduction in the most superficial nerve endings that failed to propagate to the deeper subbasal corneal nerves. Pharmacologic TRPV1 blockade reproduced these findings in wild-type DED mice, whereas CD4+ T cells from both strains were equally pathogenic when transferred, ruling out a T-cell-mediated effect of TRPV1 deficiency. These data show that ocular desiccation triggers superficial corneal nerve damage in DED, but proximal propagation of axonal degeneration requires TRPV1 expression. Local inflammation sensitized TRPV1 channels, which increased ocular pain. Thus, ocular TRPV1 overactivation drives DED-associated corneal nerve impairment.
Collapse
Affiliation(s)
- Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Agostina Cernutto
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene A Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina M Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Mirta N Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía S Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Keller M, Mergler S, Li A, Zahn I, Paulsen F, Garreis F. Thermosensitive TRP Channels Are Functionally Expressed and Influence the Lipogenesis in Human Meibomian Gland Cells. Int J Mol Sci 2024; 25:4043. [PMID: 38612853 PMCID: PMC11012639 DOI: 10.3390/ijms25074043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis of the MG, providing a possible new drug target in the treatment of DED. Our RT-PCR, Western blot and immunofluorescence analysis showed the expression of TRPV1, TRPV3, TRPV4 and TRPM8 in the MG at the gene and the protein level. RT-PCR also showed gene expression of TRPV2 but not TRPA1. Calcium imaging and planar patch-clamping performed on an immortalized human meibomian gland epithelial cell line (hMGECs) demonstrated increasing whole-cell currents after the application of capsaicin (TRPV1) or icilin (TRPM8). Decreasing whole-cell currents could be registered after the application of AMG9810 (TRPV1) or AMTB (TRPM8). Oil red O staining on hMGECs showed an increase in lipid expression after TRPV1 activation and a decrease after TRPM8 activation. We conclude that thermo-TRPs are expressed at the gene and the protein level in MGs. Moreover, TRPV1 and TRPM8's functional expression and their contribution to their lipid expression could be demonstrated. Therefore, TRPs are potential drug targets and their clinical relevance in the therapy of meibomian gland dysfunction requires further investigation.
Collapse
Affiliation(s)
- Melina Keller
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (S.M.); (A.L.)
| | - Aruna Li
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (S.M.); (A.L.)
| | - Ingrid Zahn
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| |
Collapse
|
11
|
Alam J, Yaman E, Silva GCV, Chen R, de Paiva CS, Stepp MA, Pflugfelder SC. Single cell analysis of short-term dry eye induced changes in cornea immune cell populations. Front Med (Lausanne) 2024; 11:1362336. [PMID: 38560382 PMCID: PMC10978656 DOI: 10.3389/fmed.2024.1362336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Dry eye causes corneal inflammation, epitheliopathy and sensorineural changes. This study evaluates the hypothesis that dry eye alters the percentages and transcriptional profiles of immune cell populations in the cornea. Methods Desiccating stress (DS) induced dry eye was created by pharmacologic suppression of tear secretion and exposure to drafty low humidity environment. Expression profiling of corneal immune cells was performed by single-cell RNA sequencing (scRNA-seq). Cell differentiation trajectories and cell fate were modeled through RNA velocity analysis. Confocal microscopy was used to immunodetect corneal immune cells. Irritation response to topical neurostimulants was assessed. Results Twelve corneal immune cell populations based on their transcriptional profiles were identified at baseline and consist of monocytes, resident (rMP) and MMP12/13 high macrophages, dendritic cells (cDC2), neutrophils, mast cells, pre T/B cells, and innate (γDT, ILC2, NK) and conventional T and B lymphocytes. T cells and resident macrophages (rMP) were the largest populations in the normal cornea comprising 18.6 and 18.2 percent, respectively. rMP increased to 55.2% of cells after 5 days of DS. Significant changes in expression of 1,365 genes (adj p < 0.0001) were noted in rMP with increases in cytokines and chemokines (Tnf, Cxcl1, Ccl12, Il1rn), inflammatory markers (Vcam, Adam17, Junb), the TAM receptor (Mertk), and decreases in complement and MHCII genes. A differentiation trajectory from monocytes to terminal state rMP was found. Phagocytosis, C-type lectin receptor signaling, NF-kappa B signaling and Toll-like receptor signaling were among the pathways with enhanced activity in these cells. The percentage of MRC1+ rMPs increased in the cornea and they were observed in the basal epithelium adjacent to epithelial nerve plexus. Concentration of the chemokine CXCL1 increased in the cornea and it heightened irritation/pain responses to topically applied hypertonic saline. Conclusion These findings indicate that DS recruits monocytes that differentiate to macrophages with increased expression of inflammation associated genes. The proximity of these macrophages to cornea nerves and their expression of neurosensitizers suggests they contribute to the corneal sensorineural changes in dry eye.
Collapse
Affiliation(s)
- Jehan Alam
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Ebru Yaman
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Gerda Cristal Villalba Silva
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Mary Ann Stepp
- Departments of Anatomy, Regenerative Biology and Ophthalmology, The George Washington University Medical School and Health Sciences, Washington, DC, United States
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Wan MM, Fu ZY, Jin T, Wang ZY, Sun XY, Gao WP. Electroacupuncture regulates the P2X 7R-NLRP3 inflammatory cascade to relieve decreased sensation on ocular surface of type 2 diabetic rats with dry eye. Purinergic Signal 2024:10.1007/s11302-024-09991-0. [PMID: 38467962 DOI: 10.1007/s11302-024-09991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Dry eye (DE) is a prevalent ocular surface disease in patients with type 2 diabetes (T2DM). However, current medications are ineffective against decreased sensation on the ocular surface. While electroacupuncture (EA) effectively alleviates decreased sensation on ocular surface of DE in patients with T2DM, the neuroprotective mechanism remains unclear. This study explored the pathogenesis and therapeutic targets of T2DM-associated DE through bioinformatics analysis. It further investigated the underlying mechanism by which EA improves decreased sensation on the ocular surface of DE in rats with T2DM. Bioinformatic analysis was applied to annotate the potential pathogenesis of T2DM DE. T2DM and DE was induced in male rats. Following treatment with EA and fluorometholone, comprehensive metrics were assessed. Additionally, the expression patterns of key markers were studied. Key targets such as NLRP3, Caspase-1, and NOD-like receptor signaling may be involved in the pathogenesis of T2DM DE. EA treatment improved ocular measures. Furthermore, EA potently downregulated P2X7R, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 expression within the trigeminal ganglion and spinal trigeminal nucleus caudalis. Targeted P2X7R antagonist (A-438079) and agonist (BzATP) employed as controls to decipher the biochemistry of the therapeutic effects of EA showed an anti-inflammatory effect with A-438079, while BzATP blocked the anti-inflammatory effect of EA. EA relieved DE symptoms and attenuated inflammatory damage to sensory nerve pathways in T2DM rats with DE. These findings suggest a crucial role of EA inhibition of the P2X7R-NLRP3 inflammatory cascade to provide these benefits.
Collapse
Affiliation(s)
- Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tuo Jin
- Department of Ophthalmology, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Yi Sun
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
13
|
Wan MM, Jin T, Fu ZY, Lai SH, Gao WP. Electroacupuncture Alleviates Dry Eye Ocular Pain Through TNF-ɑ Mediated ERK1/2/P2X 3R Signaling Pathway in SD Rats. J Pain Res 2023; 16:4241-4252. [PMID: 38107367 PMCID: PMC10725190 DOI: 10.2147/jpr.s436258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose This study aimed to examine electroacupuncture's influence on ocular pain and its potential modulation of the TNF-ɑ mediated ERK1/2/P2X3R signaling pathway in dry eye-induced rat models. Methods Male Sprague-Dawley rats with induced dry eye, achieved through extraorbital lacrimal gland removal, were treated with electroacupuncture. Comprehensive metrics such as the corneal mechanical perception threshold, palpebral fissure height, eyeblink frequency, eye wiping duration, behavioral changes in the open field test, and the forced swimming test were employed. Additionally, morphological changes in microglia and neurons were observed. Expression patterns of key markers, TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R, in the trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (SpVc) regions, were studied with etanercept serving as a control to decipher the biochemistry of electroacupuncture's therapeutic effects. Results Electroacupuncture treatment demonstrated a notable decrease in the corneal mechanical perception threshold, improvement in palpebral fissure height, and significant reductions in both eyeblink frequency and eye wiping duration. Moreover, it exhibited a promising role in anxiety alleviation. Notably, the technique effectively diminished ocular pain by curbing microglial and neuronal activation in the TG and SpVc regions. Furthermore, it potently downregulated TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R expression within these regions. Conclusion Electroacupuncture attenuated damage to sensory nerve pathways, reduced pain, and eased anxiety in dry eye-afflicted rats. The findings suggest a crucial role of TNF-ɑ mediated ERK1/2/P2X3R signaling pathway inhibition by electroacupuncture in these benefits.
Collapse
Affiliation(s)
- Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tuo Jin
- Department of Ophthalmology, Kunshan Hospital of Chinese Medicine, Suzhou, People’s Republic of China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Si-Hua Lai
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
14
|
Harrell CR, Feulner L, Djonov V, Pavlovic D, Volarevic V. The Molecular Mechanisms Responsible for Tear Hyperosmolarity-Induced Pathological Changes in the Eyes of Dry Eye Disease Patients. Cells 2023; 12:2755. [PMID: 38067183 PMCID: PMC10706334 DOI: 10.3390/cells12232755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder of the lacrimal system and ocular surface, characterized by a deficiency in the quality and/or quantity of the tear fluid. The multifactorial nature of DED encompasses a number of interconnected underlying pathologies, including loss of homeostasis, instability and hyperosmolarity of the tears, and the induction and propagation of detrimental inflammatory responses in the eyes, which finally results in the development of neurosensory dysfunction and visual disruption. Dryness, grittiness, scratchiness, discomfort, inflammation, burning, watering, ocular fatigue, pain, and decreased functional visual acuity are common symptoms of DED. Eye dysfunction drastically attenuates patients' quality of life. Accordingly, a better understanding of the pathogenic processes that regulate the development and progression of DED is crucially important for the establishment of new and more effective DED-related treatment approaches, which would significantly improve the quality of life of DED patients. Since the process of osmoregulation, which guards the ocular surface epithelia and maintains normal vision, is affected when the osmolarity of the tears is greater than that of the epithelial cells, tear hyperosmolarity (THO) is considered an initial, important step in the development, progression, and aggravation of DED. In order to delineate the role of THO in the pathogenesis of DED, in this review article, we summarize current knowledge related to the molecular mechanisms responsible for the development of THO-induced pathological changes in the eyes of DED patients, and we briefly discuss the therapeutic potential of hypo-osmotic eye drops in DED treatment.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Lisa Feulner
- Advanced Eye Care & Aesthetics, 104 Plumtree Rd Suite 107, Bel Air, MD 21015, USA;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Dragica Pavlovic
- Departments of Genetics and Microbiology and Immunology, Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia;
| | - Vladislav Volarevic
- Departments of Genetics and Microbiology and Immunology, Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia;
| |
Collapse
|
15
|
Gao N, Lee PSY, Zhang J, Yu FSX. Ocular nociception and neuropathic pain initiated by blue light stress in C57BL/6J mice. Pain 2023; 164:1616-1626. [PMID: 37093736 PMCID: PMC10277230 DOI: 10.1097/j.pain.0000000000002896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 04/25/2023]
Abstract
To elucidate the physiological, cellular, and molecular mechanisms responsible for initiating and sustaining ocular neuropathic pain, we created a blue-light-exposure model in C57BL/6 mice. Mice were exposed to 12 h of blue or white light followed by 12 h of darkness. Before blue light exposure, baseline tear secretion, stability, and ocular hyperalgesia were assessed by measuring hyper- or hypo-osmotic solution-induced eye wiping, wind-induced eye closing, and cold-induced eye blinking. At 1 day post-blue light exposure, alterations in hypotonic/hypertonic-induced eye-wiping, and tear film abnormalities were observed. Eye-wiping behaviors were abolished by topical anesthesia. The cold-stimulated eye-blinking and wind-stimulated eye-closing behaviors began after day 3 and their frequency further increased after day 9. Blue-light exposure reduced the density of nerve endings, and increased their tortuosity, the number of beadlike structures, and the branching of stromal nerve fibers, as assessed by whole-mount confocal microscopy. Blue-light exposure also increased TRPV1, but not TRPV4 staining intensity of corneal-projecting neurons in the trigeminal ganglia, as detected by Fluorogold retrograde labeling and immunohistochemistry. TRPV1 and substance P expression was increased, whereas CGRP expression deceased at the mRNA level in isolated corneal projecting neurons. Hence, our blue-light exposure B6 mouse model for assessing tearing and ocular hyperalgesia is useful for studying ocular pain and its underlying mechanisms. Blue-light-induced alterations in tearing and ocular hyperalgesia may be related to the elevated expression of TRPV1, SP, and/or the suppressed expression of CGRP at the ocular surface.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology, Visual and Anatomical
Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Patrick S. Y. Lee
- Department of Ophthalmology, Visual and Anatomical
Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jitao Zhang
- Biomedical Engineering Department, Wayne State University.
6135 Woodward Ave, Integrative Biosciences Center, Detroit, MI, 48202
| | - Fu-shin X. Yu
- Department of Ophthalmology, Visual and Anatomical
Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
16
|
Katagiri A, Tsubota K, Mikuzuki L, Nakamura S, Toyofuku A, Kato T, Bereiter DA, Iwata K. Tear secretion by Diquafosol suppresses the excitability of trigeminal brainstem nuclear complex neurons by reducing excessive P2Y 2 expression in the trigeminal ganglion in dry eye rats. Neurosci Res 2023; 191:66-76. [PMID: 36657726 DOI: 10.1016/j.neures.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
The P2Y2 receptor agonist, diquafosol sodium, is commonly used to treat the signs and symptoms of dry eye disease (DE) patients. Although diquafosol improves tear film stability, the neural mechanisms underlying the reduction in ocular pain are not well defined. This study determined if repeated application of diquafosol reduces the sensitization of nociceptive neurons in the lower trigeminal brainstem nuclear complex (TBNC) via peripheral P2Y2 mechanisms in a rat model for DE. Diquafosol was applied to the ocular surface daily for 28 days, starting at day 0 or day 14, after exorbital gland removal. The number of eyeblinks, P2Y2-immunoreactive neurons in the trigeminal ganglion (TG), and correlates of TBNC neural excitability (i.e., cFos protein and phosphorylated extracellular signal-regulated kinase (pERK) expression) were assessed in male rats. Diquafosol increased spontaneous tear volume and reduced the number of ocular surface-evoked eyeblinks in DE rats. Fluorogold-labeled TG neurons that supply the cornea expressed P2Y2. The number of P2Y2-immunoreactive neurons was increased in DE rats and suppressed by diquafosol. Diquafosol also reduced the number of cFos- and pERK-immunoreactive neurons in the TBNC in DE rats. These findings suggest that diquafosol, regardless of late-phase treatment, relieves ocular nociception in DE by reducing peripheral P2Y2 expression.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Tsubota Laboratory, Inc., 34 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan.
| | - Lou Mikuzuki
- Division of Geriatric Dentistry, Department of Critical Care Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka-shi, Kanagawa 238-8580, Japan.
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Akira Toyofuku
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
17
|
Katagiri A, Tsubota K, Mikuzuki L, Nakamura S, Toyofuku A, Kato T, Bereiter DA, Iwata K. Diquafosol sodium reduces neuronal activity in trigeminal subnucleus caudalis in a rat model of chronic dry eye disease. Neurosci Lett 2023; 792:136939. [PMID: 36341926 DOI: 10.1016/j.neulet.2022.136939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Patients with persistent and severe dry eye disease (DED) have corneal hypersensitivity, resulting in ocular pain, and diquafosol sodium, a potent P2Y2 receptor agonist, is commonly used to improve the resultant tear film stability. This study determined the effects of diquafosol instillation on the suppression of trigeminal subnucleus caudalis (Vc) neuronal activity and ocular pain by enhancing tear film stability in the model for chronic DED. The effects of diquafosol on the ocular surface were assessed by the topical application for 28 days, starting from the 14th day since unilateral exorbital gland removal (chronic DED). Loss of tear volume secretion in chronic DED rats was significantly reversed by diquafosol instillation after 28 days, compared with saline treatment. The number of eyeblinks and pERK-IR neurons in the superficial laminae of Vc following hypertonic saline administration to the ocular surface was lower in diquafosol-treated chronic DED rats than in saline-treated rats. The neuronal activity evoked by hypertonic saline and mechanical stimulation along with the spontaneous neuronal activity in the superficial laminae of the Vc were suppressed in diquafosol-treated chronic DED rats. These findings suggest that ocular surface instillation of diquafosol for 28 days attenuates the neuronal hyperactivity in the Vc and the ocular pain that often occurs in chronic DED.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Tsubota Laboratory, Inc., 34 Shinanomachi, Shinjuku-ku, Tokyo 160-0016 Japan
| | - Lou Mikuzuki
- Division of Geriatric Dentistry, Department of Critical Care Dentistry, Kanagawa Dental University, 82 Inaoka-cho Yokosuka-shi Kanagawa, 238-8580, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akira Toyofuku
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
18
|
Variability of autonomic nerve activity in dry eye with decreased tear stability. PLoS One 2022; 17:e0276945. [DOI: 10.1371/journal.pone.0276945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The autonomic nervous system plays a crucial role in the maintenance of homeostasis. Neurogenic inflammation due to decreased stability of tear film may induce changes in autonomic nerve activity, which could be associated with symptom expression.This study aimed to measure biological parameters that represent autonomic nerve activity in dry eye (DE)s caused by tear film dysfunction and investigate their relationship with symptom intensity. This prospective, cross-sectional, comparative study evaluated 34 eyes of 34 participants (mean age: 52.5 ± 13.4 years; range: 20–81 years) without keratoconjunctival damage. Nineteen eyes in the DE group showed DE symptoms and tear break-up time (TBUT) of ≤5 seconds (short TBUT DE); the 15 eyes in the non-DE group showed no DE symptoms. Autonomic nerve activity was measured for 10 minutes—starting and ending 5 minutes before and after instilling ophthalmic solution—and evaluated using the low-frequency component (LF) to the high-frequency component (HF) ratio of heart rate variability (autonomic balance). The pre-ophthalmic solution administration LF/HF ratio was not significantly different (P = 0.59) between the two groups, however, the standard deviation of the LF/HF ratio (LF/HF-SD) tended to be higher in the DE group than that in the non-DE group (P = 0.086). The DE symptom intensity was significantly related to LF/HF-SD (P = 0.005), which significantly decreased after ophthalmic solution administration in the DE group (P = 0.04). The large fluctuations in autonomic balance may be key for the understanding of the mechanism underlying DE symptoms.
Collapse
|
19
|
Asiedu K. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides 2022; 95:102266. [PMID: 35728484 DOI: 10.1016/j.npep.2022.102266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
Inflammation is the consequence of dry eye disease regardless of its etiology. Several injurious or harmless processes to the ocular surface neurons promote ocular surface neurogenic inflammation, leading to the vicious cycle of dry eye disease. These processes include the regular release of neuromediators during the conduction of ocular surface sensations, hyperosmolarity-induced ocular surface neuronal damage, neuro-regenerative activities, and neuronal-mediated dendritic cell activities. Neurogenic inflammation appears to be the main culprit, instigating the self-perpetuating inflammation observed in patients with dry eye disease.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
20
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
21
|
Transient Receptor Potential Channels: Important Players in Ocular Pain and Dry Eye Disease. Pharmaceutics 2022; 14:pharmaceutics14091859. [PMID: 36145607 PMCID: PMC9506338 DOI: 10.3390/pharmaceutics14091859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder in which the eyes respond to minor stimuli with abnormal sensations, such as dryness, blurring, foreign body sensation, discomfort, irritation, and pain. Corneal pain, as one of DED’s main symptoms, has gained recognition due to its increasing prevalence, morbidity, and the resulting social burden. The cornea is the most innervated tissue in the body, and the maintenance of corneal integrity relies on a rich density of nociceptors, such as polymodal nociceptor neurons, cold thermoreceptor neurons, and mechano-nociceptor neurons. Their sensory responses to different stimulating forces are linked to the specific expression of transient receptor potential (TRP) channels. TRP channels are a group of unique ion channels that play important roles as cellular sensors for various stimuli. These channels are nonselective cation channels with variable Ca2+ selectivity. TRP homologs are a superfamily of 28 different members that are subdivided into 7 different subfamilies based on differences in sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells, where they affect various stress-induced regulatory responses essential for normal vision maintenance. This article reviews the current knowledge about the expression, function, and regulation of TRPs in ocular surface tissues. We also describe their implication in DED and ocular pain. These findings contribute to evidence suggesting that drug-targeting TRP channels may be of therapeutic benefit in the clinical setting of ocular pain.
Collapse
|
22
|
Patel S, Mittal R, Sarantopoulos KD, Galor A. Neuropathic ocular surface pain: Emerging drug targets and therapeutic implications. Expert Opin Ther Targets 2022; 26:681-695. [PMID: 36069761 PMCID: PMC9613591 DOI: 10.1080/14728222.2022.2122438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dysfunction at various levels of the somatosensory system can lead to ocular surface pain with a neuropathic component. Compared to nociceptive pain (due to noxious stimuli at the ocular surface), neuropathic pain tends to be chronic and refractory to therapies, making it an important source of morbidity in the population. An understanding of the options available for neuropathic ocular surface pain, including new and emerging therapies, is thus an important topic. AREAS COVERED This review will examine studies focusing on ocular surface pain, emphasizing those examining patients with a neuropathic component. Attention will be placed toward recent (after 2017) studies that have examined new and emerging therapies for neuropathic ocular surface pain. EXPERT OPINION Several therapies have been studied thus far, and continued research is needed to identify which individuals would benefit from specific therapies. Gaps in our understanding exist, especially with availability of in-clinic diagnostics for neuropathic pain. A focus on improving diagnostic capabilities and researching gene-modulating therapies could help us to provide more specific mechanism-based therapies for patients. In the meantime, continuing to uncover new modalities and examining which are likely to work depending on pain phenotype remains an important short-term goal.
Collapse
Affiliation(s)
- Sneh Patel
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rhiya Mittal
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Konstantinos D. Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Anat Galor
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Surgical services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
23
|
Corneal nerves and their role in dry eye pathophysiology. Exp Eye Res 2022; 222:109191. [PMID: 35850173 DOI: 10.1016/j.exer.2022.109191] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
As the cornea is densely innervated, its nerves are integral not only to its structure but also to its pathophysiology. Corneal integrity depends on a protective tear film that is maintained by corneal sensation and the reflex arcs that control tearing and blinking. Furthermore, corneal nerves promote epithelial growth and local immunoregulation. Thus, corneal nerves constitute pillars of ocular surface homeostasis. Conversely, the abnormal tear film in dry eye favors corneal epithelial and nerve damage. The ensuing corneal nerve dysfunction contributes to dry eye progression, ocular pain and discomfort, and other neuropathic symptoms. Recent evidence from clinical studies and animal models highlight the significant but often overlooked neural dimension of dry eye pathophysiology. Herein, we review the anatomy and physiology of corneal nerves before exploring their role in the mechanisms of dry eye disease.
Collapse
|
24
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
25
|
Yu C, Chen P, Xu J, Wei S, Cao Q, Guo C, Wu X, Di G. Corneal Epithelium-Derived Netrin-1 Alleviates Dry Eye Disease via Regulating Dendritic Cell Activation. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35648640 PMCID: PMC9172049 DOI: 10.1167/iovs.63.6.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the expression of corneal epithelium-derived netrin-1 (NTN-1) and its immunoregulatory function in dry eye disease (DED) using a DED mouse model. Methods We generated DED mouse models with desiccating stress under scopolamine treatment. RNA sequencing was performed to identify differentially expressed genes (DEGs) in the corneal epithelium of DED mice. NTN-1 expression was analyzed via real-time PCR, immunofluorescence staining, and immunoblotting. The DED mice were then treated with recombinant NTN-1 or neutralizing antibodies to investigate the severity of the disease, dendritic cell (DC) activation, and inflammatory cytokine expression. Results A total of 347 DEGs (292 upregulated and 55 downregulated) were identified in the corneal epithelium of DED mice: corneal epithelium-derived NTN-1 expression was significantly decreased in DED mice compared to that in control mice. Topical recombinant NTN-1 application alleviated the severity of the disease, accompanied by restoration of tear secretion and goblet cell density. In addition, NTN-1 decreased the number of DCs, inhibited the activation of the DCs and Th17 cells, and reduced the expression of inflammatory factors in DED mice. In contrast, blocking endogenous NTN-1 activity with an anti-NTN-1 antibody aggravated the disease, enhanced DC activation, and upregulated the inflammatory factors in the conjunctivae of DED mice. Conclusions We identified decreased NTN-1 expression in the corneal epithelium of DED mice. Our findings elucidate the role of NTN-1 in alleviating DED and impeding DC activation, thereby indicating its therapeutic potential in suppressing ocular inflammation in DED.
Collapse
Affiliation(s)
- Chaoqun Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Peng Chen
- Department of Anthropotomy and Histo-Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Xu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Susu Wei
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guohu Di
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Sullivan C, Lee J, Bushey W, Demers D, Dinsdale S, Lowe K, Olmeda J, Meng ID. Evidence for a phenotypic switch in corneal afferents after lacrimal gland excision. Exp Eye Res 2022; 218:109005. [PMID: 35240196 PMCID: PMC9993327 DOI: 10.1016/j.exer.2022.109005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/22/2022] [Accepted: 02/19/2022] [Indexed: 01/07/2023]
Abstract
Dry eye is a common cause of ocular pain. The aim of this study was to investigate corneal innervation, ongoing pain, and alterations in corneal afferent phenotypes in a mouse model of severe aqueous tear deficiency. Chronic dry eye was produced by ipsilateral excision of the extra- and intraorbital lacrimal glands in male and female mice. Tearing was measured using a phenol thread and corneal epithelial damage assessed using fluorescein. Changes in corneal ongoing ocular pain was evaluated by measuring palpebral opening ratio. Corneal axons were visualized using Nav1.8-Cre;tdTomato reporter mice. Immunohistochemistry was performed to characterize somal expression of calcitonin gene-related peptide (CGRP), the capsaicin sensitive transient receptor potential vanilloid 1 (TRPV1), and activating transcription factor-3 (ATF-3) in tracer labeled corneal neurons following lacrimal gland excision (LGE). LGE decreased tearing, created severe epithelial damage, and decreased palpebral opening, indicative of chronic ocular irritation, over the 28-day observation period. Corneal axon terminals exhibited an acute decrease in density after LGE, followed by a regenerative process over the course of 28 days that was greater in male animals. Corneal neurons expressing CGRP, TRPV1, and ATF3 increased following injury, corresponding to axonal injury and regeneration processes observed during the same period. CGRP and TRPV1 expression was notably increased in IB4-positive cells following LGE. These results indicate that dry eye-induced damage to corneal afferents can result in alterations in IB4-positive neurons that may enhance neuroprotective mechanisms to create resiliency after chronic injury.
Collapse
Affiliation(s)
- Cara Sullivan
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Graduate Studies in Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Jun Lee
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Department of Complete Denture Prosthodontics, School of Dentistry, Nihon University, Tokyo, 101-8310, Japan
| | - William Bushey
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA
| | - Danielle Demers
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Samantha Dinsdale
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Katy Lowe
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Jessica Olmeda
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Ian D Meng
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Graduate Studies in Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA.
| |
Collapse
|
27
|
Bereiter DA, Rahman M, Ahmed F, Thompson R, Luong N, Olson JK. Title: P2x7 Receptor Activation and Estrogen Status Drive Neuroinflammatory Mechanisms in a Rat Model for Dry Eye. Front Pharmacol 2022; 13:827244. [PMID: 35479310 PMCID: PMC9037241 DOI: 10.3389/fphar.2022.827244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Dry eye disease (DED) is recognized as a chronic inflammatory condition with an increase in tear osmolarity and loss of tear film integrity. DED is often accompanied by adverse ocular symptoms which are more prevalent in females than males. The basis for ocular hyperalgesia in DED remains uncertain; however, both peripheral and central neural mechanisms are implicated. A model for aqueous deficient DED, exorbital gland excision, was used to determine if activation of the purinergic receptor subtype 7, P2X7R, expressed by non-neural cells in peripheral and central trigeminal nerve pathways, contributed to persistent ocular hyperalgesia. Densitometry of trigeminal brainstem sections revealed increases in P2X7R, the myeloid cell marker Iba1, and the inflammasome, NLRP3, of estradiol-treated DED females compared to estradiol-treated sham females, while expression in DED males and DED females not given estradiol displayed minor changes. No evidence of immune cell infiltration into the trigeminal brainstem was seen in DED rats; however, markers for microglia activation (Iba1) were increased in all groups. Isolated microglia expressed increased levels of P2X7R and P2X4R, IL-1β (Ιnterleukin-1β), NLRP3, and iNOS (nitric oxide synthase). Further, estradiol-treated DED females displayed greater increases in P2X7R, IL-1β and NLRP3 expression compared to untreated DED females. Orbicularis oculi muscle activity (OOemg) evoked by ocular instillation of hypertonic saline (HS) was recorded as a surrogate measure of ocular hyperalgesia and was markedly enhanced in all DED groups compared to sham rats. Systemic minocycline reduced HS-evoked OOemg in all DED groups compared to sham rats. Local microinjection in the caudal trigeminal brainstem of an antagonist for P2X7R (A804598) greatly reduced HS-evoked OOemg activity in all DE groups, while responses in sham groups were not affected. Intra-trigeminal ganglion injection of siRNA for P2X7R significantly reduced HS-evoked OOemg activity in all DED groups, while evoked responses in sham animals were not affected. These results indicated that activation of P2X7R at central and peripheral sites in trigeminal pain pathways contributed to an increase in ocular hyperalgesia and microglia activation in DED males and females. Estrogen treatment in females further amplified ocular hyperalgesia and neuroimmune responses in this model for aqueous deficient DED.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Mostafeezur Rahman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Fabeeha Ahmed
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Randall Thompson
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Nhungoc Luong
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Julie K Olson
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
28
|
Yang S, Wu Y, Wang C, Jin X. Ocular Surface Ion-Channels Are Closely Related to Dry Eye: Key Research Focus on Innovative Drugs for Dry Eye. Front Med (Lausanne) 2022; 9:830853. [PMID: 35308542 PMCID: PMC8927818 DOI: 10.3389/fmed.2022.830853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abundant ion-channels, including various perceptual receptors, chloride channels, purinergic receptor channels, and water channels that exist on the ocular surface, play an important role in the pathogenesis of dry eye. Channel-targeting activators or inhibitor compounds, which have shown positive effects in in vivo and in vitro experiments, have become the focus of the dry eye drug research and development, and individual compounds have been applied in clinical experimental treatment. This review summarized various types of ion-channels on the ocular surface related to dry eye, their basic functions, and spatial distribution, and discussed basic and clinical research results of various channel receptor regulatory compounds. Therefore, further elucidating the relationship between ion-channels and dry eye will warrant research of dry eye targeted drug therapy.
Collapse
Affiliation(s)
| | | | | | - Xiuming Jin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Iraci N, Ostacolo C, Medina-Peris A, Ciaglia T, Novoselov AM, Altieri A, Cabañero D, Fernandez-Carvajal A, Campiglia P, Gomez-Monterrey I, Bertamino A, Kurkin AV. In Vitro and In Vivo Pharmacological Characterization of a Novel TRPM8 Inhibitor Chemotype Identified by Small-Scale Preclinical Screening. Int J Mol Sci 2022; 23:2070. [PMID: 35216186 PMCID: PMC8877448 DOI: 10.3390/ijms23042070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
Transient receptor potential melastatin type 8 (TRPM8) is a target for the treatment of different physio-pathological processes. While TRPM8 antagonists are reported as potential drugs for pain, cancer, and inflammation, to date only a limited number of chemotypes have been investigated and thus a limited number of compounds have reached clinical trials. Hence there is high value in searching for new TRPM8 antagonistic to broaden clues to structure-activity relationships, improve pharmacological properties and explore underlying molecular mechanisms. To address this, the EDASA Scientific in-house molecular library has been screened in silico, leading to identifying twenty-one potentially antagonist compounds of TRPM8. Calcium fluorometric assays were used to validate the in-silico hypothesis and assess compound selectivity. Four compounds were identified as selective TRPM8 antagonists, of which two were dual-acting TRPM8/TRPV1 modulators. The most potent TRPM8 antagonists (BB 0322703 and BB 0322720) underwent molecular modelling studies to highlight key structural features responsible for drug-protein interaction. The two compounds were also investigated by patch-clamp assays, confirming low micromolar potencies. The most potent compound (BB 0322703, IC50 1.25 ± 0.26 μM) was then profiled in vivo in a cold allodinya model, showing pharmacological efficacy at 30 μM dose. The new chemotypes identified showed remarkable pharmacological properties paving the way to further investigations for drug discovery and pharmacological purposes.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (C.O.); (I.G.-M.)
| | - Alicia Medina-Peris
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de la Universidad, 03202 Elche, Spain; (A.M.-P.); (D.C.); (A.F.-C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (P.C.)
| | - Anton M. Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, 119991 Moscow, Russia; (A.M.N.); (A.A.)
| | - Andrea Altieri
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, 119991 Moscow, Russia; (A.M.N.); (A.A.)
- EDASA Scientific srls, Via Stingi 37, 66050 San Salvo, Italy
| | - David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de la Universidad, 03202 Elche, Spain; (A.M.-P.); (D.C.); (A.F.-C.)
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de la Universidad, 03202 Elche, Spain; (A.M.-P.); (D.C.); (A.F.-C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (P.C.)
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (C.O.); (I.G.-M.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (P.C.)
| | - Alexander V. Kurkin
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, 119991 Moscow, Russia; (A.M.N.); (A.A.)
| |
Collapse
|
30
|
Hamity MV, Kolker SJ, Hegarty DM, Blum C, Langmack L, Aicher SA, Hammond DL. Nicotinamide Riboside Alleviates Corneal and Somatic Hypersensitivity Induced by Paclitaxel in Male Rats. Invest Ophthalmol Vis Sci 2022; 63:38. [PMID: 35084430 PMCID: PMC8802023 DOI: 10.1167/iovs.63.1.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Patients receiving chemotherapy may experience ocular discomfort and dry eye-like symptoms; the latter may be neuropathic in nature. This study assessed corneal and somatic hypersensitivity in male rats treated with paclitaxel and whether it was relieved by nicotinamide riboside (NR). Methods Corneal sensitivity to tactile and chemical stimulation, basal tear production, and sensitivity of the hindpaw to tactile and cool stimuli were assessed before and after paclitaxel in the absence and presence of sustained treatment with 500 mg/kg per os NR. Corneal nerve density and hindpaw intraepidermal nerve fiber (IENF) density were also examined. Results Paclitaxel-treated rats developed corneal hypersensitivity to tactile stimuli, enhanced sensitivity to capsaicin but not hyperosmolar saline, and increased basal tear production. Corneal nerve density visualized with anti-β-tubulin or calcitonin gene-related peptide (CGRP) was unaffected. Paclitaxel induced tactile and cool hypersensitivity of the hindpaw and a loss of nonpeptidergic hindpaw IENFs visualized with anti-protein gene product (PGP) 9.5 and CGRP. NR reversed tactile hypersensitivity of the cornea without suppressing tear production or chemosensitivity; it did not alter corneal afferent density. NR also reversed tactile and cool hypersensitivity of the hindpaw without reversing the loss of hindpaw IENFs. Conclusions These findings suggest that paclitaxel may be a good translational model for chemotherapy-induced ocular discomfort and that NR may be useful for its relief. The ability of NR to relieve somatic tactile hypersensitivity independent of changes in sensory nerve innervation suggests that reversal of terminal arbor degeneration is not critical to the actions of NR.
Collapse
Affiliation(s)
- Marta V. Hamity
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Sandra J. Kolker
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Deborah M. Hegarty
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Christopher Blum
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Lucy Langmack
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Sue A. Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Donna L. Hammond
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
31
|
Tei Y, Mikami Y, Ito M, Tomida T, Ohshima D, Hori Y, Adachi-Akahane S. Pathogenic Mechanism of Dry Eye-Induced Chronic Ocular Pain and a Mechanism-Based Therapeutic Approach. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 34989761 PMCID: PMC8742529 DOI: 10.1167/iovs.63.1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Dry eye–induced chronic ocular pain is also called ocular neuropathic pain. However, details of the pathogenic mechanism remain unknown. The purpose of this study was to elucidate the pathogenic mechanism of dry eye–induced chronic pain in the anterior eye area and develop a pathophysiology-based therapeutic strategy. Methods We used a rat dry eye model with lacrimal gland excision (LGE) to elucidate the pathogenic mechanism of ocular neuropathic pain. Corneal epithelial damage, hypersensitivity, and hyperalgesia were evaluated on the LGE side and compared with the sham surgery side. We analyzed neuronal activity, microglial and astrocytic activity, α2δ–1 subunit expression, and inhibitory interneurons in the trigeminal nucleus. We also evaluated the therapeutic effects of ophthalmic treatment and chronic pregabalin administration on dry eye–induced ocular neuropathic pain. Results Dry eye caused hypersensitivity and hyperalgesia on the LGE side. In the trigeminal nucleus of the LGE side, neuronal hyperactivation, transient activation of microglia, persistent activation of astrocytes, α2δ–1 subunit upregulation, and reduced numbers of inhibitory interneurons were observed. Ophthalmic treatment alone did not improve hyperalgesia. In contrast, continuous treatment with pregabalin effectively ameliorated hypersensitivity and hyperalgesia and normalized neural activity, α2δ–1 subunit upregulation, and astrocyte activation. Conclusions These results suggest that dry eye–induced hypersensitivity and hyperalgesia are caused by central sensitization in the trigeminal nucleus with upregulation of the α2δ–1 subunit. Here, we showed that pregabalin is effective for treating dry eye–induced ocular neuropathic pain even after chronic pain has been established.
Collapse
Affiliation(s)
- Yuto Tei
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Faculty of Medicine, Toho University, Tokyo, Japan.,Department of Physiology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoshinori Mikami
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Masanori Ito
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Taichiro Tomida
- Department of Physiology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Daisuke Ohshima
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yuichi Hori
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Satomi Adachi-Akahane
- Department of Physiology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
32
|
Messmer EM. Pathophysiology of dry eye disease and novel therapeutic targets. Exp Eye Res 2022; 217:108944. [DOI: 10.1016/j.exer.2022.108944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 01/08/2023]
|
33
|
Comes N, Gasull X, Callejo G. Proton Sensing on the Ocular Surface: Implications in Eye Pain. Front Pharmacol 2021; 12:773871. [PMID: 34899333 PMCID: PMC8652213 DOI: 10.3389/fphar.2021.773871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Protons reaching the eyeball from exogenous acidic substances or released from damaged cells during inflammation, immune cells, after tissue injury or during chronic ophthalmic conditions, activate or modulate ion channels present in sensory nerve fibers that innervate the ocular anterior surface. Their identification as well as their role during disease is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies. Among the ion channels expressed in trigeminal nociceptors innervating the anterior surface of the eye (cornea and conjunctiva) and annex ocular structures (eyelids), members of the TRP and ASIC families play a critical role in ocular acidic pain. Low pH (pH 6) activates TRPV1, a polymodal ion channel also activated by heat, capsaicin and hyperosmolar conditions. ASIC1, ASIC3 and heteromeric ASIC1/ASIC3 channels present in ocular nerve terminals are activated at pH 7.2–6.5, inducing pain by moderate acidifications of the ocular surface. These channels, together with TRPA1, are involved in acute ocular pain, as well as in painful sensations during allergic keratoconjunctivitis or other ophthalmic conditions, as blocking or reducing channel expression ameliorates ocular pain. TRPV1, TRPA1 and other ion channels are also present in corneal and conjunctival cells, promoting inflammation of the ocular surface after injury. In addition to the above-mentioned ion channels, members of the K2P and P2X ion channel families are also expressed in trigeminal neurons, however, their role in ocular pain remains unclear to date. In this report, these and other ion channels and receptors involved in acid sensing during ocular pathologies and pain are reviewed.
Collapse
Affiliation(s)
- Núria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
34
|
Enhanced Ocular Surface and Intraoral Nociception via a Transient Receptor Potential Vanilloid 1 Mechanism in a Rat Model of Obstructive Sleep Apnea. Neuroscience 2021; 483:66-81. [PMID: 34883200 DOI: 10.1016/j.neuroscience.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/28/2022]
Abstract
Obstructive sleep apnea (OSA), characterized by low arterial oxygen saturation during sleep, is associated with an increased risk of orofacial pain. In this study, we simulated chronic intermittent hypoxia (CIH) during the sleep/rest phase (light phase) to determine the role of transient receptor potential vanilloid 1 (TRPV1) in mediating enhanced orofacial nocifensive behavior and trigeminal spinal subnucleus caudalis (Vc) neuronal responses to capsaicin (a TRPV1 agonist) stimulation in a rat model of OSA. Rats were subjected to CIH (nadir O2, 5%) during the light phase for 8 or 16 consecutive days. CIH yielded enhanced behavioral responses to capsaicin after application to the ocular surface and intraoral mucosa, which was reversed under normoxic conditions. The percentage of TRPV1-immunoreactive trigeminal ganglion neurons was greater in CIH rats than in normoxic rats and recovered under normoxic conditions after CIH. The ratio of large-sized TRPV1-immunoreactive trigeminal ganglion neurons increased in CIH rats. The density of TRPV1 positive primary afferent terminals in the superficial laminae of Vc was higher in CIH rats. Phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive cells intermingled with the central terminal of TRPV1-positive afferents in the Vc. The number of pERK-immunoreactive cells following low-dose capsaicin (0.33 µM) application to the tongue was significantly greater in the middle portion of the Vc of CIH rats than of normoxic rats and recovered under normoxic conditions after CIH. These data suggest that CIH during the sleep (light) phase is sufficient to transiently enhance pain on the ocular surface and intraoral mucosa via TRPV1-dependent mechanisms.
Collapse
|
35
|
Bianchini G, Tomassetti M, Lillini S, Sirico A, Bovolenta S, Za L, Liberati C, Novelli R, Aramini A. Discovery of Novel TRPM8 Blockers Suitable for the Treatment of Somatic and Ocular Painful Conditions: A Journey through p Ka and LogD Modulation. J Med Chem 2021; 64:16820-16837. [PMID: 34762442 DOI: 10.1021/acs.jmedchem.1c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is crucially involved in pain modulation and perception, and TRPM8 antagonists have been proposed as potential therapeutic approaches for pain treatment. Previously, we developed two TRPM8 antagonists and proposed them as drug candidates for topical and systemic pain treatment. Here, we describe the design and synthesis of these two TRPM8 antagonists (27 and 45) and the rational approach of modulation/replacement of bioisosteric chemical groups, which allowed us to identify a combination of narrow ranges of pKa and LogD values that were crucial to ultimately optimize their potency and metabolic stability. Following the same approach, we then pursued the development of new TRPM8 antagonists suitable for the topical treatment of ocular painful conditions and identified two new compounds (51 and 59), N-alkoxy amide derivatives, that can permeate across ocular tissue and reduce the behavioral responses induced by the topical ocular menthol challenge in vivo.
Collapse
Affiliation(s)
- Gianluca Bianchini
- Research and Early Development, Dompé Farmaceutici S.p.A., Via Campo di Pile, 67100 L'Aquila, Italy
| | - Mara Tomassetti
- Research and Early Development, Dompé Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Samuele Lillini
- Research and Early Development, Dompé Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Anna Sirico
- Research and Early Development, Dompé Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | | | - Lorena Za
- Axxam S.p.A, Via Meucci 3, 20091 Bresso, Italy
| | | | - Rubina Novelli
- Research and Early Development, Dompé Farmaceutici S.p.A., Via Santa Lucia 6, 20122 Milano, Italy
| | - Andrea Aramini
- Research and Early Development, Dompé Farmaceutici S.p.A., Via Campo di Pile, 67100 L'Aquila, Italy
| |
Collapse
|
36
|
Mecum NE, Russell R, Lee J, Sullivan C, Meng ID. Optogenetic Inhibition of Nav1.8 Expressing Corneal Afferents Reduces Persistent Dry Eye Pain. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 34787642 PMCID: PMC8606841 DOI: 10.1167/iovs.62.14.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of the present study was to investigate the contribution of Nav1.8 expressing corneal afferent neurons to the presence of ongoing pain in lacrimal gland excision (LGE)-induced dry eye. Methods The proton pump archaerhodopsin-3/eGFP (ArchT/eGFP) was conditionally expressed in corneal afferents using Nav1.8-cre mice. Dry eye was produced by unilateral LGE. Real time place preference was assessed using a three-chamber apparatus. A neutral, unlit center chamber was flanked by one illuminated with a control light and one illuminated with an ArchT activating light. For real-time preference, animals were placed in the neutral chamber and tracked over five 10-minute sessions, with the lights turned on during the second and fourth sessions. In other studies, movement was tracked over three 10-minute sessions (the lights turned on only during the second session), with animals tested once per day over the course of 4 days. A local anesthetic was used to examine the role of ongoing corneal afferent activity in producing place preference. Results The corneal afferent nerves and trigeminal ganglion cell bodies showed a robust eGFP signal in Nav1.8-cre;ArchT/eGFP mice. After LGE, Nav1.8-cre;ArchT/eGFP mice demonstrated a preference for the ArchT activating light paired chamber. Preference was prevented with pre-application to the cornea of a local anesthetic. Nav1.8-cre;ArchT/eGFP mice with sham surgery and LGE wild-type control mice did not develop preference. Conclusions Results indicate LGE-induced persistent, ongoing pain, driven by Nav1.8 expressing corneal afferents. Inhibition of these neurons represents a potential strategy for treating ongoing dry eye-induced pain.
Collapse
Affiliation(s)
- Neal E Mecum
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States
| | - Rachel Russell
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States
| | - Jun Lee
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Department of Complete Denture Prosthodontics, School of Dentistry, Nihon University, Tokyo, Japan
| | - Cara Sullivan
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Graduate Studies in Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States
| | - Ian D Meng
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Graduate Studies in Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States.,Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States
| |
Collapse
|
37
|
Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem Pharmacol 2021; 189:114432. [PMID: 33513339 PMCID: PMC8187268 DOI: 10.1016/j.bcp.2021.114432] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
More than two decades after the natural gene-silencing mechanism of RNA interference was elucidated, small interfering RNA (siRNA)-based therapeutics have finally broken into the pharmaceutical market. With three agents already approved and many others in advanced stages of the drug development pipeline, siRNA drugs are on their way to becoming a standard modality of pharmacotherapy. The majority of late-stage candidates are indicated for rare or orphan diseases, whose patients have an urgent need for novel and effective therapies. Additionally, there are agents that have the potential to meet the need of a broader population. Inclisiran, for instance, is being developed for hypercholesterolemia and has shown benefit in patients who are uncontrolled even after maximal statin therapy. This review provides a brief overview of mechanisms of siRNA action, physiological barriers to its delivery and activity, and the most common chemical modifications and delivery platforms used to overcome these barriers. Furthermore, this review presents comprehensive profiles of the three approved siRNA drugs (patisiran, givosiran, and lumasiran) and the seven other siRNA candidates in Phase 3 clinical trials (vutrisiran, nedosiran, inclisiran, fitusiran, teprasiran, cosdosiran, and tivanisiran), summarizing their modifications and delivery strategies, disease-specific mechanisms of action, updated clinical trial status, and future outlooks.
Collapse
Affiliation(s)
- M May Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
38
|
Capsazepine decreases corneal pain syndrome in severe dry eye disease. J Neuroinflammation 2021; 18:111. [PMID: 33975636 PMCID: PMC8114509 DOI: 10.1186/s12974-021-02162-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022] Open
Abstract
Background Dry eye disease (DED) is a multifactorial disease of the ocular surface accompanied by neurosensory abnormalities. Here, we evaluated the effectiveness of transient receptor potential vanilloid-1 (TRPV1) blockade to alleviate ocular pain, neuroinflammation, and anxiety-like behavior associated with severe DED. Methods Chronic DED was induced by unilateral excision of the Harderian and extraorbital lacrimal glands of adult male mice. Investigations were conducted at 21 days after surgery. The mRNA levels of TRPV1, transient receptor potential ankyrin-1 (TRPA1), and acid-sensing ion channels 1 and 3 (ASIC1 and ASIC3) in the trigeminal ganglion (TG) were evaluated by RNAscope in situ hybridization. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous and stimulated (cold, heat, and acid) corneal nerve responsiveness in ex vivo eye preparations. DED mice received topical instillations of the TRPV1 antagonist (capsazepine) twice a day for 2 weeks from d7 to d21 after surgery. The expression of genes involved in neuropathic and inflammatory pain was evaluated in the TG using a global genomic approach. Chemical and mechanical corneal nociception and spontaneous ocular pain were monitored. Finally, anxiety-like behaviors were assessed by elevated plus maze and black and white box tests. Results First, in situ hybridization showed DED to trigger upregulation of TRPV1, TRPA1, ASIC1, and ASIC3 mRNA in the ophthalmic branch of the TG. DED also induced overexpression of genes involved in neuropathic and inflammatory pain in the TG. Repeated instillations of capsazepine reduced corneal polymodal responsiveness to heat, cold, and acidic stimulation in ex vivo eye preparations. Consistent with these findings, chronic capsazepine instillation inhibited the upregulation of genes involved in neuropathic and inflammatory pain in the TG of DED animals and reduced the sensation of ocular pain, as well as anxiety-like behaviors associated with severe DED. Conclusion These data provide novel insights on the effectiveness of TRPV1 antagonist instillation in alleviating abnormal corneal neurosensory symptoms induced by severe DED, opening an avenue for the repositioning of this molecule as a potential analgesic treatment for patients suffering from chronic DED.
Collapse
|
39
|
Lee WJ, Chun YS, Kim KW. Contributing Factors Affecting Ocular Discomfort on Instillation and Compliance of 0.1% Cyclosporine A Cationic Nanoemulsion. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2021. [DOI: 10.3341/jkos.2021.62.4.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
A pain-induced tonic hypodopaminergic state augments phasic dopamine release in the nucleus accumbens. Pain 2021; 161:2376-2384. [PMID: 32453137 DOI: 10.1097/j.pain.0000000000001925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diseases and disorders such as Parkinson disease, schizophrenia, and chronic pain are characterized by altered mesolimbic dopaminergic neurotransmission. Dopamine release in the nucleus accumbens influences behavior through both tonic and phasic signaling. Tonic dopamine levels are hypothesized to inversely regulate phasic signals through dopamine D2 receptor feedback inhibition. We tested this hypothesis directly in the context of ongoing pain. Tonic and phasic dopamine signals were measured using fast-scan controlled-adsorption voltammetry and fast-scan cyclic voltammetry, respectively, in the nucleus accumbens shell of male rats with standardized levels of anesthesia. Application of capsaicin to the cornea produced a transient decrease in tonic dopamine levels. During the pain-induced hypodopaminergic state, electrically evoked phasic dopamine release was significantly increased when compared to baseline, evoked phasic release. A second application of capsaicin to the same eye had a lessened effect on tonic dopamine suggesting desensitization of TRPV1 channels in that eye. Capsaicin treatment in the alternate cornea, however, again produced coincident decreased dopaminergic tone and increased phasic dopamine release. These findings occurred independently of stimulus lateralization relative to the hemisphere of dopamine measurement. Our data show that (1) the mesolimbic dopamine circuit reliably encodes acute noxious stimuli; (2) ongoing pain produces decreases in dopaminergic tone; and (3) pain-induced decreases in tonic dopamine correspond to augmented evoked phasic dopamine release. Enhanced phasic dopamine neurotransmission resulting from salient stimuli may contribute to increased impulsivity and cognitive deficits often observed in conditions associated with decreased dopaminergic tone, including Parkinson disease and chronic pain.
Collapse
|
41
|
Senthil K, Jiao H, Downie LE, Chinnery HR. Altered Corneal Epithelial Dendritic Cell Morphology and Phenotype Following Acute Exposure to Hyperosmolar Saline. ACTA ACUST UNITED AC 2021; 62:38. [PMID: 33625479 PMCID: PMC7910639 DOI: 10.1167/iovs.62.2.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose The purpose of this study was to assess the morphological and phenotypic responses of corneal epithelial dendritic cells (DCs) to acute topical hyperosmolar stress, given a pathogenic role for tear hyperosmolarity in dry eye disease (DED). Methods C57BL/6J mice were anesthetized and received 350 mOsm/L (physiological; n = 5 mice), 450 mOsm/L (n = 6), or 600 mOsm/L (n = 6) saline on a randomly assigned eye. Corneas were harvested 2 hours later. Immunofluorescent staining was performed using CD45, CD86, and CD68 antibodies to investigate DC morphology (density, viability, field area, circularity, and dendritic complexity) and immunological phenotype. Flow cytometry was used to confirm CD86 and CD68 expression in CD11c+ DCs, using C57BL/6J mice that received topical applications of 350 mOsm/L, 450 mOsm/L, or 600 mOsm/L (n = 5 per group) bilaterally for 2 hours. Results Following exposure to 450 mOsm/L topical saline for 2 hours, DCs in the central and peripheral cornea were larger (field area: Pcentral = 0.005, Pperipheral = 0.037; circularity: Pcentral = 0.026, and Pperipheral = 0.013) and had higher expression of CD86 compared with 350 mOsm/L controls (immunofluorescence: P < 0.0001; flow cytometry: P = 0.0058). After application of 600 mOsm/L saline, DC morphology was unchanged, although the percentage of fragmented DCs, and phenotypic expression of CD86 (immunofluorescence: P < 0.0001; and flow cytometry: P = 0.003) and CD68 (immunofluorescence: P = 0.024) were higher compared to 350 mOsm/L controls. Conclusions Short-term exposure to mild hyperosmolar saline (450 mOsm/L) induced morphological and phenotypic maturation in corneal epithelial DCs. More severe hyperosmolar insult (600 mOsm/L) for 2 hours appeared toxic to these cells. These data suggest that hyperosmolar conditions activate corneal DCs, which may have implications for understanding DC activation in DED.
Collapse
Affiliation(s)
- Kirthana Senthil
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura E. Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Holly R. Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Borchman D. Lipid conformational order and the etiology of cataract and dry eye. J Lipid Res 2021; 62:100039. [PMID: 32554545 PMCID: PMC7910524 DOI: 10.1194/jlr.tr120000874] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Lens and tear film lipids are as unique as the systems they reside in. The major lipid of the human lens is dihydrosphingomylein, found in quantity only in the lens. The lens contains a cholesterol to phospholipid molar ratio as high as 10:1, more than anywhere else in the body. Lens lipids contribute to maintaining lens clarity, and alterations in lens lipid composition due to age are likely to contribute to cataract. Lens lipid composition reflects adaptations to the unique characteristics of the lens: no turnover of lens lipids or proteins; the lowest amount of oxygen of any tissue; and contains almost no intracellular organelles. The tear film lipid layer (TFLL) is also unique. The TFLL is a thin (100 nm) layer of lipid on the surface of tears covering the cornea that contributes to tear film stability. The major lipids of the TFLL are wax esters and cholesterol esters that are not found in the lens. The hydrocarbon chains associated with the esters are longer than those found anywhere else in the body (as long as 32 carbons), and many are branched. Changes in the composition and structure of the 30,000 different moieties of TFLL contribute to the instability of tears. The focus of the current review is how spectroscopy has been used to elucidate the relationships between lipid composition, conformational order and function, and the etiology of cataract and dry eye.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202.
| |
Collapse
|
43
|
Wang Q, Zhang Y, Liu J, Zhang W. Quaternary Lidocaine Derivatives: Past, Present, and Future. Drug Des Devel Ther 2021; 15:195-207. [PMID: 33469271 PMCID: PMC7813469 DOI: 10.2147/dddt.s291229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/25/2020] [Indexed: 02/05/2023] Open
Abstract
Local anesthetics have the advantage of complete analgesia with fewer side effects compared to systemic analgesics. However, their clinical use is limited due to their short duration of action. Thus, local anesthetics with fast onset, long duration of action, selective nociceptive block, and low local and systemic toxicity are highly desirable. In the past electrophysiological studies, quaternary lidocaine derivatives (QLDs) showed these characteristics. Here, we review electrophysiological properties of QLDs and their pharmacodynamic characteristics to shed light on potential problems.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yujun Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wensheng Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
44
|
Masuoka T, Yamashita Y, Nakano K, Takechi K, Niimura T, Tawa M, He Q, Ishizawa K, Ishibashi T. Chronic Tear Deficiency Sensitizes Transient Receptor Potential Vanilloid 1-Mediated Responses in Corneal Sensory Nerves. Front Cell Neurosci 2020; 14:598678. [PMID: 33424555 PMCID: PMC7785588 DOI: 10.3389/fncel.2020.598678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic tear deficiency enhances the excitability of corneal cold-sensitive nerves that detect ocular dryness, which can lead to discomfort in patients with dry eye disease (DED). However, changes in corneal nerve excitations through the polymodal nociceptor “transient receptor potential vanilloid 1” (TRPV1) and the potential link between this receptor and symptoms of DED remain unclear. In this study, we examined the firing properties of corneal cold-sensitive nerves expressing TRPV1 and possible contributions of chronic tear deficiency to corneal nerve excitability by TRPV1 activation. The bilateral excision of lacrimal glands in guinea pigs decreased the tear volume and increased the frequency of spontaneous eyeblinks 1–4 weeks after surgery. An analysis of the firing properties of the cold-sensitive nerves was performed by single-unit recordings of corneal preparations 4 weeks after surgery in both the sham-operated and gland-excised groups. Perfusion of the TRPV1 agonist, capsaicin (1 μM), transiently increased the firing frequency in approximately 46–48% of the cold-sensitive nerves characterized by low-background activity and high threshold (LB-HT) cold thermoreceptors in both groups. Gland excision significantly decreased the latency of capsaicin-induced firing in cold-sensitive nerves; however, its magnitude was unchanged. Calcium imaging of cultured trigeminal ganglion neurons from both groups showed that intracellular calcium elevation of corneal neurons induced by a low concentration of capsaicin (0.03 μM) was significantly larger in the gland excision group, regardless of responsiveness to cold. An immunohistochemical study of the trigeminal ganglion revealed that gland excision significantly increased the proportion of corneal neurons enclosed by glial fibrillary acidic protein (GFAP)-immunopositive satellite glial cells. Topical application of the TRPV1 antagonist, A784168 (30 μM), on the ocular surface attenuated eye-blink frequency after gland excision. Furthermore, gland excision enhanced blink behavior induced by a low concentration of capsaicin (0.1 μM). These results suggest that chronic tear deficiency sensitizes the TRPV1-mediated response in the corneal LB-HT cold thermoreceptors and cold-insensitive polymodal nociceptors, which may be linked to dry eye discomfort and hyperalgesia resulting from nociceptive stimuli in aqueous-deficient dry eyes.
Collapse
Affiliation(s)
- Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Yuka Yamashita
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Katsuya Nakano
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Kenshi Takechi
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Drug Information Analysis, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Tawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Qiang He
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
45
|
CannabinEYEds: The Endocannabinoid System as a Regulator of the Ocular Surface Nociception, Inflammatory Response, Neovascularization and Wound Healing. J Clin Med 2020; 9:jcm9124036. [PMID: 33327429 PMCID: PMC7764860 DOI: 10.3390/jcm9124036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is a complex regulatory system, highly conserved among vertebrates. It has been widely described in nearly all human tissues. In the conjunctiva and cornea, the ECS is believed to play a pivotal role in the modulation of the local inflammatory state as well as in the regulation of tissue repair and fibrosis, neo-angiogenesis and pain perception. This review aims to summarize all the available data on ECS expression and its function in ocular surface structures to provide a specific insight concerning its modulation in dry eye disease, and to propose directions for future research.
Collapse
|
46
|
Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, Réaux-Le Goazigo A. Morphological and Functional Changes of Corneal Nerves and Their Contribution to Peripheral and Central Sensory Abnormalities. Front Cell Neurosci 2020; 14:610342. [PMID: 33362474 PMCID: PMC7758484 DOI: 10.3389/fncel.2020.610342] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
The cornea is the most densely innervated and sensitive tissue in the body. The cornea is exclusively innervated by C- and A-delta fibers, including mechano-nociceptors that are triggered by noxious mechanical stimulation, polymodal nociceptors that are excited by mechanical, chemical, and thermal stimuli, and cold thermoreceptors that are activated by cooling. Noxious stimulations activate corneal nociceptors whose cell bodies are located in the trigeminal ganglion (TG) and project central axons to the trigeminal brainstem sensory complex. Ocular pain, in particular, that driven by corneal nerves, is considered to be a core symptom of inflammatory and traumatic disorders of the ocular surface. Ocular surface injury affecting corneal nerves and leading to inflammatory responses can occur under multiple pathological conditions, such as chemical burn, persistent dry eye, and corneal neuropathic pain as well as after some ophthalmological surgical interventions such as photorefractive surgery. This review depicts the morphological and functional changes of corneal nerve terminals following corneal damage and dry eye disease (DED), both ocular surface conditions leading to sensory abnormalities. In addition, the recent fundamental and clinical findings of the importance of peripheral and central neuroimmune interactions in the development of corneal hypersensitivity are discussed. Next, the cellular and molecular changes of corneal neurons in the TG and central structures that are driven by corneal nerve abnormalities are presented. A better understanding of the corneal nerve abnormalities as well as neuroimmune interactions may contribute to the identification of a novel therapeutic targets for alleviating corneal pain.
Collapse
Affiliation(s)
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, IHU FOReSIGHT, Paris, France.,CHNO des Quinze-Vingts, IHU FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | | | | |
Collapse
|
47
|
Fakih D, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. TRPM8: A Therapeutic Target for Neuroinflammatory Symptoms Induced by Severe Dry Eye Disease. Int J Mol Sci 2020; 21:E8756. [PMID: 33228217 PMCID: PMC7699525 DOI: 10.3390/ijms21228756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Dry eye disease (DED) is commonly associated with ocular surface inflammation and pain. In this study, we evaluated the effectiveness of repeated instillations of transient receptor potential melastatin 8 (TRPM8) ion channel antagonist M8-B on a mouse model of severe DED induced by the excision of extra-orbital lacrimal and Harderian glands. M8-B was topically administered twice a day from day 7 until day 21 after surgery. Cold and mechanical corneal sensitivities and spontaneous ocular pain were monitored at day 21. Ongoing and cold-evoked ciliary nerve activities were next evaluated by electrophysiological multi-unit extracellular recording. Corneal inflammation and expression of genes related to neuropathic pain and inflammation were assessed in the trigeminal ganglion. We found that DED mice developed a cold allodynia consistent with higher TRPM8 mRNA expression in the trigeminal ganglion (TG). Chronic M8-B instillations markedly reversed both the corneal mechanical allodynia and spontaneous ocular pain commonly associated with persistent DED. M8-B instillations also diminished the sustained spontaneous and cold-evoked ciliary nerve activities observed in DED mice as well as inflammation in the cornea and TG. Overall, our study provides new insight into the effectiveness of TRPM8 blockade for alleviating corneal pain syndrome associated with severe DED, opening a new avenue for ocular pain management.
Collapse
Affiliation(s)
- Darine Fakih
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- R&D Department, Laboratoires Théa, 12 rue Louis Biérot, F-63000 Clermont-Ferrand, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, F-75012 Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, 9 avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| |
Collapse
|
48
|
Kaido M, Inoue S, Kawashima M, Ishida R, Nakamura S, Tsubota K. Role of transient receptor potential melastatin 8 activity in menthol-induced cold sensitivity and its qualitative perception in dry eye. Ocul Surf 2020; 19:307-312. [PMID: 33127598 DOI: 10.1016/j.jtos.2020.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the role of transient receptor potential melastatin 8 (TRPM8) activity in menthol-induced cold sensitivity and its qualitative perception in patients with dry eye (DE). METHODS This prospective, cross-sectional, comparative study included 52 eyes of 52 subjects (mean age: 66.8 ± 9.2 years; range: 44-86) with a tear break-up time (TBUT) of ≤5 s. The participants were classified into three groups: 17 patients with DE symptoms and keratoconjunctival (KC) staining scores of ≥3 points (positive KC-DE group), 18 patients with DE symptoms and KC staining scores of <3 points (negative KC-DE group), and 17 individuals with KC staining scores of <3 points and no symptoms (non-DE control group). The menthol-induced cool sensation (M-cool) and TBUT were measured after administration of 2 μl of 1.0 mM menthol eye drops. Furthermore, participants answered a questionnaire regarding their stimulus perception (pleasant, unpleasant, or neither). RESULTS M-cool values were similar in the three groups. TBUT significantly increased in the negative KC-DE and control groups (P < 0.05) and remained unchanged in the positive KC-DE group (P > 0.05) after menthol administration. DE patients reported the sensation as pleasant or unpleasant, whereas most control participants were indifferent (P < 0.05). CONCLUSIONS While M-cold sensitivity was similar in DE and control groups, its qualitative perception differed between these groups. Thus, TRPM8 activation at the peripheral level alone may not be sufficient to account for the manifestation of discomfort symptoms associated with DE.
Collapse
Affiliation(s)
- Minako Kaido
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Wada Eye Clinic, Chiba, Japan; Ishida Eye Clinic, Shizuoka, Japan.
| | - Sachiko Inoue
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Haneginomori Eye Clinic, Tokyo, Japan
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Reiko Ishida
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Ishida Eye Clinic, Shizuoka, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Tsubota Laboratory, Inc., Tokyo, Japan
| |
Collapse
|
49
|
Lacrimal gland excision in male and female mice causes ocular pain and anxiety-like behaviors. Sci Rep 2020; 10:17225. [PMID: 33057056 PMCID: PMC7560880 DOI: 10.1038/s41598-020-73945-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Lacrimal gland excision (LGE) induced dry eye produces more severe corneal damage in female mice, yet signs of LGE-induced ocular pain and anxiety in male and female mice have not been characterized. Excision of either the extraorbital gland (single LGE), or both the extraorbital and intraorbital glands (double LGE) was performed in male and female C57BL/6J mice to induce moderate and severe dry eye. Ongoing pain was assessed by quantifying palpebral opening and evoked nociceptive responses after corneal application of capsaicin and menthol. The open-field and plus maze were used to assess anxiety. Single LGE caused a reduction in palpebral opening and an increase in capsaicin and menthol-evoked responses only in female mice. Furthermore, single LGE produced signs of increased anxiety in female but not male mice. Overall, female mice appear more susceptible to signs of ocular pain, irritation, and anxiety in response to aqueous tear deficiency.
Collapse
|
50
|
Patel S, Hwang J, Mehra D, Galor A. Corneal Nerve Abnormalities in Ocular and Systemic Diseases. Exp Eye Res 2020; 202:108284. [PMID: 33045221 DOI: 10.1016/j.exer.2020.108284] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022]
Abstract
The trigeminal nerve gives rise to the corneal subbasal nerve system, which plays a crucial role in sensations of touch, pain, and temperature and in ocular healing processes. Technological advancements in instruments, in particular in vivo confocal microscopy and aethesiometry, have allowed for the structural and functional evaluation of corneal nerves in health and disease. Through application of these technologies in humans and animal models, structural and functional abnormalities have been detected in several ocular and systemic disorders, including dry eye disease (DED), glaucoma, migraine, and fibromyalgia. However, studies across a number of conditions have found that structural abnormalities do not always relate to functional abnormalities. This review will discuss instruments used to evaluate corneal nerves and summarize data on nerve abnormalities in a number of ocular and systemic conditions. Furthermore, it will discuss potential treatments that can alleviate the main manifestations of nerve dysfunction, namely ocular surface pain and persistent epithelial defects.
Collapse
Affiliation(s)
- Sneh Patel
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Jodi Hwang
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Divy Mehra
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Anat Galor
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Research Services, Miami Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|