1
|
Yuan Y, Dong M, Wen S, Yuan X, Zhou L. Retinal microcirculation: A window into systemic circulation and metabolic disease. Exp Eye Res 2024; 242:109885. [PMID: 38574944 DOI: 10.1016/j.exer.2024.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
The retinal microcirculation system constitutes a unique terminal vessel bed of the systemic circulation, and its perfusion status is directly associated with the neural function of the retina. This vascular network, essential for nourishing various layers of the retina, comprises two primary microcirculation systems: the retinal microcirculation and the choroidal microcirculation, with each system supplying blood to distinct retinal layers and maintaining the associated neural function. The blood flow of those capillaries is regulated via different mechanisms. However, a range of internal and external factors can disrupt the normal architecture and blood flow within the retinal microcirculation, leading to several retinal pathologies, including diabetic retinopathy, macular edema, and vascular occlusions. Metabolic disturbances such as hyperglycemia, hypertension, and dyslipidemia are known to modify retinal microcirculation through various pathways. These alterations are observable in chronic metabolic conditions like diabetes, coronary artery disease, and cerebral microvascular disease due to advances in non-invasive or minimally invasive retinal imaging techniques. Thus, examination of the retinal microcirculation can provide insights into the progression of numerous chronic metabolic disorders. This review discusses the anatomy, physiology and pathophysiology of the retinal microvascular system, with a particular emphasis on the connections between retinal microcirculation and systemic circulation in both healthy states and in the context of prevalent chronic metabolic diseases.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China; Graduate School of Hebei Medical University, Shijiazhuang, China.
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China; Graduate School of Hebei Medical University, Shijiazhuang, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, China.
| |
Collapse
|
2
|
Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Sitting leg vasculopathy: potential adaptations beyond the endothelium. Am J Physiol Heart Circ Physiol 2024; 326:H760-H771. [PMID: 38241008 PMCID: PMC11221807 DOI: 10.1152/ajpheart.00489.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
Increased sitting time, the most common form of sedentary behavior, is an independent risk factor for all-cause and cardiovascular disease mortality; however, the mechanisms linking sitting to cardiovascular risk remain largely elusive. Studies over the last decade have led to the concept that excessive time spent in the sitting position and the ensuing reduction in leg blood flow-induced shear stress cause endothelial dysfunction. This conclusion has been mainly supported by studies using flow-mediated dilation in the lower extremities as the measured outcome. In this review, we summarize evidence from classic studies and more recent ones that collectively support the notion that prolonged sitting-induced leg vascular dysfunction is likely also attributable to changes occurring in vascular smooth muscle cells (VSMCs). Indeed, we provide evidence that prolonged constriction of resistance arteries can lead to modifications in the structural characteristics of the vascular wall, including polymerization of actin filaments in VSMCs and inward remodeling, and that these changes manifest in a time frame that is consistent with the vascular changes observed with prolonged sitting. We expect this review will stimulate future studies with a focus on VSMC cytoskeletal remodeling as a potential target to prevent the detrimental vascular ramifications of too much sitting.
Collapse
Affiliation(s)
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
3
|
Shigesada N, Shikada N, Shirai M, Toriyama M, Higashijima F, Kimura K, Kondo T, Bessho Y, Shinozuka T, Sasai N. Combination of blockade of endothelin signalling and compensation of IGF1 expression protects the retina from degeneration. Cell Mol Life Sci 2024; 81:51. [PMID: 38252153 PMCID: PMC10803390 DOI: 10.1007/s00018-023-05087-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Retinitis pigmentosa (RP) and macular dystrophy (MD) cause severe retinal dysfunction, affecting 1 in 4000 people worldwide. This disease is currently assumed to be intractable, because effective therapeutic methods have not been established, regardless of genetic or sporadic traits. Here, we examined a RP mouse model in which the Prominin-1 (Prom1) gene was deficient and investigated the molecular events occurring at the outset of retinal dysfunction. We extracted the Prom1-deficient retina subjected to light exposure for a short time, conducted single-cell expression profiling, and compared the gene expression with and without stimuli. We identified the cells and genes whose expression levels change directly in response to light stimuli. Among the genes altered by light stimulation, Igf1 was decreased in rod photoreceptor cells and astrocytes under the light-stimulated condition. Consistently, the insulin-like growth factor (IGF) signal was weakened in light-stimulated photoreceptor cells. The recovery of Igf1 expression with the adeno-associated virus (AAV) prevented photoreceptor cell death, and its treatment in combination with the endothelin receptor antagonist led to the blockade of abnormal glial activation and the promotion of glycolysis, thereby resulting in the improvement of retinal functions, as assayed by electroretinography. We additionally demonstrated that the attenuation of mammalian/mechanistic target of rapamycin (mTOR), which mediates IGF signalling, leads to complications in maintaining retinal homeostasis. Together, we propose that combinatorial manipulation of distinct mechanisms is useful for the maintenance of the retinal condition.
Collapse
Affiliation(s)
- Naoya Shigesada
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Naoya Shikada
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan
| | - Michinori Toriyama
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, 669-1337, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, 755-0046, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, 755-0046, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Yasumasa Bessho
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takuma Shinozuka
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Noriaki Sasai
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| |
Collapse
|
4
|
Danielescu C, Dabija MG, Nedelcu AH, Lupu VV, Lupu A, Ioniuc I, Gîlcă-Blanariu GE, Donica VC, Anton ML, Musat O. Automated Retinal Vessel Analysis Based on Fundus Photographs as a Predictor for Non-Ophthalmic Diseases-Evolution and Perspectives. J Pers Med 2023; 14:45. [PMID: 38248746 PMCID: PMC10817503 DOI: 10.3390/jpm14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
The study of retinal vessels in relation to cardiovascular risk has a long history. The advent of a dedicated tool based on digital imaging, i.e., the retinal vessel analyzer, and also other software such as Integrative Vessel Analysis (IVAN), Singapore I Vessel Assessment (SIVA), and Vascular Assessment and Measurement Platform for Images of the Retina (VAMPIRE), has led to the accumulation of a formidable body of evidence regarding the prognostic value of retinal vessel analysis (RVA) for cardiovascular and cerebrovascular disease (including arterial hypertension in children). There is also the potential to monitor the response of retinal vessels to therapies such as physical activity or bariatric surgery. The dynamic vessel analyzer (DVA) remains a unique way of studying neurovascular coupling, helping to understand the pathogenesis of cerebrovascular and neurodegenerative conditions and also being complementary to techniques that measure macrovascular dysfunction. Beyond cardiovascular disease, retinal vessel analysis has shown associations with and prognostic value for neurological conditions, inflammation, kidney function, and respiratory disease. Artificial intelligence (AI) (represented by algorithms such as QUantitative Analysis of Retinal vessel Topology and siZe (QUARTZ), SIVA-DLS (SIVA-deep learning system), and many others) seems efficient in extracting information from fundus photographs, providing prognoses of various general conditions with unprecedented predictive value. The future challenges will be integrating RVA and other qualitative and quantitative risk factors in a unique, comprehensive prediction tool, certainly powered by AI, while building the much-needed acceptance for such an approach inside the medical community and reducing the "black box" effect, possibly by means of saliency maps.
Collapse
Affiliation(s)
- Ciprian Danielescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Marius Gabriel Dabija
- Department of Surgery II, Discipline of Neurosurgery, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Alin Horatiu Nedelcu
- Department of Morpho-Functional Sciences I, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Vasile Valeriu Lupu
- Department of Pediatrics, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.V.L.); (I.I.)
| | - Ancuta Lupu
- Department of Pediatrics, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.V.L.); (I.I.)
| | - Ileana Ioniuc
- Department of Pediatrics, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.V.L.); (I.I.)
| | | | - Vlad-Constantin Donica
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.-C.D.); (M.-L.A.)
| | - Maria-Luciana Anton
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.-C.D.); (M.-L.A.)
| | - Ovidiu Musat
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucuresti, Romania;
| |
Collapse
|
5
|
Lin W, Xiong J, Jiang Y, Liu H, Bian J, Wang J, Shao Y, Ni B. Fibrillin-1 mutation contributes to Marfan syndrome by inhibiting Cav1.2-mediated cell proliferation in vascular smooth muscle cells. Channels (Austin) 2023; 17:2192377. [PMID: 36972239 PMCID: PMC10054150 DOI: 10.1080/19336950.2023.2192377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutation in fibrillin-1 (FBN1). However, the molecular mechanism underlying MFS remains poorly understood. The study aimed to explore how the L-type calcium channel (CaV1.2) modulates disease progression of MFS and to identify a potential effective target for attenuating MFS. KEGG enrichment analysis showed that the calcium signaling pathway gene set was significantly enriched. We demonstrated that FBN1 deficiency exhibited inhibition on both the expression of Cav1.2 and proliferation of vascular smooth muscle cells (VSMCs). Then, we examined whether FBN1 mediates Cav1.2 via regulating TGF-β1. Higher levels of TGF-β1 were observed in the serum and aortic tissues from patients with MFS. TGF-β1 modulated Cav1.2 expression in a concentration-dependent manner. We evaluated the role of Cav1.2 in MFS by small interfering RNA and Cav1.2 agonist Bay K8644. The effect of Cav1.2 on cell proliferation was dependent on c-Fos activity. These results demonstrated FBN1 deficiency decreased the expression levels of Cav1.2 via regulation of TGF-β1, and downregulation of Cav1.2 inhibited cell proliferation of human aortic smooth muscle cells (HASMCs) in MFS patients. These findings suggest that Cav1.2 may be an appealing therapeutic target for MFS.
Collapse
Affiliation(s)
- Wenfeng Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaqi Xiong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yefan Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhui Bian
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juejin Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Buqing Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Endothelial contraction of retinal veins. Exp Eye Res 2023; 228:109386. [PMID: 36657697 DOI: 10.1016/j.exer.2023.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
We have previously reported that porcine retinal veins can be contracted by vasoactive factors such as endothelin-1, but it is still unknown which cells play the major role in such contraction responses. This study seeks to confirm whether retinal vein endothelial cells play a significant role in the endothelin-1 induced contraction of porcine retinal veins. This is a novel study which provides confirmation of the endothelial cells' ability to contract retinal veins using a live vessel preparation. Retinal veins were isolated from porcine retina and cannulated for perfusion. The vessels were exposed to extraluminal delivery of endothelin-1 (10-8 M) and change in vessel diameter recorded automatically every 2 s. A phase contrast objective lens was also used to capture images of the endothelial cell morphometries. The length, width, area, and perimeter were assessed. In addition, vein histology and immuno-labeling for contractile proteins was performed. With 10-8 M endothelin-1 contractions to 63.6% of baseline were seen. The polygonal shape of the endothelial cells under normal tone became spindle-like after contraction. The area, width, perimeter and length were significantly reduced by 54.8%, 48.1%, 28.5% and 10.5% respectively. Three contractile proteins, myosin, calponin and alpha-SMA were found in retinal vein endothelial cells. Retinal vein endothelial cells contain contractile proteins and can be contracted by endothelin-1 administration. Such contractile capability may be important in regulating retinal perfusion but could also be a factor in the pathogenesis of retinal vascular diseases such as retinal vein occlusion. As far as we are aware, this is the first study on living isolated veins to confirm that endothelial cells contribute to the endothelin-1 induced contraction.
Collapse
|
7
|
Bhatti F, Yu Y, Ying GS, Tomlinson LA, Binenbaum G. Association of Cardiovascular Disease with Retinopathy of Prematurity. Ophthalmic Epidemiol 2023; 30:95-102. [PMID: 35137647 PMCID: PMC9360191 DOI: 10.1080/09286586.2022.2036766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE To determine the associations of presence and types of cardiovascular diseases (CVDs) with development of retinopathy of prematurity (ROP) in premature infants undergoing ROP examinations. STUDY DESIGN We performed secondary analyses of data from the multi-center Postnatal Growth and ROP Validation Study (GROP-2). CVD was categorized based on pulmonary blood flow (PBF), systemic blood flow (SBF), pulmonary hypertension (PPHN), or dysrhythmia. Adjusted odds ratios (aOR) and 95% confidence intervals (95% CI) were calculated from multivariable logistic regression models that included any ROP or severe ROP as outcome variable and any CVD or type of CVD as independent variable, with adjustment of covariates including birth weight (BW), gestational age (GA), and days on supplemental oxygen in the first month of postnatal life. RESULT Among 3980 infants, 528 (13.3%) had CVD (304 had increased PBF, 101 had decreased PBF, and 49 had PPHN), 1643 (40.4%) developed ROP, and 503 (12.6%) developed severe ROP. In multivariable analyses, presence of CVD was not significantly associated with increased risk of any ROP (aOR = 1.15, 95% CI: 0.90-1.46, p = .26) or severe ROP (aOR = 0.98, 95% CI: 0.72-1.34, p = .92). However, there were trends associating CVD resulting in increased PBF with a higher risk of ROP (aOR = 1.32, 95% CI: 0.97-1.80, p = .08) and PPHN with a higher risk of severe ROP (aOR = 2.04, 95% CI: 0.96-4.35, p = .07). When adjusting only for BW and GA, these associations were significant (aOR = 1.47, 95% CI: 1.09-1.99, and aOR = 2.35, 95% CI: 1.19-4.65, respectively). CONCLUSION CVD with increased PBF likely increases the risk of ROP. PPHN likely increases the risk of severe ROP.
Collapse
Affiliation(s)
- Faizah Bhatti
- Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yinxi Yu
- Center for Preventive Ophthalmology and Biostatistics, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA
| | - Gui-shuang Ying
- Center for Preventive Ophthalmology and Biostatistics, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA
| | | | - Gil Binenbaum
- The Children’s Hospital of Philadelphia, Philadelphia PA
- Center for Preventive Ophthalmology and Biostatistics, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA
| |
Collapse
|
8
|
Fekri S, Nourinia R, Rahimi-Ardabili B, Daneshtalab A, Sabbaghi H, Ahmadieh H, Kheiri B. Combined intravitreal injection of bevacizumab and a ROCK inhibitor (fasudil) for refractory macular edema secondary to retinal vein occlusion: a pilot study. Int J Retina Vitreous 2022; 8:37. [PMID: 35690809 PMCID: PMC9188184 DOI: 10.1186/s40942-022-00389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 05/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background To investigate the adjunctive effect of an intravitreal ROCK inhibitor (fasudil) in combination with intravitreal bevacizumab (IVB) on refractory macular edema secondary to retinal vein occlusion (RVO). Methods In this prospective interventional case series, 17 eyes of 17 patients (10 men, 7 women) with refractory RVO-related macular edema underwent three consecutive intravitreal injections of bevacizumab plus fasudil. Monthly evaluation was continued up to 12 months and IVB injection was performed if needed during the follow-up. Changes in the best corrected visual acuity (BCVA) was the primary outcome measure. The secondary outcome measures included central macular thickness (CMT) changes and any adverse events. Results BCVA significantly improved (mean change: −0.15 LogMAR; P = 0.017) after 3 consecutive intravitreal injections of fasudil in combination with bevacizumab. CMT significantly decreased (mean change: −206 µm; P = 0.028). The anatomical and functional improvement was maintained during the 12 month follow-up. No adverse effects were noticed. Conclusion Intravitreal ROCK inhibitors may break the resistance to anti-VEGF therapy and improve the RVO induced macular edema via affecting the VEGF-independent pathways.
Collapse
Affiliation(s)
- Sahba Fekri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, No 23, Paidarfard St., Boostan 9 St., Pasdaran Ave, Tehran, 16666, Iran.,Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Nourinia
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, No 23, Paidarfard St., Boostan 9 St., Pasdaran Ave, Tehran, 16666, Iran. .,Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Babak Rahimi-Ardabili
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, No 23, Paidarfard St., Boostan 9 St., Pasdaran Ave, Tehran, 16666, Iran
| | - Arash Daneshtalab
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, No 23, Paidarfard St., Boostan 9 St., Pasdaran Ave, Tehran, 16666, Iran
| | - Hamideh Sabbaghi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, No 23, Paidarfard St., Boostan 9 St., Pasdaran Ave, Tehran, 16666, Iran
| | - Bahareh Kheiri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, No 23, Paidarfard St., Boostan 9 St., Pasdaran Ave, Tehran, 16666, Iran
| |
Collapse
|
9
|
List W, Weger M, Pinter-Hausberger S, Posch F, Rabensteiner J, Pailer S, Wedrich A, Posch-Pertl L. ENDOTHELIN-1 AS A RISK FACTOR IN RETINAL VEIN OCCLUSION. Retina 2022; 42:738-743. [PMID: 34861658 DOI: 10.1097/iae.0000000000003374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Retinal vein occlusion (RVO) risk factors largely coincide with cardiovascular risk factors. Endothelin-1 (ET-1), the most potent vasoconstrictor with proinflammatory properties, is a known cardiovascular risk factor. In this study, we explore the role of serum ET-1 as a potential risk factor for RVO. METHODS Endothelin-1 serum levels were measured in patients with RVO and control subjects. Samples were measured using the sandwich enzyme-linked immunosorbent assay for the quantitative determination of human big endothelin-1 (Biomedica Group, Austria). RESULTS The study consisted of 147 RVO patients and 150 control subjects. Median serum ET-1 was significantly higher in RVO patients (0.26 pmol/L; range, 0.19-0.37 pmol/L) compared with control subjects (0.10 pmol/L; range, 0.05-0.22 pmol/L) (P < 0.0001) independent of the occlusion site. The difference remained significant after adjusting for arterial hypertension, diabetes mellitus, history of stroke, history of myocardial infarction, history of venous thromboembolism, glomerular filtration rate, and c-reactive protein. CONCLUSION In conclusion, our results suggest that ET-1 is a potential risk factor for all types of RVO.
Collapse
Affiliation(s)
- Wolfgang List
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Martin Weger
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | | | - Florian Posch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria ; and
| | - Jasmin Rabensteiner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Sabine Pailer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Wedrich
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Laura Posch-Pertl
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Rho kinase inhibition ameliorates vascular remodeling and blood pressure elevations in a rat model of apatinib-induced hypertension. J Hypertens 2022; 40:675-684. [PMID: 34862331 PMCID: PMC8901036 DOI: 10.1097/hjh.0000000000003060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Hypertension is one of the major adverse effects of tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factors. However, the mechanism underlying TKIs-induced hypertension remains unclear. Here, we explored the role of the RhoA/Rho kinase (ROCK) signaling pathway in elevation of blood pressure (BP) induced by apatinib, a selective TKI approved in China for treatment of advanced or metastatic gastric cancer. A nonspecific ROCK inhibitor, Y27632, was then combined with apatinib and its efficacy in alleviating apatinib-induced hypertension was evaluated. METHODS Normotensive female Wistar-Kyoto rats were exposed to two different doses of apatinib, or apatinib combined with Y27632, or vehicle for 2 weeks. BP was monitored by a tail-cuff plethysmography system. The mRNA levels and protein expression in the RhoA/ROCK pathway were determined, and vascular remodeling assessed. RESULTS Administration of either a high or low dose of apatinib was associated with a rapid rise in BP, reaching a plateau after 12 days. Apatinib treatment mediated upregulation of RhoA and ROCK II in the mid-aorta, more significant in the high-dose group. However, ROCK I expression showed no statistically significant differences. Furthermore, the mRNA level of GRAF3 decreased dose-dependently. Apatinib administration was also associated with decreased levels of MLCP, and elevated endothelin-1 (ET-1) and collagen I, which were accompanied with increased mid-aortic media. However, treatment with Y27632 attenuated the above changes. CONCLUSION These findings suggest that activation of the RhoA/ROCK signaling pathway could be the underlying mechanism of apatinib-induced hypertension, while ROCK inhibitor have potential therapeutic value.
Collapse
|
11
|
Reactive Oxygen Species Are Essential for Vasoconstriction upon Cold Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8578452. [PMID: 34868457 PMCID: PMC8635890 DOI: 10.1155/2021/8578452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022]
Abstract
Purpose We explored the role of ROS in cold-induced vasoconstriction and corresponding mechanism. Methods Three experiments were performed. First, we measured blood flow in human hands before and after cold exposure. Second, 24 mice were randomly divided into 3 groups: 8 mice received saline injection, 8 received subcutaneous Tempol injection, and 8 received intrathecal Tempol injection. After 30 min, we determined blood flow in the skin before and after cold exposure. Finally, we used Tempol, CCG-1423, and Go 6983 to pretreat HAVSMCs and HUVECs for 24 h. Then, cells in the corresponding groups were exposed to cold (6 h, 4°C). After cold exposure, the cytoskeleton was stained. Intracellular Ca2+ and ROS levels were measured by flow cytometry and fluorescence microscopy. We measured protein expression via Western blotting. Results In the first experiment, after cold exposure, maximum skin blood flow decreased to 118.4 ± 50.97 flux units. Then, Tempol or normal saline pretreatment did not change skin blood flow. Unlike intrathecal Tempol injection, subcutaneous Tempol injection increased skin blood flow after cold exposure. Finally, cold exposure for 6 h shrank the cells, making them narrower, and increased intracellular Ca2+ and ROS levels in HUVECs and HAVSMCs. Tempol reduced cell shrinkage and decreased intracellular Ca2+ levels. In addition, Tempol decreased intracellular ROS levels. Cold exposure increased RhoA, Rock1, p-MLC-2, ET-1, iNOS, and p-PKC expression and decreased eNOS expression. Tempol or CCG-1423 pretreatment decreased RhoA, Rock1, and p-MLC-2 levels in HAVSMCs. Furthermore, Tempol or Go 6983 pretreatment decreased ET-1, iNOS, and p-PKC expression and increased eNOS expression in HUVECs. Conclusion ROS mediate the vasoconstrictor response within the cold-induced vascular response, and ROS in blood vessel tissues rather than nerve fibers are involved in vasoconstriction via the ROS/RhoA/ROCK1 and ROS/PKC/ET-1 pathways in VSMCs and endothelial cells.
Collapse
|
12
|
Kobayashi Y, Watanabe S, Ong ALC, Shirai M, Yamashiro C, Ogata T, Higashijima F, Yoshimoto T, Hayano T, Asai Y, Sasai N, Kimura K. Early manifestations and differential gene expression associated with photoreceptor degeneration in Prom1-deficient retina. Dis Model Mech 2021; 14:272527. [PMID: 34664634 PMCID: PMC8628633 DOI: 10.1242/dmm.048962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) and macular dystrophy (MD) are characterized by gradual photoreceptor death in the retina and are often associated with genetic mutations, including those in the prominin-1 (Prom1) gene. Prom1-knockout (KO) mice recapitulate key features of these diseases including light-dependent retinal degeneration and constriction of retinal blood vessels. The mechanisms underlying such degeneration have remained unclear, however. We here analysed early events associated with retinal degeneration in Prom1-KO mice. We found that photoreceptor cell death and glial cell activation occur between 2 and 3 weeks after birth. Whereas gene expression was not affected at 2 weeks, the expression of several genes was altered at 3 weeks in the Prom1-KO retina, with the expression of that for endothelin-2 (Edn2) being markedly upregulated. Expression of Edn2 was also induced by light stimulation in Prom1-KO mice reared in the dark. Treatment with endothelin receptor antagonists attenuated photoreceptor cell death, gliosis and retinal vessel stenosis in Prom1-KO mice. Our findings thus reveal early manifestations of retinal degeneration in a model of RP/MD and suggest potential therapeutic agents for these diseases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Shizuka Watanabe
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Agnes Lee Chen Ong
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, 6-1 Kishibe Shinmachi, Suita, Osaka 564-8565, Japan
| | - Chiemi Yamashiro
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Tadahiko Ogata
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Takahide Hayano
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Yoshiyuki Asai
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| |
Collapse
|
13
|
Chen YL, Ren Y, Rosa RH, Kuo L, Hein TW. Contributions of Sodium-Hydrogen Exchanger 1 and Mitogen-Activated Protein Kinases to Enhanced Retinal Venular Constriction to Endothelin-1 in Diabetes. Diabetes 2021; 70:2353-2363. [PMID: 34353852 PMCID: PMC8576499 DOI: 10.2337/db20-0889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/28/2021] [Indexed: 11/13/2022]
Abstract
Diabetes elevates endothelin-1 (ET-1) in the vitreous and enhances constriction of retinal venules to this peptide. However, mechanisms contributing to ET-1-induced constriction of retinal venules are incompletely understood. We examined roles of sodium-hydrogen exchanger 1 (NHE1), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and extracellular calcium (Ca2+) in retinal venular constriction to ET-1 and the impact of diabetes on these signaling molecules. Retinal venules were isolated from control pigs and pigs with streptozocin-induced diabetes for in vitro studies. ET-1-induced vasoconstriction was abolished in the absence of extracellular Ca2+ and sensitive to c-Jun N-terminal kinase (JNK) inhibitor SP600125 but unaffected by extracellular signal-regulated kinase (ERK) inhibitor PD98059, p38 kinase inhibitor SB203580, or broad-spectrum PKC inhibitor Gö 6983. Diabetes (after 2 weeks) enhanced venular constriction to ET-1, which was insensitive to PD98059 and Gö 6983 but was prevented by NHE1 inhibitor cariporide, SB203580, and SP600125. In conclusion, extracellular Ca2+ entry and activation of JNK, independent of ERK and PKC, mediate constriction of retinal venules to ET-1. Diabetes activates p38 MAPK and NHE1, which cause enhanced venular constriction to ET-1. Treatments targeting these vascular molecules may lessen retinal complications in early diabetes.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
| | - Yi Ren
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
| | - Robert H Rosa
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
- Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
| |
Collapse
|
14
|
Retinal blood flow dysregulation precedes neural retinal dysfunction in type 2 diabetic mice. Sci Rep 2021; 11:18401. [PMID: 34526573 PMCID: PMC8443656 DOI: 10.1038/s41598-021-97651-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
We investigated and compared the susceptibility of retinal blood flow regulation and neural function in mice developing type 2 diabetes. The longitudinal changes in retinal neuronal function and blood flow responses to a 10-min systemic hyperoxia and a 3-min flicker stimulation were evaluated every 2 weeks in diabetic db/db mice and nondiabetic controls (db/m) from age 8 to 20 weeks. The retinal blood flow and neural activity were assessed using laser speckle flowgraphy and electroretinography (ERG), respectively. The db/db mice had significantly higher blood glucose levels and body weight. The resting retinal blood flow was steady and comparable between two groups throughout the study. Hyperoxia elicited a consistent decrease, and flicker light an increase, in retinal blood flow in db/m mice independent of age. However, these flow responses were significantly diminished in db/db mice at 8 weeks old and then the mice became unresponsive to stimulations at 12 weeks. Subsequently, the ERG implicit time for oscillatory potential was significantly increased at 14 weeks of age while the a-wave and b-wave amplitudes and implicit times remained unchanged. The deficiencies of flow regulation and neurovascular coupling in the retina appear to precede neural dysfunction in the mouse with type 2 diabetes.
Collapse
|
15
|
Thengchaisri N, Hein TW, Ren Y, Kuo L. Activation of Coronary Arteriolar PKCβ2 Impairs Endothelial NO-Mediated Vasodilation: Role of JNK/Rho Kinase Signaling and Xanthine Oxidase Activation. Int J Mol Sci 2021; 22:ijms22189763. [PMID: 34575925 PMCID: PMC8471475 DOI: 10.3390/ijms22189763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/05/2023] Open
Abstract
Protein kinase C (PKC) activation can evoke vasoconstriction and contribute to coronary disease. However, it is unclear whether PKC activation, without activating the contractile machinery, can lead to coronary arteriolar dysfunction. The vasoconstriction induced by the PKC activator phorbol 12,13-dibutyrate (PDBu) was examined in isolated porcine coronary arterioles. The PDBu-evoked vasoconstriction was sensitive to a broad-spectrum PKC inhibitor but not affected by inhibiting PKCβ2 or Rho kinase. After exposure of the vessels to a sub-vasomotor concentration of PDBu (1 nmol/L, 60 min), the endothelium-dependent nitric oxide (NO)-mediated dilations in response to serotonin and adenosine were compromised but the dilation induced by the NO donor sodium nitroprusside was unaltered. PDBu elevated superoxide production, which was blocked by the superoxide scavenger Tempol. The impaired NO-mediated vasodilations were reversed by Tempol or inhibition of PKCβ2, xanthine oxidase, c-Jun N-terminal kinase (JNK) and Rho kinase but were not affected by a hydrogen peroxide scavenger or inhibitors of NAD(P)H oxidase and p38 kinase. The PKCβ2 protein was detected in the arteriolar wall and co-localized with endothelial NO synthase. In conclusion, activation of PKCβ2 appears to compromise NO-mediated vasodilation via Rho kinase-mediated JNK signaling and superoxide production from xanthine oxidase, independent of the activation of the smooth muscle contractile machinery.
Collapse
Affiliation(s)
- Naris Thengchaisri
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (N.T.); (T.W.H.); (Y.R.)
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Travis W. Hein
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (N.T.); (T.W.H.); (Y.R.)
| | - Yi Ren
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (N.T.); (T.W.H.); (Y.R.)
| | - Lih Kuo
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (N.T.); (T.W.H.); (Y.R.)
- Correspondence:
| |
Collapse
|
16
|
Mateos-Olivares M, García-Onrubia L, Valentín-Bravo FJ, González-Sarmiento R, Lopez-Galvez M, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Rho-Kinase Inhibitors for the Treatment of Refractory Diabetic Macular Oedema. Cells 2021; 10:cells10071683. [PMID: 34359853 PMCID: PMC8307715 DOI: 10.3390/cells10071683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic macular oedema (DMO) is one of the leading causes of vision loss associated with diabetic retinopathy (DR). New insights in managing this condition have changed the paradigm in its treatment, with intravitreal injections of antivascular endothelial growth factor (anti-VEGF) having become the standard therapy for DMO worldwide. However, there is no single standard therapy for all patients DMO refractory to anti-VEGF treatment; thus, further investigation is still needed. The key obstacles in developing suitable therapeutics for refractory DMO lie in its complex pathophysiology; therefore, there is an opportunity for further improvements in the progress and applications of new drugs. Previous studies have indicated that Rho-associated kinase (Rho-kinase/ROCK) is an essential molecule in the pathogenesis of DMO. This is why the Rho/ROCK signalling pathway has been proposed as a possible target for new treatments. The present review focuses on the recent progress on the possible role of ROCK and its therapeutic potential in DMO. A systematic literature search was performed, covering the years 1991 to 2021, using the following keywords: "rho-Associated Kinas-es", "Diabetic Retinopathy", "Macular Edema", "Ripasudil", "Fasudil" and "Netarsudil". Better insight into the pathological role of Rho-kinase/ROCK may lead to the development of new strategies for refractory DMO treatment and prevention.
Collapse
Affiliation(s)
- Milagros Mateos-Olivares
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Luis García-Onrubia
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Fco. Javier Valentín-Bravo
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Rogelio González-Sarmiento
- Area of Infectious, Inflammatory and Metabolic Disease, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Maribel Lopez-Galvez
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - J. Carlos Pastor
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| | - Salvador Pastor-Idoate
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| |
Collapse
|
17
|
Neumaier F, Kotliar K, Haeren RHL, Temel Y, Lüke JN, Seyam O, Lindauer U, Clusmann H, Hescheler J, Schubert GA, Schneider T, Albanna W. Retinal Vessel Responses to Flicker Stimulation Are Impaired in Ca v 2.3-Deficient Mice-An in-vivo Evaluation Using Retinal Vessel Analysis (RVA). Front Neurol 2021; 12:659890. [PMID: 33927686 PMCID: PMC8076560 DOI: 10.3389/fneur.2021.659890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Metabolic demand increases with neuronal activity and adequate energy supply is ensured by neurovascular coupling (NVC). Impairments of NVC have been reported in the context of several diseases and may correlate with disease severity and outcome. Voltage-gated Ca2+-channels (VGCCs) are involved in the regulation of vasomotor tone. In the present study, we compared arterial and venous responses to flicker stimulation in Cav2.3-competent (Cav2.3[+/+]) and -deficient (Cav2.3[-/-]) mice using retinal vessel analysis. Methods: The mice were anesthetized and the pupil of one eye was dilated by application of a mydriaticum. An adapted prototype of retinal vessel analyzer was used to perform dynamic retinal vessel analysis. Arterial and venous responses were quantified in terms of the area under the curve (AUCart/AUCven) during flicker application, mean maximum dilation (mMDart/mMDven) and time to maximum dilation (tMDart/tMDven) during the flicker, dilation at flicker cessation (DFCart/DFCven), mean maximum constriction (mMCart/mMCven), time to maximum constriction (tMCart/tMCven) after the flicker and reactive magnitude (RMart/RMven). Results: A total of 33 retinal scans were conducted in 22 Cav2.3[+/+] and 11 Cav2.3[-/-] mice. Cav2.3[-/-] mice were characterized by attenuated and partially reversed arterial and venous responses, as reflected in significantly lower AUCart (p = 0.031) and AUCven (p = 0.047), a trend toward reduced DFCart (p = 0.100), DFCven (p = 0.100), mMDven (p = 0.075), and RMart (p = 0.090) and a trend toward increased tMDart (p = 0.096). Conclusion: To our knowledge, this is the first study using a novel, non-invasive analysis technique to document impairment of retinal vessel responses in VGCC-deficient mice. We propose that Cav2.3 channels could be involved in NVC and may contribute to the impairment of vasomotor responses under pathophysiological conditions.
Collapse
Affiliation(s)
- Felix Neumaier
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany
| | | | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jan Niklas Lüke
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Osama Seyam
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany
| | - Ute Lindauer
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Tranlational Neurosurgery and Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Marola OJ, Syc-Mazurek SB, Howell GR, Libby RT. Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation. Cell Death Dis 2020; 11:811. [PMID: 32980857 PMCID: PMC7519907 DOI: 10.1038/s41419-020-02990-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun-/-), Ddit3 null (Ddit3-/-), and Ddit3-/-Jun-/- mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation.
Collapse
Affiliation(s)
- Olivia J. Marola
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA
| | - Stephanie B. Syc-Mazurek
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY USA
| | - Gareth R. Howell
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main Street, Bar Harbor, ME USA
| | - Richard T. Libby
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
19
|
Chen YL, Rosa RH, Kuo L, Hein TW. Hyperglycemia Augments Endothelin-1-Induced Constriction of Human Retinal Venules. Transl Vis Sci Technol 2020; 9:1. [PMID: 32879758 PMCID: PMC7442874 DOI: 10.1167/tvst.9.9.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Endothelin-1 (ET-1) is a potent vasoactive factor implicated in development of diabetic retinopathy, which is commonly associated with retinal edema and hyperglycemia. Although the vasomotor activity of venules contributes to the regulation of tissue fluid homeostasis, responses of human retinal venules to ET-1 under euglycemia and hyperglycemia remain unknown and the ET-1 receptor subtype corresponding to vasomotor function has not been determined. Herein, we addressed these issues by examining the reactivity of isolated human retinal venules to ET-1, and results from porcine retinal venules were compared. Methods Retinal tissues were obtained from patients undergoing enucleation. Human and porcine retinal venules were isolated and pressurized to assess diameter changes in response to ET-1 after exposure to 5 mM control glucose or 25 mM high glucose for 2 hours. Results Both human and porcine retinal venules exposed to control glucose developed similar basal tone and constricted comparably to ET-1 in a concentration-dependent manner. ET-1–induced constrictions of human and porcine retinal venules were abolished by ETA receptor antagonist BQ123. During high glucose exposure, basal tone of human and porcine retinal venules was unaltered but ET-1–induced vasoconstrictions were enhanced. Conclusions ET-1 elicits comparable constriction of human and porcine retinal venules by activation of ETA receptors. In vitro hyperglycemia augments human and porcine retinal venular responses to ET-1. Translational Relevance Similarities in vasoconstriction to ET-1 between human and porcine retinal venules support the latter as an effective model of the human retinal microcirculation to help identify vascular targets for the treatment of retinal complications in patients with diabetes.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Robert H Rosa
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.,Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
20
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
21
|
Morales-Quinones M, Ramirez-Perez FI, Foote CA, Ghiarone T, Ferreira-Santos L, Bloksgaard M, Spencer N, Kimchi ET, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIMK (LIM Kinase) Inhibition Prevents Vasoconstriction- and Hypertension-Induced Arterial Stiffening and Remodeling. Hypertension 2020; 76:393-403. [PMID: 32594801 DOI: 10.1161/hypertensionaha.120.15203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased arterial stiffness and vascular remodeling precede and are consequences of hypertension. They also contribute to the development and progression of life-threatening cardiovascular diseases. Yet, there are currently no agents specifically aimed at preventing or treating arterial stiffening and remodeling. Previous research indicates that vascular smooth muscle actin polymerization participates in the initial stages of arterial stiffening and remodeling and that LIMK (LIM kinase) promotes F-actin formation and stabilization via cofilin phosphorylation and consequent inactivation. Herein, we hypothesize that LIMK inhibition is able to prevent vasoconstriction- and hypertension-associated arterial stiffening and inward remodeling. We found that small visceral arteries isolated from hypertensive subjects are stiffer and have greater cofilin phosphorylation than those from nonhypertensives. We also show that LIMK inhibition prevents arterial stiffening and inward remodeling in isolated human small visceral arteries exposed to prolonged vasoconstriction. Using cultured vascular smooth muscle cells, we determined that LIMK inhibition prevents vasoconstrictor agonists from increasing cofilin phosphorylation, F-actin volume, and cell cortex stiffness. We further show that localized LIMK inhibition prevents arteriolar inward remodeling in hypertensive mice. This indicates that hypertension is associated with increased vascular smooth muscle cofilin phosphorylation, cytoskeletal stress fiber formation, and heightened arterial stiffness. Our data further suggest that pharmacological inhibition of LIMK prevents vasoconstriction-induced arterial stiffening, in part, via reductions in vascular smooth muscle F-actin content and cellular stiffness. Accordingly, LIMK inhibition should represent a promising therapeutic means to stop the progression of arterial stiffening and remodeling in hypertension.
Collapse
Affiliation(s)
- Mariana Morales-Quinones
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Francisco I Ramirez-Perez
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Christopher A Foote
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Thaysa Ghiarone
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Larissa Ferreira-Santos
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Instituto do Coração (InCor), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Brazil (L.F.-S.)
| | - Maria Bloksgaard
- Department of Molecular Medicine, University of Southern Denmark, Odense (M.B.)
| | | | - Eric T Kimchi
- Department of Surgery (E.T.K.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Camila Manrique-Acevedo
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism (C.M.-A.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Jaume Padilla
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, MO
| | - Luis A Martinez-Lemus
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology (L.A.M.-L.), University of Missouri, Columbia, MO
| |
Collapse
|
22
|
Lona G, Endes K, Köchli S, Infanger D, Zahner L, Hanssen H. Retinal Vessel Diameters and Blood Pressure Progression in Children. Hypertension 2020; 76:450-457. [PMID: 32594800 DOI: 10.1161/hypertensionaha.120.14695] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of high childhood blood pressure (BP) is rising globally and has been associated with subclinical vascular impairments in children. Longitudinal data on the association of microvascular alterations with the development of high BP in children are lacking. We aimed to analyze the association of central retinal arteriolar (CRAE) and venular (CRVE) diameters with development of higher BP over 4 years in young school children. In 2014, 391 children aged 6 to 8 years were screened for BP and retinal vessel diameters using standardized protocols. Retinal vessel analysis was performed using a retinal vessel analyzer to determine CRAE and central retinal venular equivalent. In the follow-up of 2018, all parameters were assessed in 262 children using the same standardized protocols. During follow-up, systolic and diastolic BP increased significantly (Δ 3.965±8.25 and 1.733±7.63 mm Hg, respectively), while CRAE decreased by Δ -6.325±8.55 µm without significant changes in central retinal venular equivalent (Δ -0.163±7.94 µm). Children with narrower CRAE at baseline developed higher systolic BP after four years (β [95% CI] 0.78 [0.170-1.398] mm Hg per 10 µm decrease, P=0.012). Children with increased systolic or diastolic BP at baseline developed narrower CRAE (β [95% CI] -0.154 [-0.294 to -0.014] µm per 1mmHg, P=0.031 and β [95% CI] -0.02 [-0.344 to -0.057] µm per 1 mmHg, P=0.006, respectively) at follow-up. Narrowing of retinal arterioles predicted evolution of systolic BP. In turn, higher initial systolic and diastolic BP was associated with subsequent development of microvascular impairments. Our results give good evidence for a bivariate temporal relationship between BP and microvascular health in children.
Collapse
Affiliation(s)
- Giulia Lona
- From the Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Switzerland
| | - Katharina Endes
- From the Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Switzerland
| | - Sabrina Köchli
- From the Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Switzerland
| | - Denis Infanger
- From the Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Switzerland
| | - Lukas Zahner
- From the Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Switzerland
| | - Henner Hanssen
- From the Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Switzerland
| |
Collapse
|
23
|
Jackson WF. Introduction to ion channels and calcium signaling in the microcirculation. CURRENT TOPICS IN MEMBRANES 2020; 85:1-18. [PMID: 32402636 DOI: 10.1016/bs.ctm.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The microcirculation is the network of feed arteries, arterioles, capillaries and venules that supply and drain blood from every tissue and organ in the body. It is here that exchange of heat, oxygen, carbon dioxide, nutrients, hormones, water, cytokines, and immune cells takes place; essential functions necessary to maintenance of homeostasis throughout the life span. This chapter will outline the structure and function of each microvascular segment highlighting the critical roles played by ion channels in the microcirculation. Feed arteries upstream from the true microcirculation and arterioles within the microcirculation contribute to systemic vascular resistance and blood pressure control. They also control total blood flow to the downstream microcirculation with arterioles being responsible for distribution of blood flow within a tissue or organ dependent on the metabolic needs of the tissue. Terminal arterioles control blood flow and blood pressure to capillary units, the primary site of diffusional exchange between blood and tissues due to their large surface area. Venules collect blood from capillaries and are important sites for fluid exchange and immune cell trafficking. Ion channels in microvascular smooth muscle cells, endothelial cells and pericytes importantly contribute to all of these functions through generation of intracellular Ca2+ and membrane potential signals in these cells.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
24
|
Yu PK, An D, Balaratnasingam C, Cringle SJ, Yu DY. Topographic Distribution of Contractile Protein in the Human Macular Microvasculature. Invest Ophthalmol Vis Sci 2020; 60:4574-4582. [PMID: 31675074 DOI: 10.1167/iovs.19-26986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We studied the topographic distribution of contractile protein in different orders of the human macular microvasculature to further understanding of the sites for capillary blood flow regulation. Methods Nine donor eyes from eight donors were cannulated at the central retinal artery and perfusion labeled for alpha smooth muscle actin (αSMA) and filamentous actin (F-actin). Confocal images were collected from the macula region, viewed, projected, and converted to a 255 grayscale for measurements. The mean intensity was measured for macular arterioles, venules, and capillary segments. The diameter of each vessel segment measured was recorded. The normalized mean intensity values from all images were ranked according to vessel types and size with a total of nine categories. Results F-actin was present throughout the macular microvasculature whereas αSMA labeling showed variations. Overall, αSMA has a more prominent presence in the macular arterioles than in the macular capillaries and venules, and αSMA strongly labeled the smaller macular arterioles. Some capillaries also labeled positive for αSMA, including some of the capillaries in the innermost capillary ring surrounding the foveola. It was weakly present in the capillaries on the venous side and larger venules. In the larger macular arterioles closer to 100 μm in diameter, αSMA labeling was weakly present and not as ubiquitous as in the smaller arterioles. Conclusions Nonuniform distribution of contractile proteins in the different types, orders, and sizes of macular microvasculature indicates that these vessels may have different contractile capability and roles in macular flow regulation.
Collapse
Affiliation(s)
- Paula K Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia.,Lions Eye Institute, the University of Western Australia, Perth, Australia
| | - Dong An
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia.,Lions Eye Institute, the University of Western Australia, Perth, Australia
| | - Chandrakumar Balaratnasingam
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia.,Lions Eye Institute, the University of Western Australia, Perth, Australia
| | - Stephen J Cringle
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia.,Lions Eye Institute, the University of Western Australia, Perth, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia.,Lions Eye Institute, the University of Western Australia, Perth, Australia
| |
Collapse
|
25
|
Chen YL, Xu W, Rosa RH, Kuo L, Hein TW. Hyperglycemia Enhances Constriction of Retinal Venules via Activation of the Reverse-Mode Sodium-Calcium Exchanger. Diabetes 2019; 68:1624-1634. [PMID: 31088854 PMCID: PMC6692814 DOI: 10.2337/db19-0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/05/2019] [Indexed: 01/09/2023]
Abstract
Diabetes is associated with hyperglycemia and impairment of retinal microvascular function. However, the impact of hyperglycemia on retinal venular constriction remains unknown. We examined retinal venular responsiveness to endogenous vasoconstrictors and the contribution of the reverse-mode sodium-calcium exchanger (NCX) to these responses during hyperglycemia. Retinal venules were isolated from pigs with streptozocin-induced diabetes (2 weeks, in vivo hyperglycemia) and age-matched control pigs for vasoreactivity and molecular studies. For in vitro hyperglycemia, vessels from euglycemic pigs were exposed to high glucose (25 mmol/L) for 2 h, and 5 mmol/L glucose served as the control. Constrictions of venules from euglycemic pigs to endothelin-1 (ET-1), thromboxane analog U46619, and norepinephrine were mediated by ETA, thromboxane, and α2-adrenergic receptors, respectively, and were insensitive to reverse-mode NCX blockade (KB-R7943). In vivo hyperglycemia enhanced these vasoconstrictions without altering respective receptor mRNA expression. Similarly, in vitro hyperglycemia augmented venular constrictions. Enhanced vasoconstrictions during hyperglycemia were prevented by KB-R7943, while mRNA expression of venular NCX isoforms was unaltered. In vivo hyperglycemia increased vitreous levels of ET-1 but not thromboxane B2 In conclusion, both in vitro and in vivo hyperglycemia enhance retinal venular responses to endogenous vasoconstrictors by activating reverse-mode NCX. Therapies targeting this vascular molecule may alleviate retinal complications during diabetes.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX
| | - Wenjuan Xu
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX
| | - Robert H Rosa
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX
- Ophthalmic Vascular Research Program, Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX
- Ophthalmic Vascular Research Program, Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX
- Ophthalmic Vascular Research Program, Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX
| |
Collapse
|
26
|
Moura-Coelho N, Tavares Ferreira J, Bruxelas CP, Dutra-Medeiros M, Cunha JP, Pinto Proença R. Rho kinase inhibitors-a review on the physiology and clinical use in Ophthalmology. Graefes Arch Clin Exp Ophthalmol 2019; 257:1101-1117. [PMID: 30843105 DOI: 10.1007/s00417-019-04283-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
The Rho kinase (ROCK) signaling pathway is involved in several cellular events that include cell proliferation and cytoskeleton modulation leading to cell adhesion. The ROCK pathway in the human eye has been hypothesized to play important roles in corneal endothelial cell physiology and pathologic states. In addition, ROCK signaling has been identified as an important regulator of trabecular meshwork (TM) outflow, which is altered in glaucomatous eyes. These roles in corneal and glaucomatous disease states have led to the growing interest in the development of drugs selectively targeting this pathway (ROCK inhibitors). The authors provide a review of the literature on the pathobiology of the ROCK signaling in corneal endothelial disease, glaucoma, and vitreoretinal disease, as well as the clinical usefulness of ROCK inhibitors in Ophthalmology.
Collapse
Affiliation(s)
- Nuno Moura-Coelho
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal. .,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal. .,Instituto Português de Retina (IPR), Lisbon, Portugal. .,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal.
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal
| | - Carolina Pereira Bruxelas
- Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Ophthalmology Department, Ocidental Lisbon Hospital Center (CHLO), Lisbon, Portugal
| | - Marco Dutra-Medeiros
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Instituto Português de Retina (IPR), Lisbon, Portugal.,Associação Protectora dos Diabéticos de Portugal (APDP), Lisbon, Portugal
| | - João Paulo Cunha
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal
| | - Rita Pinto Proença
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal.,Faculdade de Medicina de Lisboa-Universidade de Lisboa (FML-UL), Lisbon, Portugal
| |
Collapse
|
27
|
Retinal capillary perfusion: Spatial and temporal heterogeneity. Prog Retin Eye Res 2019; 70:23-54. [PMID: 30769149 DOI: 10.1016/j.preteyeres.2019.01.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 01/17/2023]
Abstract
The central role of the cardiovascular system is to maintain adequate capillary perfusion. The spatially and temporally heterogeneous nature of capillary perfusion has been reported in some organs. However, such heterogeneous perfusion properties have not been sufficiently explored in the retina. Arguably, spatial and temporal heterogeneity of capillary perfusion could be more predominant in the retina than that in other organs. This is because the retina is one of the highest metabolic demand neural tissues yet it has a limited blood supply due to optical requirements. In addition, the unique heterogeneous distribution of retinal neural cells within different layers and regions, and the significant heterogeneity of intraretinal oxygen distribution and consumption add to the complexity. Retinal blood flow distribution must match consumption of nutrients such as oxygen and glucose within the retina at the cellular level in order to effectively maintain cell survival and function. Sophisticated local blood flow control in the microcirculation is likely required to control the retinal capillary perfusion to supply local retinal tissue and accommodate temporal and spatial variations in metabolic supply and demand. The authors would like to update the knowledge of the retinal microvessel and capillary network and retinal oxidative metabolism from their own studies and the work of others. The coupling between blood supply and energy demands in the retina is particularly interesting. We will mostly describe information regarding the retinal microvessel network and retinal oxidative metabolism relevant to the spatial and temporal heterogeneity of capillary perfusion. We believe that there is significant and necessary spatial and temporal heterogeneity and active regulation of retinal blood flow in the retina, particularly in the macular region. Recently, retinal optical coherence tomography angiography (OCTA) has been widely used in ophthalmology, both experimentally and clinically. OCTA could be a valuable tool for examining retinal microvessel and capillary network structurally and has potential for determining retinal capillary perfusion and its control. We have demonstrated spatial and temporal heterogeneity of capillary perfusion in the retina both experimentally and clinically. We have also found close relationships between the smallest arterioles and capillaries within paired arterioles and venules and determined the distribution of smooth muscle cell contraction proteins in these vessels. Spatial and temporal heterogeneity of retinal capillary perfusion could be a useful parameter to determine retinal microvessel regulatory capability as an early assay for retinal vascular diseases. This topic will be of great interest, not only for the eye but also other organs. The retina could be the best model for such investigations. Unlike cerebral vessels, retinal vessels can be seen even at the capillary level. The purpose of this manuscript is to share our current understanding with the readers and encourage more researchers and clinicians to investigate this field. We begin by reviewing the general principles of microcirculation properties and the spatial and temporal heterogeneity of the capillary perfusion in other organs, before considering the special requirements of the retina. The local heterogeneity of oxygen supply and demand in the retina and the need to have a limited and well-regulated retinal circulation to preserve the transparency of the retina is discussed. We then consider how such a delicate balance of metabolic supply and consumption is achieved. Finally we discuss how new imaging methodologies such as optical coherence tomography angiography may be able to detect the presence of spatial and temporal heterogeneity of capillary perfusion in a clinical setting. We also provide some new information of the control role of very small arterioles in the modulation of retinal capillary perfusion which could be an interesting topic for further investigation.
Collapse
|