1
|
Vardar C, George-Weinstein M, Getts R, Byrne ME. Evaluation of Dose-Response Relationship in Novel Extended Release of Targeted Nucleic Acid Nanocarriers to Treat Secondary Cataracts. J Ocul Pharmacol Ther 2024; 40:459-466. [PMID: 38899506 DOI: 10.1089/jop.2024.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Purpose: The present study aimed to determine the dose-response relationship between targeted nanocarriers released from a novel, sustained release formulation and their ability to specifically deplete cells responsible for the development of posterior capsular opacification (PCO) in month-long, dynamic cell cultures. Methods: Injectable, thermosensitive poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic acid) triblock copolymer hydrogels were loaded with either a low or a high dose of doxorubicin-loaded antibody-targeted nanocarriers (G8:3DNA:Dox). Human rhabdomyosarcoma cells, selected for their expression of PCO marker brain-specific angiogenesis inhibitor 1 (BAI1), were kept under dynamic media flow and received either a low or high dose of nanocarriers. Cells were fixed and stained at predetermined time points to evaluate targeted depletion of BAI1+ cells. Results: A lower dose of nanocarriers in hydrogel depleted BAI1+ cells at a slower rate than the higher dose, whereas both reached over 90% BAI1+ cellular nonviability at 28 days. Both treatment groups also significantly lowered the relative abundance of BAI1+ cells in the population compared with the control group. Conclusions: Controlled release of a lower dose of nanocarriers can still achieve therapeutically relevant effects in the prevention of PCO, while avoiding potential secondary effects associated with the administration of a higher dose.
Collapse
Affiliation(s)
- Camila Vardar
- Department of Biomedical Engineering, Rowan Virtua School of Translational Biomedical Engineering and Sciences University, Glassboro, New Jersey, USA
| | | | | | - Mark E Byrne
- Department of Biomedical Engineering, Rowan Virtua School of Translational Biomedical Engineering and Sciences University, Glassboro, New Jersey, USA
- OcuMedic, Inc., Mullica Hill, New Jersey, USA
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
2
|
Gerhart J, George-Weinstein M. Myo/Nog Cells: The Jekylls and Hydes of the Lens. Cells 2023; 12:1725. [PMID: 37443759 PMCID: PMC10340492 DOI: 10.3390/cells12131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Herein, we review a unique and versatile lineage composed of Myo/Nog cells that may be beneficial or detrimental depending on their environment and nature of the pathological stimuli they are exposed to. While we will focus on the lens, related Myo/Nog cell behaviors and functions in other tissues are integrated into the narrative of our research that spans over three decades, examines multiple species and progresses from early stages of embryonic development to aging adults. Myo/Nog cells were discovered in the embryonic epiblast by their co-expression of the skeletal muscle-specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin and brain-specific angiogenesis inhibitor 1. They were tracked from the epiblast into the developing lens, revealing heterogeneity of cell types within this structure. Depletion of Myo/Nog cells in the epiblast results in eye malformations arising from the absence of Noggin. In the adult lens, Myo/Nog cells are the source of myofibroblasts whose contractions produce wrinkles in the capsule. Eliminating this population within the rabbit lens during cataract surgery reduces posterior capsule opacification to below clinically significant levels. Parallels are drawn between the therapeutic potential of targeting Myo/Nog cells to prevent fibrotic disease in the lens and other ocular tissues.
Collapse
|
3
|
McCarthy GA, Jain A, Di Niro R, Schultz CW, Jiang W, Yeo CJ, Bowers J, Finan J, Rhodes K, Casta L, Hou V, Stefanoni A, Brown SZ, Nevler A, Agostini LC, Getts L, Getts R, Brody JR. A Novel 3DNA® Nanocarrier effectively delivers payloads to pancreatic tumors. Transl Oncol 2023; 32:101662. [PMID: 37004490 PMCID: PMC10068615 DOI: 10.1016/j.tranon.2023.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
INTRODUCTION Standard-of-care systemic chemotherapies for pancreatic ductal adenocarcinoma (PDAC) currently have limited clinical benefits, in addition to causing adverse side effects in many patients. One factor known to contribute to the poor chemotherapy response is the poor drug diffusion into PDAC tumors. Novel treatment methods are therefore drastically needed to improve targeted delivery of treatments. Here, we evaluated the efficacy of the 3DNA® Nanocarrier (3DNA) platform to direct delivery of therapeutics to PDAC tumors in vivo. MATERIALS AND METHODS A panel of PDAC cell lines and a patient tissue microarray were screened for established tumor-specific proteins to identify targeting moieties for active targeting of the 3DNA. NRG mice with or without orthotopic MIA PaCa-2-luciferase PDAC tumors were treated intraperitoneally with 100 μl of fluorescently labeled 3DNA. RESULTS Folic acid and transferrin receptors were significantly elevated in PDAC compared to normal pancreas. Accordingly, both folic acid- and transferrin-conjugated 3DNA treatments significantly increased delivery of 3DNA specifically to tumors in comparison to unconjugated 3DNA treatment. In the absence of tumors, there was an increased clearance of both folic acid-conjugated 3DNA and unconjugated 3DNA, compared to the clearance rate in tumor-bearing mice. Lastly, delivery of siLuciferase by folic acid-conjugated 3DNA in an orthotopic model of luciferase-expressing PDAC showed significant and prolonged suppression of luciferase protein expression and activity. CONCLUSION Our study progresses the 3DNA technology as a reliable and effective treatment delivery platform for targeted therapeutic approaches in PDAC.
Collapse
Affiliation(s)
- Grace A McCarthy
- Department of Surgery, Oregon Health & Science University, 2730 S. Moody Ave, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Ave, Portland, OR 97201, USA
| | - Aditi Jain
- Department of Surgery, The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Roberto Di Niro
- Department of Surgery, Oregon Health & Science University, 2730 S. Moody Ave, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Ave, Portland, OR 97201, USA
| | - Christopher W Schultz
- Department of Surgery, The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA; Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Jiang
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charles J Yeo
- Department of Surgery, The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jennifer Finan
- Department of Surgery, Oregon Health & Science University, 2730 S. Moody Ave, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Ave, Portland, OR 97201, USA
| | | | | | - Vivi Hou
- Genisphere, LLC, Hatfield, PA, USA
| | | | | | - Avinoam Nevler
- Department of Surgery, The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lebaron C Agostini
- Department of Surgery, The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, 2730 S. Moody Ave, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Ave, Portland, OR 97201, USA.
| |
Collapse
|
4
|
Crispin M, Gerhart J, Heffer A, Martin M, Abdalla F, Bravo-Nuevo A, Philp NJ, Kuriyan AE, George-Weinstein M. Myo/Nog Cells Give Rise to Myofibroblasts During Epiretinal Membrane Formation in a Mouse Model of Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 36723927 PMCID: PMC9904330 DOI: 10.1167/iovs.64.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose Myo/Nog cells are the source of myofibroblasts in the lens and synthesize muscle proteins in human epiretinal membranes (ERMs). In the current study, we examined the response of Myo/Nog cells during ERM formation in a mouse model of proliferative vitreoretinopathy (PVR). Methods PVR was induced by intravitreal injections of gas and ARPE-19 cells. PVR grade was scored by fundus imaging, optical coherence tomography, and histology. Double label immunofluorescence localization was performed to quantify Myo/Nog cells, myofibroblasts, and leukocytes. Results Myo/Nog cells, identified by co-labeling with antibodies to brain-specific angiogenesis inhibitor 1 (BAI1) and Noggin, increased throughout the eye with induction of PVR and disease progression. They were present on the inner surface of the retina in grades 1/2 PVR and were the largest subpopulation of cells in grades 3 to 6 ERMs. All α-SMA-positive (+) cells and all but one striated myosin+ cell expressed BAI1 in grades 1 to 6 PVR. Folds and areas of retinal detachment were overlain by Myo/Nog cells containing muscle proteins. Low numbers of CD18, CD68, and CD45+ leukocytes were detected throughout the eye. Small subpopulations of BAI1+ cells expressed leukocyte markers. ARPE-19 cells were found in the vitreous but were rare in ERMs. Pigmented cells lacking Myo/Nog and muscle cell markers were present in ERMs and abundant within the retina by grade 5/6. Conclusions Myo/Nog cells differentiate into myofibroblasts that appear to contract and produce retinal folds and detachment. Targeting BAI1 for Myo/Nog cell depletion may be a pharmacological approach to preventing and treating PVR.
Collapse
Affiliation(s)
- Mara Crispin
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Jacquelyn Gerhart
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Alison Heffer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Mark Martin
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Fathma Abdalla
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Arturo Bravo-Nuevo
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Nancy J. Philp
- Sydney Kimmel Medical School of Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States,Current address: Retina Service/Mid Atlantic Retina, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | | |
Collapse
|
5
|
Tuning Design Parameters of ICAM-1-Targeted 3DNA Nanocarriers to Optimize Pulmonary Targeting Depending on Drug Type. Pharmaceutics 2022; 14:pharmaceutics14071496. [PMID: 35890393 PMCID: PMC9316040 DOI: 10.3390/pharmaceutics14071496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
3DNA holds promise as a carrier for drugs that can be intercalated into its core or linked to surface arms. Coupling 3DNA to an antibody targeting intercellular adhesion molecule 1 (ICAM-1) results in high lung-specific biodistributions in vivo. While the role of individual parameters on ICAM-1 targeting has been studied for other nanocarriers, it has never been examined for 3DNA or in a manner capable of revealing the hierarchic interplay among said parameters. In this study, we used 2-layer vs. 4-layer anti-ICAM 3DNA and radiotracing to examine biodistribution in mice. We found that, below saturating conditions and within the ranges tested, the density of targeting antibodies on 3DNA is the most relevant parameter driving lung targeting over liver clearance, compared to the number of antibodies per carrier, total antibody dose, 3DNA dose, 3DNA size, or the administered concentration, which influenced the dose in organs but not the lung specific-over-liver clearance ratio. Data predicts that lung-specific delivery of intercalating (core loaded) drugs can be tuned using this biodistribution pattern, while that of arm-linked (surface loaded) drugs requires a careful parametric balance because increasing anti-ICAM density reduces the number of 3DNA arms available for drug loading.
Collapse
|
6
|
Osorno LL, Mosley RJ, Poley PL, Bowers J, Gorski G, Gerhart J, Getts R, George-Weinstein M, Byrne ME. Sustained Release of Antibody-Conjugated DNA Nanocarriers from a Novel Injectable Hydrogel for Targeted Cell Depletion to Treat Cataract Posterior Capsule Opacification. J Ocul Pharmacol Ther 2022; 38:404-411. [PMID: 35377237 DOI: 10.1089/jop.2021.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: To compare a novel, sustained release formulation and a bolus injection of a targeted nanocarrier for the ability to specifically deplete cells responsible for the development of posterior capsule opacification (PCO) in week-long, dynamic cell cultures. Methods: A novel, injectable, thermosensitive poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymer hydrogel was engineered for the sustained release of targeted, nucleic acid nanocarriers loaded with cytotoxic doxorubicin (G8:3DNA:Dox). Human rhabdomyosarcoma (RD) cells were used due to their expression of brain-specific angiogenesis inhibitor 1 (BAI1), a specific marker for the myofibroblasts responsible for PCO. Under constant media flow, nanocarriers were injected into cell cultures as either a bolus or within the hydrogel. Cells were fixed and stained every other day for 7 days to compare targeted depletion of BAI1+ cells. Results: The formulation transitions to a gel at physiological temperatures, is optically clear, noncytotoxic, and can release G8:3DNA:Dox nanocarriers for up to 4 weeks. In RD cell cultures, G8:3DNA:Dox nanocarriers specifically eliminated BAI1+ cells. The bolus nanocarrier dose showed significantly reduced cell depletion overtime, while the sustained release of nanocarriers showed increased cell depletion over time. By day 7, <2% of BAI1+ cells were depleted by the bolus injection and 74.2% BAI1+ cells were targeted by the sustained release of nanocarriers. Conclusions: The sustained release of nanocarriers from the hydrogel allows for improved therapeutic delivery in a dynamic system. This method can offer a more effective and efficient method of prophylactically treating PCO after cataract surgery.
Collapse
Affiliation(s)
- Laura L Osorno
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Robert J Mosley
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Patricia L Poley
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | | | - Grzegorz Gorski
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Jacquelyn Gerhart
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Mark E Byrne
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA.,Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, USA.,OcuMedic, Inc., Mullica Hill, New Jersey, USA
| |
Collapse
|
7
|
Joseph-Pauline S, Morrison N, Braccia M, Payne A, Gugerty L, Mostoller J, Lecker P, Tsai EJ, Kim J, Martin M, Brahmbhatt R, Gorski G, Gerhart J, George-Weinstein M, Stone J, Purushothuman S, Bravo-Nuevo A. Acute Response and Neuroprotective Role of Myo/Nog Cells Assessed in a Rat Model of Focal Brain Injury. Front Neurosci 2021; 15:780707. [PMID: 34949984 PMCID: PMC8689062 DOI: 10.3389/fnins.2021.780707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Focal brain injury in the form of a needlestick (NS) results in cell death and induces a self-protective response flanking the lesion. Myo/Nog cells are identified by their expression of bone morphogenetic protein inhibitor Noggin, brain-specific angiogenesis inhibitor 1 (BAI1) and the skeletal muscle specific transcription factor MyoD. Myo/Nog cells limit cell death in two forms of retinopathy. In this study, we examined the acute response of Myo/Nog cells to a NS lesion that extended from the rat posterior parietal cortex to the hippocampus. Myo/Nog cells were identified with antibodies to Noggin and BAI1. These cells were the primary source of both molecules in the uninjured and injured brain. One day after the NS, the normally small population of Myo/Nog cells expanded approximately eightfold within a 1 mm area surrounding the lesion. Myo/Nog cells were reduced by approximately 50% along the lesion with an injection of the BAI1 monoclonal antibody and complement. The number of dying cells, identified by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), was unchanged at this early time point in response to the decrease in Myo/Nog cells. However, increasing the number of Myo/Nog cells within the lesion by injecting BAI1-positive (+) cells isolated from the brains of other animals, significantly reduced cell death and increased the number of NeuN+ neurons compared to brains injected with phosphate buffered saline or exogenous BAI1-negative cells. These findings demonstrate that Myo/Nog cells rapidly react to injury within the brain and increasing their number within the lesion is neuroprotective.
Collapse
Affiliation(s)
| | - Nathan Morrison
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Michael Braccia
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Alana Payne
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Lindsay Gugerty
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jesse Mostoller
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Paul Lecker
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - E-Jine Tsai
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jessica Kim
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Mark Martin
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Rushil Brahmbhatt
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Grzegorz Gorski
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jacquelyn Gerhart
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | | | - Jonathan Stone
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - Sivaraman Purushothuman
- Brain and Mind Centre and Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Arturo Bravo-Nuevo
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Zhou Y, Bennett TM, Shiels A. Mutation of the TRPM3 cation channel underlies progressive cataract development and lens calcification associated with pro-fibrotic and immune cell responses. FASEB J 2021; 35:e21288. [PMID: 33484482 DOI: 10.1096/fj.202002037r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Transient-receptor-potential cation channel, subfamily M, member 3 (TRPM3) serves as a polymodal calcium sensor in diverse mammalian cell-types. Mutation of the human TRPM3 gene (TRPM3) has been linked with inherited forms of early-onset cataract with or without other eye abnormalities. Here, we have characterized the ocular phenotypes of germline "knock-in" mice that harbor a human cataract-associated isoleucine-to-methionine mutation (p.I65M) in TRPM3 (Trpm3-mutant) compared with germline "knock-out" mice that functionally lack TRPM3 (Trpm3-null). Despite strong expression of Trpm3 in lens epithelial cells, neither heterozygous (Trpm3+/- ) nor homozygous (Trpm3-/- ) Trpm3-null mice developed cataract; however, the latter exhibited a mild impairment of lens growth. In contrast, homozygous Trpm3-M/M mutants developed severe, progressive, anterior pyramid-like cataract with microphthalmia, whereas heterozygous Trpm3-I/M and hemizygous Trpm3-M/- mutants developed anterior pyramidal cataract with delayed onset and progression-consistent with a semi-dominant lens phenotype. Histochemical staining revealed abnormal accumulation of calcium phosphate-like deposits and collagen fibrils in Trpm3-mutant lenses and immunoblotting detected increased αII-spectrin cleavage products consistent with calpain hyper-activation. Immunofluorescent confocal microscopy of Trpm3-M/M mutant lenses revealed fiber cell membrane degeneration that was accompanied by accumulation of alpha-smooth muscle actin positive (α-SMA+ve) myofibroblast-like cells and macrosialin positive (CD68+ve) macrophage-like cells. Collectively, our mouse model data support an ocular disease association for TRPM3 in humans and suggest that (1) Trpm3 deficiency impaired lens growth but not lens transparency and (2) Trpm3 dysfunction resulted in progressive lens degeneration and calcification coupled with pro-fibrotic (α-SMA+ve) and immune (CD68+ve) cell responses.
Collapse
Affiliation(s)
- Yuefang Zhou
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas M Bennett
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Wormstone IM, Wormstone YM, Smith AJO, Eldred JA. Posterior capsule opacification: What's in the bag? Prog Retin Eye Res 2020; 82:100905. [PMID: 32977000 DOI: 10.1016/j.preteyeres.2020.100905] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Cataract, a clouding of the lens, is the most common cause of blindness in the world. It has a marked impact on the wellbeing and productivity of individuals and has a major economic impact on healthcare providers. The only means of treating cataract is by surgical intervention. A modern cataract operation generates a capsular bag, which comprises a proportion of the anterior capsule and the entire posterior capsule. The bag remains in situ, partitions the aqueous and vitreous humours, and in the majority of cases, houses an intraocular lens (IOL). The production of a capsular bag following surgery permits a free passage of light along the visual axis through the transparent intraocular lens and thin acellular posterior capsule. Lens epithelial cells, however, remain attached to the anterior capsule, and in response to surgical trauma initiate a wound-healing response that ultimately leads to light scatter and a reduction in visual quality known as posterior capsule opacification (PCO). There are two commonly-described forms of PCO: fibrotic and regenerative. Fibrotic PCO follows classically defined fibrotic processes, namely hyperproliferation, matrix contraction, matrix deposition and epithelial cell trans-differentiation to a myofibroblast phenotype. Regenerative PCO is defined by lens fibre cell differentiation events that give rise to Soemmerring's ring and Elschnig's pearls and becomes evident at a later stage than the fibrotic form. Both fibrotic and regenerative forms of PCO contribute to a reduction in visual quality in patients. This review will highlight the wealth of tools available for PCO research, provide insight into our current knowledge of PCO and discuss putative management of PCO from IOL design to pharmacological interventions.
Collapse
Affiliation(s)
- I M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Y M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - A J O Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - J A Eldred
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
10
|
Merlo LM, Bowers J, Stefanoni T, Getts R, Mandik-Nayak L. B-Cell-Targeted 3DNA Nanotherapy Against Indoleamine 2,3-Dioxygenase 2 (IDO2) Ameliorates Autoimmune Arthritis in a Preclinical Model. CLINICAL PATHOLOGY 2020; 13:2632010X20951812. [PMID: 32924009 PMCID: PMC7457693 DOI: 10.1177/2632010x20951812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
The tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase 2 (IDO2) has been identified as an immunomodulatory agent promoting autoimmunity in preclinical models. As such, finding ways to target the expression of IDO2 in B cells promises a new avenue for therapy for debilitating autoimmune disorders such as rheumatoid arthritis. IDO2, like many drivers of disease, is an intracellular protein expressed in a range of cells, and thus therapeutic inhibition of IDO2 requires a mechanism for targeting this intracellular protein in specific cell types. DNA nanostructures are a promising novel way of delivering small molecule drugs, antibodies, or siRNAs to the cytoplasm of a cell. These soluble, branched structures can carry cell-specific targeting moieties along with their therapeutic deliverable. Here, we examined a 3DNA nanocarrier specifically targeted to B cells with an anti-CD19 antibody. We find that this 3DNA is successfully delivered to and internalized in B cells. To test whether these nanostructures can deliver an efficacious therapeutic dose to alter autoimmune responses, a modified anti-IDO2 siRNA was attached to B-cell-directed 3DNA nanocarriers and tested in an established preclinical model of autoimmune arthritis, KRN.g7. The anti-IDO2 3DNA formulation ameliorates arthritis in this system, delaying the onset of joint swelling and reducing total arthritis severity. As such, a 3DNA nanocarrier system shows promise for delivery of targeted, specific, low-dose therapy for autoimmune disease.
Collapse
|
11
|
Abstract
Myo/Nog cells were discovered in the chick embryo epiblast. Their expression of MyoD reflects a commitment to the skeletal muscle lineage and capacity to differentiate into myofibroblasts. Release of Noggin by Myo/Nog cells is essential for normal morphogenesis. Myo/Nog cells rapidly respond to wounding in the skin and eyes. In this report, we present evidence suggesting that Myo/Nog cells phagocytose tattoo ink in tissue sections of human skin and engulf cell corpses in cultures of anterior human lens tissue and magnetic beads injected into the anterior chamber of mice in vivo. Myo/Nog cells are distinct from macrophages in the skin and eyes indicated by the absence of labeling with an antibody to ionized calcium binding adaptor molecule 1. In addition to their primary roles as regulators of BMP signaling and progenitors of myofibroblasts, Myo/Nog cells behave as nonprofessional phagocytes defined as cells whose primary functions are unrelated to phagocytosis but are capable of engulfment.
Collapse
|
12
|
Gerhart J, Bowers J, Gugerty L, Gerhart C, Martin M, Abdalla F, Bravo-Nuevo A, Sullivan JT, Rimkunas R, Albertus A, Casta L, Getts L, Getts R, George-Weinstein M. Brain-specific angiogenesis inhibitor 1 is expressed in the Myo/Nog cell lineage. PLoS One 2020; 15:e0234792. [PMID: 32614850 PMCID: PMC7332021 DOI: 10.1371/journal.pone.0234792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
The Myo/Nog cell lineage was discovered in the chick embryo and is also present in adult mammalian tissues. The cells are named for their expression of mRNA for the skeletal muscle specific transcription factor MyoD and bone morphogenetic protein inhibitor Noggin. A third marker for Myo/Nog cells is the cell surface molecule recognized by the G8 monoclonal antibody (mAb). G8 has been used to detect, track, isolate and kill Myo/Nog cells. In this study, we screened a membrane proteome array for the target of the G8 mAb. The array consisted of >5,000 molecules, each synthesized in their native confirmation with appropriate post-translational modifications in a single clone of HEK-293T cells. G8 mAb binding to the clone expressing brain-specific angiogenesis inhibitor 1 (BAI1) was detected by flow cytometry, re-verified by sequencing and validated by transfection with the plasmid construct for BAI1. Further validation of the G8 target was provided by enzyme-linked immunosorbent assay. The G8 epitope was identified by screening a high-throughput, site directed mutagenesis library designed to cover 95–100% of the 954 amino acids of the extracellular domain of the BAI1 protein. The G8 mAb binds within the third thrombospondin repeat of the extracellular domain of human BAI1. Immunofluorescence localization experiments revealed that G8 and a commercially available BAI1 mAb co-localize to the subpopulation of Myo/Nog cells in the skin, eyes and brain. Expression of the multi-functional BAI1 protein in Myo/Nog cells introduces new possibilities for the roles of Myo/Nog cells in normal and diseased tissues.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | | | - Lindsay Gugerty
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Colby Gerhart
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Mark Martin
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Fathma Abdalla
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Arturo Bravo-Nuevo
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | | | | | - Amie Albertus
- Integral Molecular, Philadelphia, PA, United States of America
| | - Lou Casta
- Genisphere, LLC, Hatfield, PA, United States of America
| | - Lori Getts
- Genisphere, LLC, Hatfield, PA, United States of America
| | - Robert Getts
- Genisphere, LLC, Hatfield, PA, United States of America
| | - Mindy George-Weinstein
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Osorno LL, Medina JDR, Maldonado DE, Mosley RJ, Byrne ME. Extended Release of Doxorubicin-Loaded 3DNA Nanocarriers from In-Situ Forming, Self-Assembled Hydrogels. J Ocul Pharmacol Ther 2020; 36:447-457. [PMID: 32466697 DOI: 10.1089/jop.2019.0145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose: Cataracts are the leading cause of blindness worldwide, resulting in over 30 million surgeries each year. These cases are expected to double within the next 10 years. About 25% of all patients develop secondary cataracts or posterior capsule opacification (PCO) postsurgery. PCO is a vision impairment disorder that develops from myofibroblasts migration and contraction that deforms the capsule surrounding the lens. Currently, Nd:YAG laser therapy is used to treat PCO; however, laser is not available worldwide and adverse side effects may arise. Thus, there is a considerable unmet need for more efficacious and convenient preventive treatments for PCO. Our work focuses on engineering an innovative, prophylactic sustained release platform for DNA-based nanocarriers to further reduce the incidence of PCO. Methods: Novel, optically clear, self-assembled poly(d,l-lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-PEG) triblock copolymer hydrogels were used for the sustained release of the DNA-based nanocarriers (3DNA®) loaded with cytotoxic doxorubicin (DOX) and targeted with a monoclonal antibody called G8 (3DNA:DOX:G8), which is specific to cells responsible for PCO. Results: The 29 (w/v)% polymer hydrogels with the 3DNA nanocarriers presented over 80% of light transmittance, soft mechanical properties (<350 Pa), and sustained release for 1 month. Conclusions: In this work, we show for the first time that the hydrophobic PLGA-PEG-PLGA hydrogels can be used as platforms for sustained delivery of nucleic acid-based nanocarriers. This work demonstrates that polymeric formulations can be used for the extended delivery of ocular therapeutics and other macromolecules to treat a variety of ocular conditions.
Collapse
Affiliation(s)
- Laura L Osorno
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Jamie D R Medina
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Daniel E Maldonado
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Robert J Mosley
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Mark E Byrne
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
14
|
Gerhart J, Morrison N, Gugerty L, Telander D, Bravo-Nuevo A, George-Weinstein M. Myo/Nog cells expressing muscle proteins are present in preretinal membranes from patients with proliferative vitreoretinopathy. Exp Eye Res 2020; 197:108080. [PMID: 32474138 DOI: 10.1016/j.exer.2020.108080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/27/2020] [Accepted: 05/23/2020] [Indexed: 11/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a complication of rhegmatogenous retinal detachment and ocular trauma. The disease is characterized by development of membranes that may apply traction to the retina and cause redetachment. Membrane contractions are attributed to myofibroblasts arising from retinal pigment epithelial cells, glia and fibroblasts. The progenitors of myofibrobasts in the lens are Myo/Nog cells that express the skeletal muscle transcription factor MyoD and bone morphogenetic protein inhibitor Noggin. The retina and choroid also contain Myo/Nog cells that respond to stress. We examined preretinal PVR membranes from three ocular trauma patients with retinal detachment for Myo/Nog cells and their expression of muscle proteins. Myo/Nog cells were identified by co-localization of antibodies to the G8 antigen and Noggin. Greater than 80% of all cells in sections from two of three patients expressed both G8 and Noggin. Myo/Nog cells lacked pigment. Alpha smooth muscle actin (α-SMA) and striated myosin II heavy chain were present in the majority of Myo/Nog cells in these two patients. Differentiation of Myo/Nog cells was paralleled by low levels of MyoD. Membrane sections from the third patient consisted mostly of connective tissue with very few cells. A small subpopulation in these sections expressed both G8 and Noggin, and muscle proteins were detected in only a minority of G8-positive (+) cells. In all three patients, greater than 99% of cells with MyoD, α-SMA and striated muscle myosin co-expressed G8. These findings suggest that contractile myofibroblasts in PVR membranes may be derived from differentiating Myo/Nog cells.
Collapse
Affiliation(s)
| | - Nathan Morrison
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Lindsay Gugerty
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - David Telander
- University of California, Davis, CA, USA; Retinal Consultants, Sacramento, CA, USA
| | | | | |
Collapse
|