1
|
Gupta N, LoGrasso G, Hazlett LD, Xu S. New Insight Into the Neuroimmune Interplay In Pseudomonas aeruginosa Keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641908. [PMID: 40161776 PMCID: PMC11952346 DOI: 10.1101/2025.03.06.641908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purpose The miR-183/96/182 cluster (miR-183C) is required for normal functions of sensory neurons (SN) and various immune cells, including myeloid cells (MC). This research aims to reveal the roles of miR-183C of SN in the interplay of corneal sensory nerves (CSN) and MC during Pseudomonas aeruginosa (PA) keratitis. Methods Double-tracing mice with SN-specific (SNS) conditional knockout of miR-183C (CKO) and age- and sex-matched wild type (WT) controls were used. Their CSN are labeled with Red Fluorescent Protein (RFP); MC with Enhanced Green (EG)FP. The left corneas were scarified and infected with ATCC19660 PA. Corneal flatmounts were prepared at 3, 6, and 12 hours post-infection (hpi) and 1, 3, and 5 days (d)pi for confocal microscopy. Myeloperoxidase (MPO) assay and plate count were performed at 1 dpi. Results In WT mice, CSN began to degenerate as early as 3 hpi, starting from the fine terminal CSN in the epithelial/subepithelial layers, most prominently in the central region. By 1 dpi, CSN in the epithelium/subepithelial layer were nearly completely destroyed, while stromal nerves persisted. From 3 dpi, CSN were obliterated in both layers. In CKO vs WT mice, CNS followed a slightly slower pace of degeneration. CSN density was decreased at 3 and 6 hpi. However, at 3 dpi, residual large-diameter stromal CSN were better preserved.MC were decreased in the central cornea at 3 and 6 hpi, but increased in the periphery. Both changes were more prominent in CKO vs WT mice. At 12 hpi, densely packed MC formed a ring-shaped band circling a "dark" zone nearly devoid of MC, colocalizing with CSN most degenerated zone in the central cornea. In CKO vs WT, the ring center was larger with fewer MC. At 1 dpi, the entire cornea was filled with MC; however, MC density was lower in CKO mice. An MPO assay showed decreased neutrophils in PA-infected cornea of CKO mice. This led to a decreased severity of PA keratitis at 3 dpi. Conclusions This double-tracing model reveals the interplay between CSN and MC during PA keratitis with greater clarity, providing new insights into PA keratitis. CSN-imposed modulation on innate immunity is most impressive within 24 hours after infection. Functionally, the miR-183C in CSN modulates CSN density and the dynamics of MC fluxes- a neuroimmune interaction in display.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| |
Collapse
|
2
|
Ling Z, Zhang H, Zhao J, Wang P, An Z, Xiao S, Sun Y, Fu W. Electrostimulation-Based Decellularized Matrix Bladder Patch Promotes Bladder Repair in Rats. ACS Biomater Sci Eng 2024; 10:6498-6508. [PMID: 39240226 DOI: 10.1021/acsbiomaterials.4c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Bladder tissue engineering offers significant potential for repairing defects resulting from congenital and acquired conditions. However, the effectiveness of engineered grafts is often constrained by insufficient vascularization and neural regeneration. This study utilized four primary biomaterials─gelatin methacryloyl (GelMA), chitin nanocrystals (ChiNC), titanium carbide (MXene), and adipose-derived stem cells (ADSC)─to formulate two types of bioinks, GCM0.2 and GCM0.2-ADSC, in specified proportions. These bioinks were 3D printed onto bladder acellular matrix (BAM) patches to create BAM-GCM0.2 and BAM-GCM0.2-ADSC patches. The BAM-GCM0.2-ADSC patches underwent electrical stimulation to yield GCM0.2-ADSC-ES bladder patches. Employed for the repair of rat bladder defects, these patches were evaluated against a Control group, which underwent partial cystectomy followed by direct suturing. Our findings indicate that the inclusion of ADSC and electrical stimulation significantly enhances the regeneration of rat bladder smooth muscle (from [24.052 ± 2.782] % to [57.380 ± 4.017] %), blood vessels (from [5.326 ± 0.703] % to [12.723 ± 1.440] %), and nerves (from [0.227 ± 0.017] % to [1.369 ± 0.218] %). This research underscores the superior bladder repair capabilities of the GCM0.2-ADSC-ES patch and opens new pathways for bladder defect repair.
Collapse
Affiliation(s)
- Zhengyun Ling
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Haoqian Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Jian Zhao
- Department of Urology, 960th Hospital of PLA, Jinan 250031, China
| | | | - Ziyan An
- Medical School of PLA, Beijing 100853, China
| | - Shuwei Xiao
- Department of Urology, Air Force Medical Center, Beijing 100142, China
| | - Yanfeng Sun
- Department of Pediatrics, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Weijun Fu
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| |
Collapse
|
3
|
Rao F, Cao J, Wang C, Xiang S, Wu K, Lin D, Lv J, Wang X, Wang M, Xiang L. Overexpression of miR-96 leads to retinal degeneration in mice. Biochem Biophys Res Commun 2024; 719:150048. [PMID: 38763044 DOI: 10.1016/j.bbrc.2024.150048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
Double knockout of miR-183 and miR-96 results in retinal degeneration in mice; however, single knockout of miR-96 leads to developmental delay but not substantial retinal degeneration. To further explore the role of miR-96, we overexpressed this miRNA in mouse retinas. Interestingly, we found that overexpression of miR-96 at a safe dose results in retinal degeneration in the mouse retina. The retinal photoreceptors dramatically degenerated in the miR-96-overexpressing group, as shown by OCT, ERG and cryosectioning at one month after subretinal injection. Degenerative features such as TUNEL signals and reactive gliosis were observed in the miR-96-overexpressing retina. RNA-seq data revealed that immune responses and microglial activation occurred in the degenerating retina. Further qRT‒PCR and immunostaining experiments verified the microglial activation. Moreover, the number of microglia in the miR-96-overexpressing retinas was significantly increased. Our findings demonstrate that appropriate miR-96 expression is required for mouse retinal homeostasis.
Collapse
Affiliation(s)
- Fengqin Rao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, China; Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; College of Nursing, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianbin Cao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Chenyu Wang
- Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjin Xiang
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Kunchao Wu
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Department of Ophthalmology, The First People's Hospital of Guiyang, China
| | - Dan Lin
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jineng Lv
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Mingcang Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, China.
| | - Lue Xiang
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
4
|
Gupta N, Somayajulu M, Gurdziel K, LoGrasso G, Aziz H, Rosati R, McClellan S, Pitchaikannu A, Santra M, Shukkur MFA, Stemmer P, Hazlett LD, Xu S. The miR-183/96/182 cluster regulates sensory innervation, resident myeloid cells and functions of the cornea through cell type-specific target genes. Sci Rep 2024; 14:7676. [PMID: 38561433 PMCID: PMC10985120 DOI: 10.1038/s41598-024-58403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | | | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Haidy Aziz
- School of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sharon McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Manoranjan Santra
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Muhammed Farooq Abdul Shukkur
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Hua Z, Han X, Li G, Lv L, Jianimuhan N, Ma D, Cai L, Hu F, Yang J. Integrated analysis of microRNA expression in tears of Kazakh patients with climatic droplet keratopathy in Xinjiang, China. Heliyon 2023; 9:e20214. [PMID: 37810840 PMCID: PMC10550586 DOI: 10.1016/j.heliyon.2023.e20214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Climatic droplet keratopathy (CDK) is a corneal diseases, which is characterized by increased oil-like deposits on the anterior elastic lamina and anterior stromal layer. Severe CDK can even cause blindness, with no specific available treatment. Besides. CDK is poorly understood in terms of its pathogenic mechanisms. Thus, to determine potential biomarkers for CDK, we analyzed the microRNA expression profile in tear samples from CDK patients and investigated their putative roles in the pathogenesis of CDK. Herein, miRNA sequencing and following bioinformatics analysis was performed to explore the roles of their target genes in CDK. A total of 67 differentially expressed miRNAs were identified, of which 25 were upregulated and 42 were downregulated. qPCR verification showed that among the up- and down-regulated miRNAs, expression of five and six, respectively, was most significantly different.The target genes of the differentially expressed miRNAs are involved in the FoxO signaling pathway, tumor necrosis factor (TNF) signaling pathway, and steroid hormone biosynthesis. Protein-protein interaction network analyses identified 20 hub genes, including PTEN, GSK3B, and SMAD3. In conclusion, the panel of differentially expressed miRNAs identified may have potential utility as early diagnostic biomarkers for CDK. Moreover, the TNF signaling pathway is a new potential target in CDK for the development of treatments.
Collapse
Affiliation(s)
- Zhixiang Hua
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiaoyan Han
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Guoqing Li
- Ninth Division Hospital of Xinjiang Production and Construction Corps, Xinjiang, China
| | - Li Lv
- Emin County People's Hospital, Xinjiang, China
| | | | - Dongmei Ma
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lei Cai
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Fangyuan Hu
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jin Yang
- Department of Ophthalmology and the Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- Ninth Division Hospital of Xinjiang Production and Construction Corps, Xinjiang, China
| |
Collapse
|
6
|
Yin M, Li N, Zhang L, Lin J, Wang Q, Gu L, Zheng H, Zhao G, Li C. Pseudolaric Acid B Ameliorates Fungal Keratitis Progression by Suppressing Inflammation and Reducing Fungal Load. ACS Infect Dis 2023; 9:1196-1205. [PMID: 37141176 DOI: 10.1021/acsinfecdis.2c00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study aimed to determine the mechanisms of antifungal and anti-inflammation effects of pseudolaric acid B (PAB) on Aspergillus fumigatus (A. fumigatus) keratitis. In vitro MIC assay and crystal violet staining were conducted to evaluate the efficacy of PAB against A. fumigatus. PAB inhibited A. fumigatus growth and inhibited the formation of fungal biofilms in a dose-dependent manner. Molecular docking analysis revealed that PAB possesses strong binding properties with Rho1 of A. fumigatus, which is devoted to encoding (1,3)-β-d-glucan of A. fumigatus. RT-PCR results also showed that Rho1 was inhibited by PAB. In vivo, PAB treatment reduced clinical scores, fungal load, and macrophage infiltration, which were increased by A. fumigatus in mice corneas. In addition, PAB treatment suppressed the expression of Mincle, p-Syk, and cytokines (TNF-α, MIP2, iNOS, and CCL2) in infected corneas and in RAW264.7 cells, which were tested by RT-PCR, Western blot, and enzyme-linked Immunosorbent Assay. Notably, trehalose-6,6-dibehenate, an agonist of Mincle, pretreatment reversed the regulatory function of PAB in RAW 264.7 cells. Moreover, flow cytometry showed that PAB upregulated the ratio of M2/M1 macrophages in A. fumigatus-infected corneas and RAW264.7 cells. In conclusion, PAB produced antifungal activities against A. fumigatus and decreased the inflammatory response in mouse A. fumigatus keratitis.
Collapse
Affiliation(s)
- Min Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Na Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|