1
|
Wood JPM, Chidlow G, Wall GM, Casson RJ. N-acetylcysteine amide and di- N-acetylcysteine amide protect retinal cells in culture via an antioxidant action. Exp Eye Res 2024; 248:110074. [PMID: 39251120 DOI: 10.1016/j.exer.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Reactive oxygen species (ROS) play a significant role in toxicity to the retina in a variety of diseases. N-acetylcysteine (NAC), N-acetylcysteine amide (NACA) and the dimeric di-N-acetylcysteine amide (diNACA) were evaluated in terms of protecting retinal cells, in vitro, in a variety of stress models. Three types of rat retinal cell cultures were utilized in the study: macroglial-only cell cultures, neuron-only retinal ganglion cell (RGC) cultures, and mixed cultures containing retinal glia and neurons. Ability of test agents to attenuate oxidative stress in all cultures was ascertained. In addition, capability of agents to protect against a variety of alternate clinically-relevant stressors, including excitotoxins and mitochondrial electron transport chain inhibitors, was also evaluated. Capacity of test agents to elevate cellular levels of reduced glutathione under normal and compromised conditions was also determined. NAC, NACA and diNACA demonstrated concentration-dependent cytoprotection against oxidative stress in all cultures. These three compounds, however, had differing effects against a variety of alternate insults to retinal cells. The most protective agent was NACA, which was most potent against the most stressors (including oxidative stress, mitochondrial impairment by antimycin A and azide, and glutamate-induced excitotoxicity). Similar to NAC, NACA increased glutathione levels in non-injured cells, although diNACA did not, suggesting a different, unknown mechanism of antioxidant activity for the latter. In support of this, diNACA was the only agent to attenuate rotenone-induced toxicity in mitochondria. NAC, NACA and diNACA exhibited varying degrees of antioxidant activity, i.e., protected cultured rat retinal cells from a variety of stressors which were designed to mimic aspects of the pathology of different retinal diseases. A general rank order of activity was observed: NACA ≥ diNACA > NAC. These results warrant further exploration of NACA and diNACA as antioxidant therapeutics for the treatment of retinal diseases, particularly those involving oxidative stress. Furthermore, we have defined the battery of tests carried out as the "Wood, Chidlow, Wall and Casson (WCWC) Retinal Antioxidant Indices"; we believe that these are of great value for screening molecules for potential to reduce retinal oxidative stress in a range of retinal diseases.
Collapse
Affiliation(s)
- John P M Wood
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia.
| | - Glyn Chidlow
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| | | | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| |
Collapse
|
2
|
Hwang S, Kim JH, Choi YH, Thng ZX, Hong EH, Kang MH, Shin YU. Incidence and risk factor analysis of neovascular glaucoma following vitrectomy in patients with proliferative diabetic retinopathy. Sci Rep 2024; 14:22490. [PMID: 39341897 PMCID: PMC11439019 DOI: 10.1038/s41598-024-73395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
To investigate the incidence and risk factors for neovascular glaucoma (NVG) after vitrectomy in patients with proliferative diabetic retinopathy (PDR). Patients were categorized into two subgroups based on their treatment regimen: one group received vitrectomy only (Group 1), while the other received combined phacovitrectomy (Group 2). A comparative analysis was conducted to evaluate the distinguishing characteristics of the two groups. Kaplan-Meier survival analysis was used to determine the incidence of NVG following surgery. Furthermore, multivariate analysis using the Cox proportional hazards model was conducted to identify the risk factors associated with the development of NVG after surgery. A total of 484 eyes of 484 patients were included in the study. When comparing Group 1 with Group 2, a significant difference was observed in the occurrence of NVG. In Group 1, there were 10 cases of NVG (3.9%), whereas 29 cases of NVG occurred in Group 2 (12.71%). Male sex, high preoperative intraocular pressure (IOP), and combined phacovitrectomy were found to be associated with the occurrence of NVG following phacovitrectomy. Higher creatinine levels had a protective effect in preventing the development of NVG. Male sex, high preoperative IOP, and combined phacovitrectomy were associated with a high incidence of NVG. Explore strategies to prevent NVG is important when performing combined phacovitrectomy in patients with PDR.
Collapse
Affiliation(s)
- Sunjin Hwang
- Department of Ophthalmology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Ji Hong Kim
- Department of Ophthalmology, Hanyang University Seoul Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yeon Hee Choi
- Department of Ophthalmology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Zheng Xian Thng
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Eun Hee Hong
- Department of Ophthalmology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Min Ho Kang
- Department of Ophthalmology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Yong Un Shin
- Department of Ophthalmology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea.
| |
Collapse
|
3
|
Mérida S, Návea A, Desco C, Celda B, Pardo-Tendero M, Morales-Tatay JM, Bosch-Morell F. Glutathione and a Pool of Metabolites Partly Related to Oxidative Stress Are Associated with Low and High Myopia in an Altered Bioenergetic Environment. Antioxidants (Basel) 2024; 13:539. [PMID: 38790644 PMCID: PMC11117864 DOI: 10.3390/antiox13050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are especially associated with high myopia. The purpose of our study was to examine the interrelation of potential oxidative-stress-related metabolites found in the aqueous humor of high-myopic, low-myopic, and non-myopic patients within a clinical study. We conducted a cross-sectional study, selecting two sets of patients undergoing cataract surgery. The first set, which was used to analyze metabolites through an NMR assay, comprised 116 patients. A total of 59 metabolites were assigned and quantified. The PLS-DA score plot clearly showed a separation with minimal overlap between the HM and control samples. The PLS-DA model allowed us to determine 31 major metabolite differences in the aqueous humor of the study groups. Complementary statistical analysis of the data allowed us to determine six metabolites that presented significant differences among the experimental groups (p < 005). A significant number of these metabolites were discovered to have a direct or indirect connection to oxidative stress linked with conditions of myopic eyes. Notably, we identified metabolites associated with bioenergetic pathways and metabolites that have undergone methylation, along with choline and its derivatives. The second set consisted of 73 patients who underwent a glutathione assay. Here, we showed significant variations in both reduced and oxidized glutathione in aqueous humor among all patient groups (p < 0.01) for the first time. Axial length, refractive status, and complete ophthalmologic examination were also recorded, and interrelations among metabolic and clinical parameters were evaluated.
Collapse
Affiliation(s)
- Salvador Mérida
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| | - Amparo Návea
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
| | - Carmen Desco
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
- FOM, Fundación de Oftalmología Médica de la Comunidad Valenciana, 46015 Valencia, Spain
| | - Bernardo Celda
- Physical Chemistry Department, University of Valencia, 46100 Valencia, Spain;
| | - Mercedes Pardo-Tendero
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Manuel Morales-Tatay
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Francisco Bosch-Morell
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| |
Collapse
|
4
|
Sánchez-Fernández C, Del Olmo-Aguado S, Artime E, Barros A, Fernández-Vega Cueto L, Merayo-Lloves J, Alcalde I. Immunocytochemical Analysis of Crocin against Oxidative Stress in Trigeminal Sensory Neurons Innervating the Cornea. Molecules 2024; 29:456. [PMID: 38257369 PMCID: PMC10818698 DOI: 10.3390/molecules29020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Corneal diseases are a major cause of vision loss, often associated with aging, trauma and disease. Damage to corneal sensory innervation leads to discomfort and pain. Environmental stressors, such as short-wavelength light, can induce oxidative stress that alters mitochondrial function and affects cell and tissue homeostasis, including corneal innervation. Cellular antioxidant mechanisms may attenuate oxidative stress. This study investigates crocin, a derivative of saffron, as a potential antioxidant therapy. In vitro rat trigeminal sensory ganglion neurons were exposed to both sodium azide and blue light overexposure as a model of oxidative damage. Crocin was used as a neuroprotective agent. Mitochondrial and cytoskeletal markers were studied by immunofluorescence analysis to determine oxidative damage and neuroprotection. In vivo corneal innervation degeneration was evaluated in cornea whole mount preparations using Sholl analyses. Blue light exposure induces oxidative stress that affects trigeminal neuron mitochondria and alters sensory axon dynamics in vitro, and it also affects corneal sensory innervation in an in vivo model. Our results show that crocin was effective in preserving mitochondrial function and protecting corneal sensory neurons from oxidative stress. Crocin appears to be a promising candidate for the neuroprotection of corneal innervation.
Collapse
Affiliation(s)
- Cristina Sánchez-Fernández
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Susana Del Olmo-Aguado
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alberto Barros
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
| | - Luis Fernández-Vega Cueto
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
5
|
Michelis GA, Politi LE, Becerra SP. Primary Retinal Cell Cultures as a Model to Study Retina Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:565-569. [PMID: 37440087 DOI: 10.1007/978-3-031-27681-1_82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Since its inception, primary retinal cultures have been an in vitro tool for modeling the in vivo environment of the retina for biological studies on development and disease. They offer simple and controlled experimental approaches when compared to in vivo models. In this review we highlight the strengths and weaknesses of primary retinal culture models, and the features of dispersed retinal cell cultures.
Collapse
Affiliation(s)
- Germán A Michelis
- Section of Protein Structure and Function, LRCMB, NEI-NIH, Bethesda, MD, USA
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Luis E Politi
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - S Patricia Becerra
- Section of Protein Structure and Function, LRCMB, NEI-NIH, Bethesda, MD, USA.
| |
Collapse
|
6
|
Xiao Q, Zhao W, Wu C, Wang X, Chen J, Shi X, Sha S, Li J, Liang X, Yang Y, Guo H, Wang Y, Fan J. Lemon-Derived Extracellular Vesicles Nanodrugs Enable to Efficiently Overcome Cancer Multidrug Resistance by Endocytosis-Triggered Energy Dissipation and Energy Production Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105274. [PMID: 35187842 PMCID: PMC9284146 DOI: 10.1002/advs.202105274] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 05/20/2023]
Abstract
Multidrug resistance remains a great challenge for cancer chemotherapy. Herein, a biomimetic drug delivery system based on lemon-derived extracellular vesicles (EVs) nanodrugs (marked with heparin-cRGD-EVs-doxorubicin (HRED)) is demonstrated, achieving highly efficient overcoming cancer multidrug resistance. The HRED is fabricated by modifying functional heparin-cRGD (HR) onto the surface of EVs and then by loading with doxorubicin (DOX). The obtained HRED enable to effectively enter DOX-resistant cancer cells by caveolin-mediated endocytosis (main), macropinocytosis (secondary), and clathrin-mediated endocytosis (last), exhibiting excellent cellular uptake capacity. The diversified endocytosis capacity of HRED can efficiently dissipate intracellular energy and meanwhile trigger downstream production reduction of adenosine triphosphate (ATP), leading to a significant reduction of drug efflux. Consequently, they show excellent anti-proliferation capacities to DOX-resistant ovarian cancer, ensuring the efficiently overcoming ovarian cancer multidrug resistance in vivo. The authors believe this strategy provides a new strategy by endocytosis triggered-energy dissipation and ATP production reduction to design drug delivery system for overcoming cancer multidrug resistance.
Collapse
Affiliation(s)
- Qian Xiao
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Wei Zhao
- Division of Vascular and Interventional RadiologyDepartment of General Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Chentian Wu
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Xuejiao Wang
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Jianping Chen
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Xiubo Shi
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Suinan Sha
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Jinheng Li
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Xiaomei Liang
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Yulu Yang
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Haoyan Guo
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Ying Wang
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Jun‐Bing Fan
- Cancer Research InstituteExperimental Education/Administration CenterSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
- Department of Hepatobiliary Surgery IIZhujiang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| |
Collapse
|
7
|
Almuslehi MSM, Sen MK, Shortland PJ, Mahns DA, Coorssen JR. Histological and Top-Down Proteomic Analyses of the Visual Pathway in the Cuprizone Demyelination Model. J Mol Neurosci 2022; 72:1374-1401. [PMID: 35644788 PMCID: PMC9170674 DOI: 10.1007/s12031-022-01997-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 10/27/2022]
Abstract
Abstract
A change in visual perception is a frequent early symptom of multiple sclerosis (MS), the pathoaetiology of which remains unclear. Following a slow demyelination process caused by 12 weeks of low-dose (0.1%) cuprizone (CPZ) consumption, histology and proteomics were used to investigate components of the visual pathway in young adult mice. Histological investigation did not identify demyelination or gliosis in the optic tracts, pretectal nuclei, superior colliculi, lateral geniculate nuclei or visual cortices. However, top-down proteomic assessment of the optic nerve/tract revealed a significant change in the abundance of 34 spots in high-resolution two-dimensional (2D) gels. Subsequent liquid chromatography-tandem mass spectrometry (LC-TMS) analysis identified alterations in 75 proteoforms. Literature mining revealed the relevance of these proteoforms in terms of proteins previously implicated in animal models, eye diseases and human MS. Importantly, 24 proteoforms were not previously described in any animal models of MS, eye diseases or MS itself. Bioinformatic analysis indicated involvement of these proteoforms in cytoskeleton organization, metabolic dysregulation, protein aggregation and axonal support. Collectively, these results indicate that continuous CPZ-feeding, which evokes a slow demyelination, results in proteomic changes that precede any clear histological changes in the visual pathway and that these proteoforms may be potential early markers of degenerative demyelinating conditions.
Collapse
|
8
|
Tang Y, Shah S, Cho KS, Sun X, Chen DF. Metabolomics in Primary Open Angle Glaucoma: A Systematic Review and Meta-Analysis. Front Neurosci 2022; 16:835736. [PMID: 35645711 PMCID: PMC9135181 DOI: 10.3389/fnins.2022.835736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. It is suggested that primary open angle glaucoma (POAG), the most common form of glaucoma, may be associated with significant metabolic alternations, but the systemic literature review and meta-analysis in the area have been missing. Altered metabolomic profiles in the aqueous humor and plasma may serve as possible biomarkers for early detection or treatment targets. In this article, we performed a systematic meta-analysis of the current literature surrounding the metabolomics of patients with POAG and metabolites associated with the disease. Results suggest several metabolites found to be specifically altered in patients with POAG, suggesting broad generalizability and pathways for future research.
Collapse
Affiliation(s)
- Yizhen Tang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Simran Shah
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xinghuai Sun
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen,
| |
Collapse
|
9
|
Tribble JR, Otmani A, Sun S, Ellis SA, Cimaglia G, Vohra R, Jöe M, Lardner E, Venkataraman AP, Domínguez-Vicent A, Kokkali E, Rho S, Jóhannesson G, Burgess RW, Fuerst PG, Brautaset R, Kolko M, Morgan JE, Crowston JG, Votruba M, Williams PA. Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction. Redox Biol 2021; 43:101988. [PMID: 33932867 PMCID: PMC8103000 DOI: 10.1016/j.redox.2021.101988] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults. We demonstrate retinal ganglion cell somal, axonal, and dendritic neuroprotection by nicotinamide in rodent models which represent isolated ocular hypertensive, axon degenerative, and mitochondrial degenerative insults. We performed metabolomics enriched for small molecular weight metabolites for the retina, optic nerve, and superior colliculus which demonstrates that ocular hypertension induces widespread metabolic disruption, including consistent changes to α-ketoglutaric acid, creatine/creatinine, homocysteine, and glycerophosphocholine. This metabolic disruption is prevented by nicotinamide. Nicotinamide provides further neuroprotective effects by increasing oxidative phosphorylation, buffering and preventing metabolic stress, and increasing mitochondrial size and motility whilst simultaneously dampening action potential firing frequency. These data support continued determination of the utility of long-term nicotinamide treatment as a neuroprotective therapy for human glaucoma. Nicotinamide is neuroprotective in cell and animal models that recapitulate isolated features of glaucoma. Systemic nicotinamide administration has limited molecular side-effects on visual system tissue under basal conditions. Nicotinamide provides a robust reversal in the disease metabolic profile of glaucomatous animals. Nicotinamide increases oxidative phosphorylation, buffers and prevents metabolic stress, and increases mitochondrial size.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Shanshan Sun
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Sevannah A Ellis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden; School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Rupali Vohra
- Department of Veterinary and Animal Sciences, Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Abinaya P Venkataraman
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Alberto Domínguez-Vicent
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Seungsoo Rho
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Gauti Jóhannesson
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden; Wallenberg Centre of Molecular Medicine, Umeå University, Umeå, Sweden.
| | | | - Peter G Fuerst
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, USA.
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK.
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Centre for Vision Research, Neuroscience and Behavioural Disorders, Duke-NUS, Singapore, Singapore.
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Retinal energy metabolism in health and glaucoma. Prog Retin Eye Res 2020; 81:100881. [PMID: 32712136 DOI: 10.1016/j.preteyeres.2020.100881] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 01/17/2023]
Abstract
Energy metabolism refers to the processes by which life transfers energy to do cellular work. The retina's relatively large energy demands make it vulnerable to energy insufficiency. In addition, evolutionary pressures to optimize human vision have been traded against retinal ganglion cell bioenergetic fragility. Details of the metabolic profiles of the different retinal cells remain poorly understood and are challenging to resolve. Detailed immunohistochemical mapping of the energy pathway enzymes and substrate transporters has provided some insights and highlighted interspecies differences. The different spatial metabolic patterns between the vascular and avascular retinas can account for some inconsistent data in the literature. There is a consilience of evidence that at least some individuals with glaucoma have impaired RGC energy metabolism, either due to impaired nutrient supply or intrinsic metabolic perturbations. Bioenergetic-based therapy for glaucoma has a compelling pathophysiological foundation and is supported by recent successes in animal models. Recent demonstrations of visual and electrophysiological neurorecovery in humans with glaucoma is highly encouraging and motivates longer duration trials investigating bioenergetic neuroprotection.
Collapse
|