1
|
Guibo L, Chunxu D, Biao C, Zhaolei H, Wenwen L, Xiangnan J, Wentao P, Hongmin C, Yonghua L, Guoqiang Z. Dectin-1 participates in the immune-inflammatory response to mouse Aspergillus fumigatus keratitis by modulating macrophage polarization. Front Immunol 2024; 15:1431633. [PMID: 39478855 PMCID: PMC11523060 DOI: 10.3389/fimmu.2024.1431633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Aim The aim of this study was to investigate whether Dectin-1 influences the immune-inflammatory response in A. fumigatus keratitis by modulating macrophage polarization. Methods 1. The models of 1-day, 3-day, and 5-day of fungal keratitis were established in SPF C57BL/6 mice after stimulation by A. fumigatus. Dectin-1 agonist (curdlan) and antagonist (laminaran) were injected separately in the mouse subconjunctivae for 1 day in the established mouse model of A. fumigatus keratitis; PBS was used as the control. Inflammation of the mouse cornea was observed under a slit lamp to obtain a clinical score. 2. The expression of M1 (TNF-α, INOS, IL-6, IL-12) and M2 (Arg-1, IL-10, Fizz-1, Ym-1) cytokine-encoding mRNAs was quantified by RT-PCR. 3. Changes in the number of macrophages and expression of M1 and M2 macrophages in mouse corneas detected by immunofluorescence and flow cytometry. 4. Pre-treatment of RAW264.7 cells with MAPK cell signaling pathway inhibitors SB203580 (p38 inhibitor, 10µM), U0126 (ERK inhibitor, 20µM), SP600125 (JNK inhibitor, 10µM) and DMSO separately for 2 h, and stimulated by A. fumigatus for 12 h. Changes in the mRNA expression of M1 and M2 cytokines in the macrophages were quantified by RT-PCR. Results 1. With curdlan pre-treatment, mouse corneal inflammation worsened, and the clinical score increased after infection. In contrast, in the laminaran pre-treated group, corneal inflammation was alleviated and the clinical score decreased significantly compared to the PBS group after infection. 2. Compared with the control group, the expression levels of macrophage phenotype-related M1 and M2 cytokine mRNAs increased significantly 1, 3, and 5 days after A. fumigatus infected the corneas of mice. 3. With curdlan pre-treatment, the expression of mRNAs encoding M1 cytokines increased, while those encoding M2 cytokines decreased in the cornea compared to the PBS group. In contrast, after infection, mRNA levels for M1 cytokines decreased significantly and those for M2 cytokines increased in the cornea of the laminaran pre-treated group compared to the PBS group. 4. The number of macrophages in the corneal stroma of mice in the curdlan pretreatment group increased significantly compared with the PBS group, while in the laminaran pretreatment group this number decreased significantly. 5. The results of flow cytometry showed that after 3 days of mouse corneal A. fumigatus infection, the number of macrophages in the mouse A. fumigatus model in the curdlan pretreatment group was increased (10.4%) and the number of macrophages in the mouse A. fumigatus model in the laminaran pretreatment group (6.31%), when compared with the AF+FBS group (7.91%). The proportion of M1-type macrophages was increased in the curdlan pretreated group (55.6%) compared to the AF+FBS group (51.2%), the proportion of laminaran pretreatment group had a decreased proportion of M1-type macrophages (46.8%); while M2-type macrophages were the opposite of M1-type: the proportion of M2-type macrophages was 49.2% in the AF+FBS group, the proportion of M2-type macrophages was decreased in the curdlan pretreatment group (44.0%), and the proportion of M2-type macrophages was increased in the laminaran pretreatment group (53.5%). 6. Expression of M1 and M2 cytokine-encoding mRNAs decreased and increased, respectively, after infection, in the RAW264.7 cells pre-treated with MAPK pathway inhibitors, compared to the control. Conclusion In a mouse model of A. fumigatus keratitis, Dectin-1 can affect macrophage recruitment and polarization, may regulate macrophage phenotype-associated factor changes through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Liu Guibo
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Department of Ophthalmology, Qingdao University, Qingdao, Shandong, China
| | - Dong Chunxu
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Department of Ophthalmology, Jining Medical University, Jining, Shandong, China
| | - Chen Biao
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Hu Zhaolei
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Liu Wenwen
- Department of Ophthalmology, Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Ji Xiangnan
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Peng Wentao
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Department of Ophthalmology, Jining Medical University, Jining, Shandong, China
| | - Chang Hongmin
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Department of Ophthalmology, Jining Medical University, Jining, Shandong, China
| | - Li Yonghua
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Zhu Guoqiang
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Cheng KO, Montaño DE, Zelante T, Dietschmann A, Gresnigt MS. Inflammatory cytokine signalling in vulvovaginal candidiasis: a hot mess driving immunopathology. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae010. [PMID: 39234208 PMCID: PMC11374039 DOI: 10.1093/oxfimm/iqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
Protective immunity to opportunistic fungal infections consists of tightly regulated innate and adaptive immune responses that clear the infection. Immune responses to infections of the vaginal mucosa by Candida species are, however, an exception. In the case of vulvovaginal candidiasis (VVC), the inflammatory response is associated with symptomatic disease, rather than that it results in pathogen clearance. As such VVC can be considered an inflammatory disease, which is a significant public health problem due to its predominance as a female-specific fungal infection. Particularly, women with recurrent VVC (RVVC) suffer from a significant negative impact on their quality of life and mental health. Knowledge of the inflammatory pathogenesis of (R)VVC may guide more effective diagnostic and therapeutic options to improve the quality of life of women with (R)VVC. Here, we review the immunopathogenesis of (R)VVC describing several elements that induce an inflammatory arson, starting with the activation threshold established by vaginal epithelial cells that prevent unnecessary ignition of inflammatory responses, epithelial and inflammasome-dependent immune responses. These inflammatory responses will drive neutrophil recruitment and dysfunctional neutrophil-mediated inflammation. We also review the, sometimes controversial, findings on the involvement of adaptive and systemic responses. Finally, we provide future perspectives on the potential of some unexplored cytokine axes and discuss whether VVC needs to be subdivided into subgroups to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Kar On Cheng
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1, Perugia, 06132, Italy
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| |
Collapse
|
3
|
Lyu S, Zhang T, Peng P, Cao D, Ma L, Yu Y, Dong Y, Qi X, Wei C. Involvement of cGAS/STING Signaling in the Pathogenesis of Candida albicans Keratitis: Insights From Genetic and Pharmacological Approaches. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 38848078 PMCID: PMC11166223 DOI: 10.1167/iovs.65.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose Fungal keratitis (FK) is an invasive corneal infection associated with significant risk to vision. Although the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway has been recognized for its role in defending against viral infections, its involvement in FK still remains largely unclear. This study sought to elucidate the contribution of the cGAS/STING signaling pathway to the pathogenesis of FK. Methods The expression of cGAS/STING signaling components was assessed in a murine model of Candida albicans keratitis through RNA sequencing, western blot analysis, immunofluorescence staining, and real-time PCR. Both genetic (utilizing Sting1gt/gt mice) and pharmacological (using C176) interventions were employed to inhibit STING activity, allowing for the evaluation of resultant pathogenic alterations in FK using slit-lamp examination, clinical scoring, hematoxylin and eosin (H&E) staining, fungal culture, and RNA sequencing. Subconjunctival administration of the NOD-like receptor protein 3 (NLRP3) inflammasome inhibitor MCC950 was performed to evaluate FK manifestations following STING activity blockade. Furthermore, the impact of the STING agonist diABZI on FK progression was investigated. Results Compared to uninfected corneas, those infected with C. albicans exhibited increased expression of cGAS/STING signaling components, as well as its elevated activity. Inhibiting cGAS/STING signaling exacerbated the advancement of FK, as evidenced by elevated clinical scores, augmented fungal load, and heightened inflammatory response, including NLRP3 inflammasome activation and pyroptosis. Pharmacological inhibition of the NLRP3 inflammasome effectively mitigated the exacerbated FK by suppressing STING activity. Conversely, pre-activation of STING exacerbated FK progression compared to the PBS control, characterized by increased fungal burden and reinforced inflammatory infiltration. Conclusions This study demonstrates the essential role of the cGAS/STING signaling pathway in FK pathogenesis and highlights the necessity of its proper activation for the host against FK.
Collapse
Affiliation(s)
- Shanmei Lyu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Zhang
- Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Jinan, Shandong, China
| | - Peng Peng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Dingwen Cao
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yang Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yanling Dong
- Qingdao Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Xiaolin Qi
- Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Jinan, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| |
Collapse
|
4
|
Nakajima I, Fukuda K, Ishida W, Kishimoto T, Kuwana A, Suzuki T, Kaito C, Yamashiro K. Staphylococcus aureus-derived virulent phenol-soluble modulin α triggers alarmin release to drive IL-36-dependent corneal inflammation. Microbes Infect 2024; 26:105237. [PMID: 37805122 DOI: 10.1016/j.micinf.2023.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients with keratitis produces substantial amounts of phenol-soluble modulin α (PSMα). However, the role of PSMα in S. aureus keratitis remains unclear. We observed that PSMα-producing and PSMα-deficient strains could infect the cornea in our experimental mouse keratitis model; however, only the PSMα-producing strain delayed epithelial wound healing and induced stromal inflammation. PSMα induced damage to the epithelium, the release of alarmins IL-1α and IL-36α, and the expression of inflammatory chemokines by resident corneal cells in the mouse corneal organ culture. The IL-36 (but not IL-1) receptor antagonist attenuated mouse keratitis induced by PSMα-containing bacterial culture supernatants, as well as by infection with PSMα-producing S. aureus, suggesting that the corneal inflammations were dependent on IL-36. Recombinant PSMα elicited IL-36-dependent corneal inflammation in mice. Thus, PSMα and the subsequently released IL-36 are critical factors triggering inflammation during S. aureus keratitis.
Collapse
Affiliation(s)
- Isana Nakajima
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Waka Ishida
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tatsuma Kishimoto
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Aozora Kuwana
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Toho University, Tokyo, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
5
|
Wang B, Yang X, Zuo X, Zeng H, Wang X, Huang H, He D, Wang L, Ouyang H, Yuan J. Oxidative Stress Initiates Receptor-Interacting Protein Kinase-3/Mixed Lineage Kinase Domain-Like-Mediated Corneal Epithelial Necroptosis and Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3 Inflammasome Signaling during Fungal Keratitis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:883-898. [PMID: 37146965 DOI: 10.1016/j.ajpath.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/23/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
Fungal keratitis remains a major cause of severe visual loss in developing countries because of limited choices of therapy. The progression of fungal keratitis is a race between the innate immune system and the outgrowth of fungal conidia. Programmed necrosis (necroptosis), a type of proinflammatory cell death, has been recognized as a critical pathologic change in several diseases. However, the role and potential regulatory mechanisms of necroptosis have not been investigated in corneal diseases. The current study showed, for the first time, that fungal infection triggered significant corneal epithelial necroptosis in human/mouse/in vitro models. Moreover, a reduction in excessive reactive oxygen species release effectively prevented necroptosis. NLRP3 knockout did not affect necroptosis in vivo. In contrast, ablation of necroptosis via RIPK3 knockout significantly delayed migration and inhibited the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in macrophages, which enhanced the progression of fungal keratitis. Taking these findings together, the study indicated that overproduction of reactive oxygen species in fungal keratitis leads to significant necroptosis in the corneal epithelium. Furthermore, the necroptotic stimuli-mediated NLRP3 inflammasome serves as a driving force in host defense against fungal infection.
Collapse
Affiliation(s)
- Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
6
|
Chen Q, Gao N, Yu FS. Interleukin-36 Receptor Signaling Attenuates Epithelial Wound Healing in C57BL/6 Mouse Corneas. Cells 2023; 12:1587. [PMID: 37371057 PMCID: PMC10297323 DOI: 10.3390/cells12121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The IL-36 cytokines are known to play various roles in mediating the immune and inflammatory response to tissue injury in a context-dependent manner. This study investigated the role of IL-36R signaling in mediating epithelial wound healing in normal (NL) and diabetic (DM) C57BL/6 mouse corneas. The rate of epithelial wound closure was significantly accelerated in IL-36 receptor-deficient (IL-36R-/-) compared to wild-type (WT) mice. Wounding increased IL-36α and -36γ but repressed IL-36R antagonist (IL-36Ra) expression in B6 mouse corneal epithelial cells. The wound-induced proinflammatory cytokines CXCL1 and CXCL2 were dampened, while the antimicrobial peptides (AMPs) S100A8 and A9 were augmented in IL-36R-/- mouse corneas. Intriguingly, the expression of AMP LCN2 was augmented at the mRNA level. LCN2 deficiency resulted in an acceleration of epithelial wound healing. IL-36R deficiency also greatly increased the healing rate of the corneal epithelial wound in DM mice. IL-36R deficiency also suppressed IL-1β, IL-1Ra, and ICAM expression in unwounded-DM mice and wounded NL corneas. Opposing IL-1β and ICAM, the expression of IL-Ra in DM corneas of IL-36R-/- mice was augmented. The presence of recombinant IL-1Ra and IL-36Ra accelerated epithelial wound closure in T1DM corneas of B6 mice. Our study revealed an unprecedented role of IL-36R signaling in controlling corneal epithelial wound healing in normal (NL) and diabetic (DM) mice. Our data suggest that IL-36Ra, similar to IL-1Ra, might be a therapeutic reagent for improving wound healing and reducing wound-associated ulceration, particularly in the cornea and potentially in the skin of DM patients.
Collapse
Affiliation(s)
| | | | - Fu-Shin Yu
- Departments of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA (N.G.)
| |
Collapse
|
7
|
Targeted Therapies in Autoimmune Skin Diseases. J Invest Dermatol 2021; 142:969-975.e7. [PMID: 34756580 DOI: 10.1016/j.jid.2021.08.439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023]
Abstract
Unlike the established anti-inflammatory drugs with a broad range, new-targeted therapeutic approaches have emerged in the management of autoimmune skin diseases to increase efficacy and decrease adverse reactions on the basis of an improved molecular understanding of pathogenesis. Most inflammatory dermatoses are driven by misled immune responses physiologically directed at exogenous pathogens, that is, type 1 immunity against viral pathogens, type 2 immunity against parasites, and type 3 immunity against fungi and bacteria. Pathogenic hallmarks of these major immune reaction patterns are characterized within this article, and a comprehensive overview of current clinical trials evaluating targeted therapeutics for respective dermatoses is outlined.
Collapse
|