1
|
Wang F, Zhang M, Yin L, Zhou Z, Peng Z, Li W, Chen H, Yu G, Tang J. The tryptophan metabolite kynurenic acid ameliorates septic colonic injury through activation of the PPARγ signaling pathway. Int Immunopharmacol 2025; 147:113651. [PMID: 39742725 DOI: 10.1016/j.intimp.2024.113651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is the leading cause of death among critically ill patients in clinical practice, making it urgent to reduce its incidence and mortality rates. In sepsis, macrophage dysfunction often worsens and complicates the condition. M1 and M2 macrophages, two distinct types, contribute to pro-inflammatory and anti-inflammatory effects, respectively. An imbalance between them is a major cause of sepsis. The aim of this study was to explore the potential of a differential metabolite between M1 and M2 macrophages in mitigating septic colonic injury via multiomics in combination with clinical data and animal experiments. Using nontargeted metabolomics analysis, we found that Kynurenic acid (KYNA), a metabolite of tryptophan metabolism, was significantly upregulated in the supernatant of M2 macrophages. Furthermore, we discovered that the level of KYNA was significantly decreased in sepsis in both human and mouse serum and was negatively correlated with inflammatory factor levels. In vivo experiments demonstrated that KYNA can effectively alleviate septic colon injury and reduce inflammatory factor levels in mice, indicating that KYNA plays a very important protective role in sepsis. Mechanistically, KYNA promotes the transition of M1 macrophages to M2 macrophages by inhibiting the NF-κB signaling pathway and alleviates septic colonic injury through the PPARγ/NF-κB axis. This article reveals that KYNA, a differentially abundant metabolite between M1 and M2 macrophages, can become a new strategy for alleviating septic colon injury.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Meng Zhang
- Department of Pneumology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Liping Yin
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Ziyang Zhou
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Ziyao Peng
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Wenweiran Li
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China.
| | - Guohong Yu
- Department of Emergency Medicine, Baoshan Second People's Hospital, Baoshan College of Traditional Chinese Medicine, 13 Zhengyang South Road, Baoshan, Yunnan 678000, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Gong T, Wang D, Wang J, Huang Q, Zhang H, Liu C, Liu X, Ye H. Study on the mechanism of plant metabolites to intervene oxidative stress in diabetic retinopathy. Front Pharmacol 2025; 16:1517964. [PMID: 39974734 PMCID: PMC11835683 DOI: 10.3389/fphar.2025.1517964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
Diabetic retinopathy is the main microvascular complication of diabetes and the first blinding eye disease in the working-age population. Oxidative stress is an important pathogenesis of diabetic retinopathy. Plant metabolites can be divided into two types: primary metabolites and secondary metabolites, secondary metabolites are the main active components and important sources for developing new drugs. It has unique effect in the treatment of diabetic retinopathy. However, the research on the intervention mechanism of plant metabolites in diabetic retinopathy are still relatively shallow, which limit the application of plant metabolites. With the deepening of research, more and more plant metabolites have been reported to play a role in treating diabetic retinopathy through anti-oxidative stress, including polyphenols, polysaccharides, saponins, alkaloids, etc. Therefore, this article reviewed the potential of plant metabolites in the treatment of diabetic retinopathy in the last 10 years and elucidated their mechanism of action. We hope to provide some references for the application of plant metabolites and provide valuable resources for the research and development of new drugs for diabetic retinopathy.
Collapse
Affiliation(s)
- Tianyao Gong
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongmei Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunmeng Liu
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinglin Liu
- School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hejiang Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Ishibashi M, Shibata K, Terasaki M, Saito Y, Yamagishi SI, Hasumi K, Nobe K. SMTP-44D alleviates diabetic retinopathy by suppressing inflammation and oxidative stress in in vivo and in vitro models. J Pharmacol Sci 2025; 157:57-64. [PMID: 39828394 DOI: 10.1016/j.jphs.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness among working-age adults, and inflammation and oxidative stress contribute to DR development. However, no effective treatments are currently approved for DR. Therefore, this study aimed to investigate the effects of SMTP-44D-a Stachybotrys microspora-derived compound with anti-inflammatory and antioxidant properties-on DR in in vivo and in vitro models. Diabetes was induced in rats using 60 mg/kg streptozocin, followed by treatment with SMTP-44D every second day. Retinal function was assessed using electroretinography every 2 months for 8 months. SMTP-44D prevented diabetes-induced b-wave amplitude reductions in electroretinogram and decreased retinal ganglion cell apoptosis. SMTP-44D also reduced the accumulation of advanced glycation end-products (AGEs), AGE receptors, and 8-hydroxydeoxyguanosine in the retina. Furthermore, when rat retinal Müller cells were cultured in DMEM medium containing 35 mM glucose (high glucose, HG) and treated with SMTP-44D for 24 h, SMTP-44D mitigated cell death, reactive oxygen species production, and inflammatory cytokine levels in the cells. These findings suggest that SMTP-44D exhibits significant antioxidant and anti-inflammatory effects, highlighting its potential as a therapeutic candidate for DR.
Collapse
Affiliation(s)
- Mio Ishibashi
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keita Shibata
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Michishige Terasaki
- Department of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yuta Saito
- Department of Ophthalmology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Sho-Ichi Yamagishi
- Department of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan; Division of Research and Development, TMS Co., Ltd., Fuchu, Tokyo, 183-0055, Japan
| | - Koji Nobe
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
4
|
Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease-Interplay Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11850. [PMID: 39519401 PMCID: PMC11546760 DOI: 10.3390/ijms252111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the main signaling pathways involved in the pathogenesis of retinal vascular diseases and to identify crucial molecules and the importance of their interactions. Vascular endothelial growth factor (VEGF) is recognized as a crucial and central molecule in abnormal neovascularization and a key phenomenon in retinal vascular occlusion; thus, anti-VEGF therapy is now the most successful form of treatment for these disorders. Interaction between angiopoietin 2 and the Tie2 receptor results in aberrant Tie2 signaling, resulting in loss of pericytes, neovascularization, and inflammation. Notch signaling and hypoxia-inducible factors in ischemic conditions induce pathological neovascularization and disruption of the blood-retina barrier. An increase in the pro-inflammatory cytokines-TNF-α, IL-1β, and IL-6-and activation of microglia create a persistent inflammatory milieu that promotes breakage of the blood-retinal barrier and neovascularization. Toll-like receptor signaling and nuclear factor-kappa B are important factors in the dysregulation of the immune response in retinal vascular diseases. Increased production of reactive oxygen species and oxidative damage follow inflammation and together create a vicious cycle because each factor amplifies the other. Understanding the complex interplay among various signaling pathways, signaling cascades, and molecules enables the development of new and more successful therapeutic options.
Collapse
Affiliation(s)
- Jovana V. Srejovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja D. Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia
| | - Suncica B. Sreckovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad T. Petrovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dusan Z. Todorovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sergey B. Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Tatjana S. Sarenac Vulovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Pereira VA, da Silva HNM, Fernandes EM, Minatel E. LED therapy modulates M1/M2 macrophage phenotypes and mitigates dystrophic features in treadmill-trained mdx mice. Photochem Photobiol Sci 2024:10.1007/s43630-024-00626-2. [PMID: 39227554 DOI: 10.1007/s43630-024-00626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
The mdx mouse phenotype, aggravated by chronic exercise on a treadmill, makes this murine model more reliable for the study of Duchenne muscular dystrophy (DMD) and allows the efficacy of therapeutic interventions to be evaluated. This study aims to investigate the effects of photobiomodulation by light-emitting diode (LED) therapy on functional, biochemical and morphological parameters in treadmill-trained adult mdx animals. Mdx mice were trained for 30 min of treadmill running at a speed of 12 m/min, twice a week for 4 weeks. The LED therapy (850 nm) was applied twice a week to the quadriceps muscle throughout the treadmill running period. LED therapy improved behavioral activity (open field) and muscle function (grip strength and four limb hanging test). Functional benefits correlated with reduced muscle damage; a decrease in the inflammatory process; modulation of the regenerative muscular process and calcium signalling pathways; and a decrease in oxidative stress markers. The striking finding of this work is that LED therapy leads to a shift from the M1 to M2 macrophage phenotype in the treadmill-trained mdx mice, enhancing tissue repair and mitigating the dystrophic features. Our data also imply that the beneficial effects of LED therapy in the dystrophic muscle correlate with the interplay between calcium, oxidative stress and inflammation signalling pathways. Together, these results suggest that photobiomodulation could be a potential adjuvant therapy for dystrophinopathies.
Collapse
Affiliation(s)
- Valéria Andrade Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Evelyn Mendes Fernandes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
6
|
Tu Y, Luo Y, Zhao Q, Zeng Y, Leng K, Zhu M. Role of macrophage in ocular neovascularization. Heliyon 2024; 10:e30840. [PMID: 38770313 PMCID: PMC11103465 DOI: 10.1016/j.heliyon.2024.e30840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Ocular neovascularization is the leading cause of blindness in clinical settings. Pathological angiogenesis of the eye can be divided into corneal neovascularization (CoNV), retinal neovascularization (RNV, including diabetic retinopathy and retinopathy of prematurity), and choroidal neovascularization (CNV) based on the anatomical location of abnormal neovascularization. Although anti-Vascular endothelial growth factor (VEGF) agents have wide-ranging clinical applications and are an effective treatment for neovascular eye disease, many deficiencies in this treatment strategy remain. Recently, emerging evidence has demonstrated that macrophages are vital during the process of physiological and pathological angiogenesis. Monocyte-macrophage lineage is diverse and plastic, they can shift between different activation modes and have different functions. Due to the obvious regulatory effect of macrophages on inflammation and angiogenesis, macrophages have been increasingly studied in the field of ophthalmology. Here, we detail how macrophage activated and the role of different subtypes of macrophages in the pathogenesis of ocular neovascularization. The complexity of macrophages has recently taken center stage owing to their subset diversity and tightly regulated molecular and metabolic phenotypes. In this review, we reveal the functional and phenotypic characterization of macrophage subsets associated with ocular neovascularization, more in-depth research is needed to explore the specific mechanisms by which macrophages regulate angiogenesis as well as macrophage polarization. Targeted regulation of macrophage differentiation based on their phenotype and function could be an effective approach to treat and manage ocular neovascularization in the future.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yalu Luo
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Qingliang Zhao
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanfeng Zeng
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Leng
- Department of Medical Informatics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Ma Y, Hu X, Shen S, Pan D. Geniposide ameliorates brain injury in mice with intracerebral hemorrhage by inhibiting NF-κB signaling. Neurol Res 2024; 46:346-355. [PMID: 38402902 DOI: 10.1080/01616412.2024.2321014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Neuroinflammation and oxidative stress are critical players in intracerebral hemorrhage (ICH). Geniposide is an active component of Gardenia that has anti-inflammatory effects. This study focused on the roles and mechanisms of geniposide in ICH. METHODS ICH was established by injecting collagenase IV into C57BL/6 mice. To determine the functions of geniposide and NF-κB inhibition in ICH model mice, geniposide (1, 25, or 50 mg/kg) or PDTC (a NF-κB inhibitor) was administered. Neurological functions were assessed with the modified neurological severity score (mNSS) test. Hematoxylin and eosin staining were performed to identify pathological changes. IL-1β and TNF-α levels were estimated with ELISA kits. NF-κB p65 localization was determined by immunofluorescence staining. Oxidative stress was analyzed by measuring ROS levels. RESULTS Geniposide alleviated cerebral edema and neurological deficits. Geniposide inhibited neuroinflammation and oxidative stress after ICH, and the inhibitory effects were enhanced by NF-κB inhibition. Additionally, geniposide inhibited NF-κB signaling. CONCLUSION Geniposide alleviates brain injury by suppressing inflammation and oxidative stress damage in experimental ICH models by inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Yinghui Ma
- Department of Neurosurgery, Huang Shi Central Hospital, HuangShi, China
| | - Xiao Hu
- Department of Neurosurgery, Huang Shi Central Hospital, HuangShi, China
| | - Songbo Shen
- Department of Neurosurgery, Huang Shi Central Hospital, HuangShi, China
| | - Dongmei Pan
- Department of Geriatrics, Huang Shi Central Hospital, HuangShi, China
| |
Collapse
|
8
|
Yi Y, Pyun SH, Kim CY, Yun G, Kang E, Heo S, Ullah I, Lee SK. Eye Drop with Fas-Blocking Peptide Attenuates Age-Related Macular Degeneration. Cells 2024; 13:548. [PMID: 38534392 PMCID: PMC10969560 DOI: 10.3390/cells13060548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Age-related macular degeneration (AMD), characterized by macular retinal degeneration, poses a significant health concern due to the lack of effective treatments for prevalent dry AMD. The progression of AMD is closely linked to reactive oxygen species and Fas signaling, emphasizing the need for targeted interventions. In this study, we utilized a NaIO3-induced retinal degeneration mouse model to assess the efficacy of Fas-blocking peptide (FBP). Intravitreal administration of FBP successfully suppressed Fas-mediated inflammation and apoptosis, effectively arresting AMD progression in mice. We developed a 6R-conjugated FBP (6R-FBP) for eye drop administration. 6R-FBP, administered as an eye drop, reached the retinal region, attenuating degeneration by modulating the expression of inflammatory cytokines and blocking Fas-mediated apoptosis in rodent and rabbit NaIO3-induced retinal degeneration models to address practical concerns. Intravitreal FBP and 6R-FBP eye drops effectively reduced retinal degeneration and improved retinal thickness in rodent and rabbit models. This study highlights the therapeutic potential of FBP, particularly 6R-FBP as an eye drop, in inhibiting Fas-mediated cell signaling and protecting against retinal cell death and inflammation in dry AMD. Future investigations should explore the translational prospects of this approach in primates with eye structures comparable to those of humans.
Collapse
Affiliation(s)
- Yujong Yi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (Y.Y.); (S.H.)
| | - Seon-Hong Pyun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (Y.Y.); (S.H.)
| | - Chae-Yeon Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (Y.Y.); (S.H.)
| | - Gyeongju Yun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (Y.Y.); (S.H.)
| | - Eunhwa Kang
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (Y.Y.); (S.H.)
| | - Seoyoun Heo
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (Y.Y.); (S.H.)
| | - Irfan Ullah
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (Y.Y.); (S.H.)
| |
Collapse
|
9
|
Ku H, Chen JJY, Chen W, Tien PT, Lin HJ, Wan L, Xu G. The role of transforming growth factor beta in myopia development. Mol Immunol 2024; 167:34-42. [PMID: 38340674 DOI: 10.1016/j.molimm.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Myopia is widely recognized as an epidemic. Studies have found a link between Transforming Growth Factor-beta (TGF-β) and myopia, but the specific molecular mechanisms are not fully understood. In this study, a monocular model in tree shrews (Tupaia belangeri) was established to verify the molecular mechanism of TGF-β in myopia. The results indicated that there were significant changes in TGF-βs during the treatment of myopia, which could enhance the refractive ability and axial length of the eye. Immunohistochemical staining, real-time fluorescent quantitative PCR, and immunoblotting results showed a significant upregulation of MMP2 and NF-κB levels, and a significant downregulation of COL-I expression in the TGF-β treated eyes, suggesting that NF-κB and MMP2 are involved in the signaling pathways of TGF-βs induced myopia and axial elongation. Moreover, the expression levels of IL-6, IL-8, MCP-1, IL-1β, TNF-α, TAK1, and NF-κB in the retina were all significantly elevated. This indicates that TGF-β stimulates the inflammatory response of retinal pigment epithelial cells through the TAK1-NF-κB signaling pathway. In conclusion, this study suggests that TGF-β promotes the progression of myopia by enhancing intraocular inflammation.
Collapse
Affiliation(s)
- Hsiangyu Ku
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031 China; Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, China
| | | | - Wei Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031 China
| | - Peng-Tai Tien
- Eye Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Ju Lin
- Eye Center, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.
| | - Gezhi Xu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031 China.
| |
Collapse
|
10
|
Gu F, Huang X, Huang W, Zhao M, Zheng H, Wang Y, Chen R. The role of miRNAs in Behçet's disease. Front Immunol 2023; 14:1249826. [PMID: 37860009 PMCID: PMC10584330 DOI: 10.3389/fimmu.2023.1249826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
The symptoms of Behçet's disease (BD), a multisystemic condition with autoimmune and inflammation as hallmarks, include arthritis, recurring oral and vaginal ulcers, skin rashes and lesions, and involvement of the nervous, gastrointestinal, and vascular systems. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), may be important regulators of inflammation and autoimmune disease. These ncRNAs are essential to the physiological and pathophysiological disease course, and miRNA in particular has received significant attention for its role and function in BD and its potential use as a diagnostic biomarker in recent years. Although promising as therapeutic targets, miRNAs must be studied further to fully comprehend how miRNAs in BD act biologically.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanyin Wang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Ran Chen
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| |
Collapse
|
11
|
Yao Y, Li J, Zhou Y, Wang S, Zhang Z, Jiang Q, Li K. Macrophage/microglia polarization for the treatment of diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1276225. [PMID: 37842315 PMCID: PMC10569308 DOI: 10.3389/fendo.2023.1276225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Macrophages/microglia are immune system defense and homeostatic cells that develop from bone marrow progenitor cells. According to the different phenotypes and immune responses of macrophages (Th1 and Th2), the two primary categories of polarized macrophages/microglia are those conventionally activated (M1) and alternatively activated (M2). Macrophage/microglial polarization is a key regulating factor in the development of inflammatory disorders, cancers, metabolic disturbances, and neural degeneration. Macrophage/microglial polarization is involved in inflammation, oxidative stress, pathological angiogenesis, and tissue healing processes in ocular diseases, particularly in diabetic retinopathy (DR). The functional phenotypes of macrophages/microglia affect disease progression and prognosis, and thus regulate the polarization or functional phenotype of microglia at different DR stages, which may offer new concepts for individualized therapy of DR. This review summarizes the involvement of macrophage/microglia polarization in physiological situations and in the pathological process of DR, and discusses the promising role of polarization in personalized treatment of DR.
Collapse
Affiliation(s)
- Yujia Yao
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jiajun Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yunfan Zhou
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Suyu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ziran Zhang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
13
|
Mussbacher M, Derler M, Basílio J, Schmid JA. NF-κB in monocytes and macrophages - an inflammatory master regulator in multitalented immune cells. Front Immunol 2023; 14:1134661. [PMID: 36911661 PMCID: PMC9995663 DOI: 10.3389/fimmu.2023.1134661] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear factor κB (NF-κB) is a dimeric transcription factor constituted by two of five protein family members. It plays an essential role in inflammation and immunity by regulating the expression of numerous chemokines, cytokines, transcription factors, and regulatory proteins. Since NF-κB is expressed in almost all human cells, it is important to understand its cell type-, tissue-, and stimulus-specific roles as well as its temporal dynamics and disease-specific context. Although NF-κB was discovered more than 35 years ago, many questions are still unanswered, and with the availability of novel technologies such as single-cell sequencing and cell fate-mapping, new fascinating questions arose. In this review, we will summarize current findings on the role of NF-κB in monocytes and macrophages. These innate immune cells show high plasticity and dynamically adjust their effector functions against invading pathogens and environmental cues. Their versatile functions can range from antimicrobial defense and antitumor immune responses to foam cell formation and wound healing. NF-κB is crucial for their activation and balances their phenotypes by finely coordinating transcriptional and epigenomic programs. Thereby, NF-κB is critically involved in inflammasome activation, cytokine release, and cell survival. Macrophage-specific NF-κB activation has far-reaching implications in the development and progression of numerous inflammatory diseases. Moreover, recent findings highlighted the temporal dynamics of myeloid NF-κB activation and underlined the complexity of this inflammatory master regulator. This review will provide an overview of the complex roles of NF-κB in macrophage signal transduction, polarization, inflammasome activation, and cell survival.
Collapse
Affiliation(s)
- Marion Mussbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Martina Derler
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - José Basílio
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- INESC ID–Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
García-Llorca A, Kararigas G. Sex-Related Effects of Gut Microbiota in Metabolic Syndrome-Related Diabetic Retinopathy. Microorganisms 2023; 11:microorganisms11020447. [PMID: 36838411 PMCID: PMC9967826 DOI: 10.3390/microorganisms11020447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The metabolic syndrome (MetS) is a complex disease of metabolic abnormalities, including obesity, insulin resistance, hypertension and dyslipidaemia, and it is associated with an increased risk of cardiovascular disease (CVD). Diabetic retinopathy (DR) is the leading cause of vision loss among working-aged adults around the world and is the most frequent complication in type 2 diabetic (T2D) patients. The gut microbiota are a complex ecosystem made up of more than 100 trillion of microbial cells and their composition and diversity have been identified as potential risk factors for the development of several metabolic disorders, including MetS, T2D, DR and CVD. Biomarkers are used to monitor or analyse biological processes, therapeutic responses, as well as for the early detection of pathogenic disorders. Here, we discuss molecular mechanisms underlying MetS, the effects of biological sex in MetS-related DR and gut microbiota, as well as the latest advances in biomarker research in the field. We conclude that sex may play an important role in gut microbiota influencing MetS-related DR.
Collapse
|
15
|
Sun X, Ma L, Li X, Wang J, Li Y, Huang Z. Ferulic acid alleviates retinal neovascularization by modulating microglia/macrophage polarization through the ROS/NF-κB axis. Front Immunol 2022; 13:976729. [PMID: 36119027 PMCID: PMC9478033 DOI: 10.3389/fimmu.2022.976729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation plays a pivotal role in ischemia-induced retinal neovascularization. Targeting microglia/macrophage-based neuroinflammation presents a promising therapeutic strategy. Ferulic acid (FA), a natural and active ingredient in plants, exerts favorable anti-oxidative and anti-inflammatory activities. In this study, we investigated the inhibitory effect of FA against hypoxia-induced retinal angiogenesis using cultured retinal vascular endothelial cells and an oxygen-induced retinopathy mouse (OIR) model. The immunoregulatory effect of FA on microglia/macrophage polarization was evaluated by detecting the expression of specific markers for both pro-inflammatory “M1” and anti-inflammatory “M2” phenotypes using co-immunostaining and polymerase chain reaction assays. The underlying molecular mechanism upon FA treatment was also explored. The results showed that FA supplement markedly inhibited retinal pathological angiogenesis both in vivo and in vitro. In addition, FA switched microglia/macrophage polarization from “M1” towards “M2” phenotype and alleviated the inflammatory response. Mechanically, the anti-angiogenic and anti-inflammatory properties of FA were mainly due to blockade of the ROS/NF-κB pathway. Our data demonstrated an anti-angiogenic effect of FA through regulating M1-to-M2 microglia/macrophage polarization, suggesting a potential therapeutic strategy for retinal neovascular diseases.
Collapse
Affiliation(s)
- Xiaowei Sun
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lusheng Ma
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Wang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuanbin Li
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
16
|
Shi Y, Yasui M, Hara-Chikuma M. AQP9 transports lactate in tumor-associated macrophages to stimulate an M2-like polarization that promotes colon cancer progression. Biochem Biophys Rep 2022; 31:101317. [PMID: 35967760 PMCID: PMC9372591 DOI: 10.1016/j.bbrep.2022.101317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages play a major role in the immune defense against pathogenic factors; however, they can lead to tumor exacerbation and metastasis, as the tumor microenvironment (TME) polarizes tumor-associated macrophages (TAMs) into the M2 subtype. Lactate, a metabolite produced by carcinoma cells at high concentrations in the TME, induces an M2-polarization in macrophages, which ultimately leads to the secretion of factors, such as vascular endothelial growth factor (VEGF), and promotes tumor progression. However, the effect of TAM lactate import on tumor progression has not been fully elucidated. Aquaporin 9 (AQP9) is a transporter of water and glycerol expressed in macrophages. Here, we used a tumor allograft mouse model to show that AQP9 knockout (AQP9−/−) mice were more resistant against tumor cell growth and exhibited a suppressive M2-like polarization in tumor tissue than wild-type mice. Moreover, we discovered that the primary bone marrow-derived macrophages from AQP9−/− mice were less sensitive to lactate stimulation and exhibited reduced M2-like polarization as well as decreased VEGF production. To further investigate the role of AQP9 in macrophage polarization, we overexpressed AQP9 in Chinese hamster ovary cells and found that AQP9 functioned in lactate import. In contrast, primary AQP9−/− macrophages and AQP9 knockdown RAW264.7 cells exhibited a reduced lactate transport rate, suggesting the involvement of AQP9 in lactate transport in macrophages. Together, our results reveal the mechanism by which the TME modifies the polarization and function of tumor-infiltrating macrophages via AQP9 transport function. Tumor growth was suppressed in AQP9-deficient mice. M2-like TAMs were reduced in tumor tissues of AQP9-deficient mice. AQP9 deficiency attenuated lactate-induced M2 polarization in macrophages. AQP9 is a lactate transporter in macrophages.
Collapse
Affiliation(s)
- Yundi Shi
- Department of Pharmacology, Keio University School of Medicine, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Japan
- Center for Water Biology and Medicine, Keio University Global Research Institute, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, Keio University School of Medicine, Japan
- Corresponding author. Department of Pharmacology, Keio University, School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160, Japan.
| |
Collapse
|
17
|
Administration of Melatonin in Diabetic Retinopathy Is Effective and Improves the Efficacy of Mesenchymal Stem Cell Treatment. Stem Cells Int 2022; 2022:6342594. [PMID: 35450343 PMCID: PMC9017455 DOI: 10.1155/2022/6342594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/26/2022] [Indexed: 11/29/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic technique for the treatment of a variety of diseases; nevertheless, stem cell therapy may not always work as well as it could. The goal of this study was to test the hypothesis that employing a powerful antioxidant like melatonin improves stem cell transplantation success and potentiates stem cell function in the therapy of diabetic retinopathy. For this purpose, 50 adult male rats were divided into the following: control group: this group received 0.5 ml of 0.1 M of sodium citrate buffer (pH = 4.5) (intraperitoneal (I.P.)). The confirmed diabetic rats were divided into 4 groups: diabetic group: confirmed diabetic rats received no treatments with a regular follow of the blood glucose profile for 8 weeks; melatonin group: confirmed diabetic rats received melatonin (5 mg/kg/day); stem cell group: the confirmed diabetic rats were given intravitreal injection of stem cells (2 μl cell suspension of stem cells (3 × 104 cells/μl)); and melatonin+stem cell group: confirmed diabetic rats received melatonin (5 mg/kg/day), orally once daily for 8 weeks, and 2 μl cell suspension of stem cells (3 × 104 cells/μl) was carefully injected into the vitreous cavity. Our results showed that administration of melatonin and/or stem cell restored the retinal oxidative/antioxidant redox and reduced retinal inflammatory mediators. Coadministration of melatonin and stem cells enhanced the number of transplanted stem cells in the retinal tissue and significantly reduced retinal BDEF, VEGF, APOA1, and RBP4 levels as compared to melatonin and/or stem alone. We may conclude that rats treated with melatonin and stem cells had their retinal oxidative/antioxidant redox values restored to normal and their histological abnormalities reduced. These findings support the hypothesis that interactions with the BDEF, VEGF, APOA1, and RBP4 signaling pathways are responsible for these effects.
Collapse
|
18
|
Wu X, Wang Z, Shi J, Yu X, Li C, Liu J, Zhang F, Chen H, Zheng W. Macrophage polarization toward M1 phenotype through NF-κB signaling in patients with Behçet’s disease. Arthritis Res Ther 2022; 24:249. [PMCID: PMC9635113 DOI: 10.1186/s13075-022-02938-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
Background Macrophages are key innate immune cells implicated in the pathogenesis of Behçet’s disease (BD), and macrophage polarization plays a pivotal role in inflammatory response. This study aimed to investigate the role of BD serum on the phenotypes and functions of macrophage polarization. Methods BD or HC serum-treated human monocyte-derived macrophages (HMDMs) were examined M1/M2 phenotypes using flow cytometry and ELISA. The phagocytic capacity of HMDMs and CD4+T cell differentiation facilitated by HMDMs were measured by flow cytometry. Transcriptome analysis of BD and HC serum-stimulated HMDMs was conducted to identify differentially expressed genes. NF-κB signaling was examined using western blot to explore the mechanism of macrophage polarization induced by BD serum. Results BD serum-treated macrophages expressed a higher level of CD86, IL-12, and TNF-α and a lower level of CD163, which were compatible with the M1-like phenotype. Furthermore, BD serum-treated macrophages showed enhanced phagocytic capacity and promoted more Th1 cell differentiation. Sixty-one differentially expressed genes were identified between BD and HC serum-treated macrophages and were enriched in NF-κB signaling. BD serum-treated macrophages showed upregulated p-p65 and downregulated IκBα, and NF-κB inhibitor attenuated BD serum-stimulated M1-like phenotype. Conclusions BD serum promoted macrophage polarization toward a proinflammatory M1-like phenotype through NF-κB signaling and potentially facilitated inflammation in BD. M1 polarized macrophages may be a potential therapeutic target for BD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02938-z.
Collapse
Affiliation(s)
- Xiuhua Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China ,grid.412645.00000 0004 1757 9434Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Zhimian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| | - Jing Shi
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China ,grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Xin Yu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| | - Chaoran Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| | - Jinjing Liu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| |
Collapse
|
19
|
He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021; 13:1670. [PMID: 34683963 PMCID: PMC8540805 DOI: 10.3390/pharmaceutics13101670] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in regulating antitumor immune responses. As an important part of the TME, alternatively activated type 2 (M2) macrophages drive the development of primary and secondary tumors by promoting tumor cell proliferation, tumor angiogenesis, extracellular matrix remodeling and overall immunosuppression. Immunotherapy approaches targeting tumor-associated macrophages (TAMs) in order to reduce the immunosuppressive state in the TME have received great attention. Although these methods hold great potential for the treatment of several cancers, they also face some limitations, such as the fast degradation rate of drugs and drug-induced cytotoxicity of organs and tissues. Nanomedicine formulations that prevent TAM signaling and recruitment to the TME or deplete M2 TAMs to reduce tumor growth and metastasis represent encouraging novel strategies in cancer therapy. They allow the specific delivery of antitumor drugs to the tumor area, thereby reducing side effects associated with systemic application. In this review, we give an overview of TAM biology and the current state of nanomedicines that target M2 macrophages in the course of cancer immunotherapy, with a specific focus on nanoparticles (NPs). We summarize how different types of NPs target M2 TAMs, and how the physicochemical properties of NPs (size, shape, charge and targeting ligands) influence NP uptake by TAMs in vitro and in vivo in the TME. Furthermore, we provide a comparative analysis of passive and active NP-based TAM-targeting strategies and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Júnior
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| |
Collapse
|
20
|
Gao Y, Wang J, Zhu DC, Miao Y, Hu ZQ. Dermal macrophage and its potential in inducing hair follicle regeneration. Mol Immunol 2021; 134:25-33. [PMID: 33706040 DOI: 10.1016/j.molimm.2021.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Hair follicle (HF) is an excellent mini-model to study adult tissue regeneration, since it can regenerate itself under appropriate stress settings via interaction with niche components. Dermal macrophages, a group of heterogeneous cell populations, serve as key regulators in this microenvironment. Recent advances in phenotype identification and lineage tracing have unveiled various dermal macrophage subsets involved in stress-induced hair regeneration through different mechanisms, where HF structural integrity is impaired to varying degrees. This review summarized current knowledge regarding the distribution, sources, phenotypes of dermal macrophages in association with HF, as well as the mechanisms underlying macrophage-mediated hair regeneration in response to different internal-stress settings. Further investigation on macrophage dynamics will provide novel cell-targeting therapies for HF engineering and hair loss.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - De-Cong Zhu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Zhi-Qi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
21
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 481] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
22
|
Abstract
Tumor necrosis factor receptor (TNFR)-related factors (TRAFs) are important linker molecules in the tumor necrosis factor superfamily (TNFSF) and the Toll-like/interleukin-1 receptor (TLR/ILR) superfamily. There are seven members: TRAF1-TRAF7, among those members, tumor necrosis factor receptor-associated factor 6 (TRAF6) is upregulated in various tumors, which has been related to tumorigenesis and development. With the in-depth study of the relationship between TRAF6 and different types of tumors, TRAF6 has oncogenic characteristics involved in tumorigenesis, tumor development, invasion, and metastasis through various signaling pathways, therefore, targeting TRAF6 has provided a novel strategy for tumor treatment. This review summarizes and analyzes the role of TRAF6 in tumorigenesis and tumor development in combination with the current research on TRAF6 and tumors.
Collapse
|