1
|
Luo Y, Wang Y, Liu L, Huang F, Lu S, Yan Y. Identifying pathological myopia associated genes with GenePlexus in protein-protein interaction network. Front Genet 2025; 16:1533567. [PMID: 40110040 PMCID: PMC11919901 DOI: 10.3389/fgene.2025.1533567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Pathological myopia, a severe form of myopia, is characterized by an extreme elongation of the eyeball, leading to various vision-threatening complications. It is broadly classified into two primary types: high myopia, which primarily involves an excessive axial length of the eye with potential for reversible vision loss, and degenerative myopia, associated with progressive and irreversible retinal damage. Methods Leveraging data from DisGeNET, reporting 184 genes linked to high myopia and 39 genes associated with degenerative myopia, we employed the GenePlexus methodology in conjunction with screening tests to further explore the genetic landscape of pathological myopia. Results and discussion Our comprehensive analysis resulted in the discovery of 21 new genes associated with degenerative myopia and 133 genes linked to high myopia with significant confidence. Among these findings, genes such as ADCY4, a regulator of the cAMP pathway, were functionally linked to high myopia, while THBS1, involved in collagen degradation, was closely associated with the pathophysiology of degenerative myopia. These previously unreported genes play crucial roles in the underlying mechanisms of pathological myopia, thereby emphasizing the complexity and multifactorial nature of this condition. The importance of our study resides in the uncovering of new genetic associations with pathological myopia, the provision of potential biomarkers for early screening, and the identification of therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feiming Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shiheng Lu
- Department of Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Yan
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Pan C, Liu Y, Wang L, Fan WY, Ni Y, Zhang X, Wu D, Li C, Li J, Li Z, Liu R, Hu C. The Kv2.2 channel mediates the inhibition of prostaglandin E2 on glucose-stimulated insulin secretion in pancreatic β-cells. eLife 2025; 13:RP97234. [PMID: 40028769 DOI: 10.7554/elife.97234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1-4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Chengfang Pan
- School of Life Sciences, Fudan University, Shanghai, China
- International Human Phenome Institute (Shanghai), Shanghai, China
| | - Ying Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Liangya Wang
- School of Life Sciences, Fudan University, Shanghai, China
- International Human Phenome Institute (Shanghai), Shanghai, China
| | - Wen-Yong Fan
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yunzhi Ni
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuefeng Zhang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Di Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jin Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaoyang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rui Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Changlong Hu
- School of Life Sciences, Fudan University, Shanghai, China
- International Human Phenome Institute (Shanghai), Shanghai, China
| |
Collapse
|
3
|
Hofstetter KS, Haas PM, Kuntz JP, Zheng Y, Fuhrmann S. Loss of Cdc42 causes abnormal optic cup morphogenesis and microphthalmia in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619331. [PMID: 39484575 PMCID: PMC11526912 DOI: 10.1101/2024.10.20.619331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Congenital ocular malformations originate from defective morphogenesis during early eye development and cause 25% of childhood blindness. Formation of the eye is a multi-step, dynamic process; it involves evagination of the optic vesicle, followed by distal and ventral invagination, leading to the formation of a two-layered optic cup with a transient optic fissure. These tissue folding events require extensive changes in cell shape and tissue growth mediated by cytoskeleton mechanics and intercellular adhesion. We hypothesized that the Rho GTPase Cdc42 may be an essential, convergent effector downstream of key regulatory factors required for ocular morphogenesis. CDC42 controls actin remodeling, apicobasal polarity, and junction assembly. Here we identify a novel essential function for Cdc42 during eye morphogenesis in mouse; in Cdc42 mutant eyes expansion of the ventral optic cup is arrested, resulting in microphthalmia and a wide coloboma. Our analyses show that Cdc42 is required for expression of the polarity effector proteins PRKCZ and PARD6, intercellular junction protein tight junction protein 1, β-catenin, actin cytoskeleton F-actin, and contractile protein phospho myosin light chain 2. Expression of RPE fate determinants OTX2 and MITF, and formation of the RPE layer are severely affected in the temporal domain of the proximal optic cup. EdU incorporation is significantly downregulated. In addition, mitotic retinal progenitor cells mis-localized deeper, basal regions, likely contributing to decreased proliferation. We propose that morphogenesis of the ventral optic cup requires Cdc42 function for coordinated optic cup expansion and establishment of subretinal space, tissue tension, and differentiation of the ventral RPE layer.
Collapse
Affiliation(s)
- Katrina S. Hofstetter
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Paula M. Haas
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathon P. Kuntz
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sabine Fuhrmann
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
- Dept. of Cell and Developmental Biology, Vanderbilt University Medical School; Nashville, TN
| |
Collapse
|
4
|
Yu H, Zhong Z, Zhao Y, Luo H, Sun J, Wang R, Zhang X, Sun X. Insights into myopic choroidal neovascularization based on quantitative proteomics analysis of the aqueous humor. BMC Genomics 2023; 24:767. [PMID: 38087190 PMCID: PMC10714574 DOI: 10.1186/s12864-023-09761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Previous studies on the biomarkers of pathologic myopia choroidal neovascularization (pmCNV) development merely detected limited types of proteins and provide a meagre illustration of the underlying pathways. Hence, a landscape of protein changes in the aqueous humor (AH) of pmCNV patients is lacking. Here, to explore the potential mechanisms and biomarkers of pmCNV, we analyzed the clinical data and protein profile among atrophic (A) lesions, tractional lesions (T) and neovascular (N) lesions in myopic patients based on the ATN grading system for myopic maculopathy (MM). RESULTS After investigating demographic data of our patients, a correlation was found between A and N lesions (R = 0.5753, P < 0.0001). Accordingly, groups were divided into patients without MM, patients with myopic atrophic maculopathy (MAM), and patients with pmCNV (N2a lesion). In proteomics analysis, the increased protein level of GFAP and complement-associated molecules in AH samples of the 3 groups also indicated that MAM and pmCNV shared similar characteristics. The GO enrichment and KEGG pathway analysis were performed, which mapped that differential expressed proteins mainly engaged in JAK-STAT pathway between the pmCNV group and two controls. Furthermore, we identified several potential biomarkers for pmCNV, including FCN3, GFAP, EGFR, SFRP3, PPP2R1A, SLIT2, and CD248. CONCLUSIONS Atrophic lesions under pathologic myopic conditions demonstrated similarities to neovascularization development. Potential biomarkers including GFAP were associated with the pathogenesis of pmCNV. In summary, our study provides new insights for further research on pmCNV development.
Collapse
Affiliation(s)
- Huimin Yu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zheng Zhong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Huan Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Jinfu Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Ruohong Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Xian Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China.
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Chen J, Zhang C, Peng J, Tang C, Zhang C, Zhang M, Zou X, Zou Y. Gender-specific lncRNA-miRNA-mRNA regulatory network to reveal potential genes for primary open-angle glaucoma. Exp Eye Res 2023; 236:109668. [PMID: 37774963 DOI: 10.1016/j.exer.2023.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Investigation of biomarkers may facilitate understanding the mechanisms of primary open-angle glaucoma (POAG) and developing therapeutic targets. This study aimed to identify potential genes based on competing endogenous RNA (ceRNA) network for POAG. METHODS Based on long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and messenger RNAs (mRNAs) from the Gene Expression Omnibus (GEO) database, we identified differential expressed lncRNAs (DELs), differential expressed miRNAs (DEMis) and differential expressed mRNAs (DEMs) and then constructed a ceRNA network. Through weighted gene co-expression network analysis (WGCNA), we identified gender-specific genes for gender-associated ceRNA network construction, followed by the protein-protein interaction (PPI) network and functional enrichment analysis to screen hub genes and reveal their functions. The expression levels of hub genes were measured in steroid-induced ocular hypertension (SIOH) mice. RESULTS A total of 175 DELs, 727 DEMs and 45 DEMis were screened between control and POAG samples. Seven modules were identified through WGCNA and one module was associated with gender of POAG patients. We discovered 41 gender-specific genes for gender-associated ceRNA construction and then identified 8 genes (NAV3, C1QB, RXRB, P2RY4, ADAM15, VAV3, ZNF207 and TOP1), which were enriched in cell cycle-related pathways and immune-related pathways. C1QB, RXRB, Top1 and ZNF207 were highly interacted with other proteins. The expression levels of NAV3 and C1QB were downregulated in SIOH, while the levels of RXRB, P2RY4, ADAM15, VAV3, ZNF207 and TOP1 were upregulated in SIOH. CONCLUSION This study identifies hub genes associated with the pathogenesis of gender-specific POAG and provides potential biomarkers for POAG.
Collapse
Affiliation(s)
- Jingxia Chen
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Chu Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Jinyan Peng
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Cuicui Tang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Chunli Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Mengyi Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Xiulan Zou
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China.
| | - Yuping Zou
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China.
| |
Collapse
|
6
|
Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention. Biomolecules 2023; 13:biom13030494. [PMID: 36979429 PMCID: PMC10046175 DOI: 10.3390/biom13030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Myopia is a globally emerging concern accompanied by multiple medical and socio-economic burdens with no well-established causal treatment to control thus far. The study of the genomics and transcriptomics of myopia treatment is crucial to delineate disease pathways and provide valuable insights for the design of precise and effective therapeutics. A strong understanding of altered biochemical pathways and underlying pathogenesis leading to myopia may facilitate early diagnosis and treatment of myopia, ultimately leading to the development of more effective preventive and therapeutic measures. In this review, we summarize current data about the genomics and transcriptomics of myopia in human and animal models. We also discuss the potential applicability of these findings to precision medicine for myopia treatment.
Collapse
|
7
|
Yang J, Ouyang X, Fu H, Hou X, Liu Y, Xie Y, Yu H, Wang G. Advances in biomedical study of the myopia-related signaling pathways and mechanisms. Biomed Pharmacother 2021; 145:112472. [PMID: 34861634 DOI: 10.1016/j.biopha.2021.112472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Myopia has become one of the most critical health problems in the world with the increasing time spent indoors and increasing close work. Pathological myopia may have multiple complications, such as myopic macular degeneration, retinal detachment, cataracts, open-angle glaucoma, and severe cases that can cause blindness. Mounting evidence suggests that the cause of myopia can be attributed to the complex interaction of environmental exposure and genetic susceptibility. An increasing number of researchers have focused on the genetic pathogenesis of myopia in recent years. Scleral remodeling and excessive axial elongating induced retina thinning and even retinal detachment are myopia's most important pathological manifestations. The related signaling pathways are indispensable in myopia occurrence and development, such as dopamine, nitric oxide, TGF-β, HIF-1α, etc. We review the current major and recent progress of biomedicine on myopia-related signaling pathways and mechanisms.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xinli Ouyang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hong Fu
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xinyu Hou
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Yan Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yongfang Xie
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Haiqun Yu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Guohui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
8
|
Modulation of the Physical Properties of 3D Spheroids Derived from Human Scleral Stroma Fibroblasts (HSSFs) with Different Axial Lengths Obtained from Surgical Patients. Curr Issues Mol Biol 2021; 43:1715-1725. [PMID: 34698138 PMCID: PMC8929070 DOI: 10.3390/cimb43030121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
In the current study, to elucidate the pathological characteristics of myopic scleral stroma, three-dimensional (3D) cultures of human scleral stroma fibroblasts (HSSFs) with several axial lengths (AL, 22.80–30.63 mm) that were obtained from patients (n = 7) were examined. Among the three groups of ALs, <25 mm (n = 2), 25–30 mm (n = 2), and >30 mm (n = 3), the physical properties of the 3D HSSFs spheroids with respect to size and stiffness, the expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6 and fibronectin (FN) by qPCR and immunohistochemistry (IHC), and the mRNA expression of ECM metabolism modulators including hypoxia-inducible factor 1A (HIF 1A), HIF 2A, lysyl oxidase (LOX), tissue inhibitor of metalloproteinase (TIMP) 1–4, and matrix metalloproteinase (MMP) 2, 9, and 14 as well as several endoplasmic reticulum (ER) stress-related factors were compared. In the largest AL group (>30 mm), the 3D HSSFs spheroids were (1) significantly down-sized and less stiff compared to the other groups, and (2) significant changes were detected in the expression of some ECMs (qPCR; the up-regulation of COL1 and COL4, and the down-regulation of FN, IHC; the up-regulation of COL1 and FN, and down-regulation of COL4). The mRNA expressions of ECM modulators and ER stress-related genes were also altered with increasing AL length (up-regulation of HIF2A, MMP2, XBP1, and MMP14, down-regulation of LOX, TIMP 2 and 3, GRP78, GRP94, IRE1, and ATF6). In addition, a substantial down-regulation of some ER stress-related genes (ATF4, sXPB1 and CHOP) was observed in the 25–30 mm AL group. The findings presented herein suggest that small and stiffer 3D HSSFs spheroids in the largest AL group may accurately replicate the pathological significance of scleral thinning and weakening in myopic eyes. In addition, the modulation of several related factors among the different AL groups may also provide significant insights into our understanding of the molecular mechanisms responsible for causing myopic changes in the sclera.
Collapse
|
9
|
Wen Y, Jin L, Zhang D, Zhang L, Xie C, Guo D, Wang Y, Wang L, Zhu M, Tong J, Shen Y. Quantitative proteomic analysis of scleras in guinea pig exposed to wavelength defocus. J Proteomics 2021; 243:104248. [PMID: 33964483 DOI: 10.1016/j.jprot.2021.104248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Myopia is the most common optical disorder in the world, and wavelength defocus induced ametropia and myopia have attracted great attention. The objective was to identify and quantify scleral proteins involved in the response to the wavelength defocus. Guinea pigs were randomly divided into 3 groups that received different lighting conditions for 8 weeks: white light, short wavelength light, and long wavelength light. Refraction and axial length were measured, Hematoxylin-Eosin staining and transmission electron microscope were adopted to observe the scleral structure, and scleral proteome was also detected to analyze protein abundance by employing TMT labeling method. After light stimulation, the long- and short -wavelength light induced myopic and hyperopic effect on the guinea pig's eye and induced distinct protein signature, respectively. 186 dyregulated proteins between the short- and long-wavelength group were identified, which were mainly located in extracellular region and involved in metabolic process. We also found that 5 proteins in the guinea pigs scleras in response to wavelength defocus were also human myopic candidate targets, suggesting functional overlap between dyregulated proteins in scleral upon exposure to wavelength defocus and genes causing myopia in humans. SIGNIFICANCE: Wavelength defocus induces refractive errors and leads to myopia or hyperopia. However, sclera proteomics respond to wavelength defocus is lacking, which is crucial to understanding how wavelength defocus influences refractive development and induces myopia. In this proteome analysis, we identified unique protein signatures response to wavelength defocus in sclera of guinea pigs, identified potential mechanisms contributing to myopia formation, and found that several human myopia-related genes may involve in response to wavelength defocus. The results of this study provide a foundation to understand the mechanisms of myopia and wavelength defocus induced ametropia.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Le Jin
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyan Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyu Guo
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yang Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyin Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Miaomiao Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|