1
|
Li L, Hu X, Li S, Li Y, Zhao S, Shen F, Wang C, Li Y, Wang T. Cobalt Protoporphyrin Blocks EqHV-8 Infection via IFN-α/β Production. Animals (Basel) 2023; 13:2690. [PMID: 37684954 PMCID: PMC10487175 DOI: 10.3390/ani13172690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Equid alphaherpesvirus type 8 (EqHV-8) is the causative agent of severe respiratory disease, abortions, and neurological syndromes in equines and has resulted in huge economic losses to the donkey industry. Currently, there exist no therapeutic molecules for controlling EqHV-8 infection. We evaluated the potential antiviral activity of cobalt protoporphyrin (CoPP) against EqHV-8 infection. Our results demonstrated that CoPP inhibited EqHV-8 infection in susceptible cells and mouse models. Furthermore, CoPP blocked the replication of EqHV-8 via HO-1 (heme oxygenase-1) mediated type I interferon (IFN) response. In conclusion, our data suggested that CoPP could serve as a novel potential molecule to develop an effective therapeutic strategy for EqHV-8 prevention and control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
2
|
Li R, Qu Y, Li X, Tao Y, Yang Q, Wang J, Diao Y, Li Q, Fang Y, Huang Y, Wang L. Molecular Hydrogen Attenuated N-methyl-N-Nitrosourea Induced Corneal Endothelial Injury by Upregulating Anti-Apoptotic Pathway. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34196654 PMCID: PMC8267183 DOI: 10.1167/iovs.62.9.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Previous work by our group has demonstrated the value of N-methyl-N-nitrosourea (MNU)-induced corneal endothelial decompensation in animal models. The aim of this study was to investigate the effect of molecular hydrogen (H2) on MNU-induced corneal endothelial cell (CEC) injury and the underlying mechanism. Methods MNU-induced animal models of CEC injury were washed with hydrogen-rich saline (HRS) for 14 days. Immunofluorescence staining, immunohistochemical staining, and corneal endothelial assessment were applied to determine architectural and cellular changes on the corneal endothelium following HRS treatment. MNU-induced cell models of CEC injury were co-cultured with H2. The effect of H2 was examined using morphological and functional assays. Results It was shown that MNU could inhibit the proliferation and specific physiological functions of CECs by increasing apoptosis and decreasing the expression of ZO-1 and Na+/K+-ATPase, whereas H2 improved the proliferation and physiological function of CECs by anti-apoptosis. Cell experiments further confirmed that H2 could reverse MNU damage to CECs by decreasing oxidative stress injury, interfering with the NF-κB/NLRP3 pathway and the FOXO3a/p53/p21 pathway. Conclusions This study suggests that topical application of H2 could protect CECs against corneal damage factors through anti-apoptotic effect, reduce the incidence and severity of corneal endothelial decompensation, and maintain corneal transparency.
Collapse
Affiliation(s)
- Runpu Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingxin Qu
- Department of Ophthalmology, Chinese Aerospace 731 Hospital, Beijing, China
| | - Xiaoqi Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Tao
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Qinghua Yang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yumei Diao
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qian Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifan Fang
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Sheng A, Lin L, Zhu J, Zhuang J, Li J, Chang L, Cheng H. Micro/nanodevices for assessment and treatment in stomatology and ophthalmology. MICROSYSTEMS & NANOENGINEERING 2021; 7:11. [PMID: 33532080 PMCID: PMC7844113 DOI: 10.1038/s41378-021-00238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 05/09/2023]
Abstract
Micro/nanodevices have been widely applied for the real-time monitoring of intracellular activities and the delivery of exogenous substances in the past few years. This review focuses on miniaturized micro/nanodevices for assessment and treatment in stomatology and ophthalmology. We first summarize the recent progress in this field by examining the available materials and fabrication techniques, device design principles, mechanisms, and biosafety aspects of micro/nanodevices. Following a discussion of biochemical sensing technology from the cellular level to the tissue level for disease assessment, we then summarize the use of microneedles and other micro/nanodevices in the treatment of oral and ocular diseases and conditions, including oral cancer, eye wrinkles, keratitis, and infections. Along with the identified key challenges, this review concludes with future directions as a small fraction of vast opportunities, calling for joint efforts between clinicians and engineers with diverse backgrounds to help facilitate the rapid development of this burgeoning field in stomatology and ophthalmology.
Collapse
Affiliation(s)
- An’an Sheng
- The Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- Department of Stomatology, Xiang’An Hospital of Xiamen University, 361100 Xiamen, China
- School of Stomatology, North China University of Science and Technology, 063210 Tangshan, China
| | - Long Lin
- The Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- Institute of Plastic Machinery and Plastic Engineering, School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jia Zhu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 USA
| | - Jian Zhuang
- Institute of Plastic Machinery and Plastic Engineering, School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jian Li
- Department of Stomatology, Xiang’An Hospital of Xiamen University, 361100 Xiamen, China
| | - Lingqian Chang
- The Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, 230032 Hefei, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
4
|
Newton F, Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes (Basel) 2020; 11:genes11101120. [PMID: 32987769 PMCID: PMC7598671 DOI: 10.3390/genes11101120] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited blindness and is characterised by the progressive loss of retinal photoreceptors. However, RP is a highly heterogeneous disease and, while much progress has been made in developing gene replacement and gene editing treatments for RP, it is also necessary to develop treatments that are applicable to all causative mutations. Further understanding of the mechanisms leading to photoreceptor death is essential for the development of these treatments. Recent work has therefore focused on the role of apoptotic and non-apoptotic cell death pathways in RP and the various mechanisms that trigger these pathways in degenerating photoreceptors. In particular, several recent studies have begun to elucidate the role of microglia and innate immune response in the progression of RP. Here, we discuss some of the recent progress in understanding mechanisms of rod and cone photoreceptor death in RP and summarise recent clinical trials targeting these pathways.
Collapse
Affiliation(s)
- Fay Newton
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Correspondence:
| | - Roly Megaw
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh EH3 9HA, UK
| |
Collapse
|