1
|
Alzahem TA, AlTheeb A, Ba-Abbad R. PRPS1-associated retinopathy: a diagnostic odyssey. Ophthalmic Genet 2024; 45:404-408. [PMID: 38619019 DOI: 10.1080/13816810.2024.2321871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE This study describes how the diagnosis of Usher syndrome was revised to PRPS1-associated retinopathy and Charcot-Marie-Tooth disease type 5. CASE REPORT A 38-year-old female with bilaterally subnormal vision and non-congenital hearing loss was initially diagnosed with Usher syndrome, based on finding variants in three genes (MYO7A, USH2A, and PCDH15), was re-evaluated at the inherited retinal disorders clinic. She had asymmetric retinopathy and right macular pseudocoloboma. She was also found to have myopathic facies, poor grip strength and atrophy of the calf muscles. Whole exome sequencing including variants in PRPS1 showed a variant (NM_002764.4:c.287 G > A; p.Arg96Gln), which was not detected by targeted Sanger sequencing of the DNA from her mother and sister. CONCLUSION The constellation of asymmetric retinopathy and non-congenital hearing impairment should prompt the clinician to search for other diagnoses that may not be covered by an Usher syndrome next generation sequencing panel. Interpretation of genetic testing results should be correlated with a detailed clinical phenotype.
Collapse
Affiliation(s)
- Tariq A Alzahem
- Ocular Genetics Service, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
- Ophthalmology Department, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abdulwahab AlTheeb
- Ocular Genetics Service, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Rola Ba-Abbad
- Ocular Genetics Service, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Seo Y, Joo K, Lee J, Diaz A, Jang S, Cherry TJ, Bujakowska KM, Han J, Woo SJ, Small KW. Two novel non-coding single nucleotide variants in the DNase1 hypersensitivity site of PRDM13 causing North Carolina macular dystrophy in Korea. Mol Vis 2024; 30:58-66. [PMID: 38601016 PMCID: PMC11006008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/17/2024] [Indexed: 04/12/2024] Open
Abstract
Purpose Pathogenic variants in North Carolina macular dystrophy (NCMD) have rarely been reported in the East Asian population. Herein, we reported novel variants of NCMD in 2 Korean families. Methods The regions associated with NCMD were analyzed with genome sequencing, and variants were filtered based on the minor allele frequency (0.5%) and heterozygosity. Non-coding variants were functionally annotated using multiple computational tools. Results We identified two rare novel variants, chr6:g.99,598,914T>C (hg38; V17) and chr6:g.99,598,926G>A (hg38; V18) upstream of PRDM13 in families A and B, respectively. In Family 1, Grade 2 NCMD and a best-corrected visual acuity of 20/25 and 20/200 in the right and left eyes, respectively, were observed. In Family B, all affected individuals had Grade 1 NCMD with characteristic confluent drusen at the fovea and a best-corrected visual acuity of 20/20 in both eyes. These two variants are 10-22 bp downstream of the reported V10 variant within the DNase1 hypersensitivity site. This site is associated with progressive bifocal chorioretinal atrophy and congenital posterior polar chorioretinal hypertrophy and lies in the putative enhancer site of PRDM13. Conclusion We identified two novel NCMD variants in the Korean population and further validated the regulatory role of the DNase1 hypersensitivity site upstream of PRDM13.
Collapse
Affiliation(s)
- Yuri Seo
- Institute of Vision Research, Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Junwon Lee
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Amber Diaz
- Macula and Retina Institute, Glendale and Los Angeles, CA
- Molecular Insight Research Foundation, Glendale and Los Angeles, CA
| | | | - Timothy J. Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
- Brotman Baty Institute, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Kinga M. Bujakowska
- Ocular Genomic Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Ocular Genomic Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kent W. Small
- Macula and Retina Institute, Glendale and Los Angeles, CA
- Molecular Insight Research Foundation, Glendale and Los Angeles, CA
| |
Collapse
|
3
|
Makuloluwa A, Madhusudhan S. Clinical outcomes of treated macular neovascularisation secondary to inherited retinal diseases: a literature review. BMJ Open Ophthalmol 2023; 8:e001309. [PMID: 37493670 PMCID: PMC10364169 DOI: 10.1136/bmjophth-2023-001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
Many inherited retinal diseases (IRD) can be associated with, or be secondarily complicated by, macular neovascularisation (MNV), which has been variably treated with intravitreal antivascular endothelial growth factor, steroids, laser and surgery. In this article, we aim to present a consolidated literature review of management of IRD-related MNV.
Collapse
Affiliation(s)
- Aruni Makuloluwa
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - Savita Madhusudhan
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Sun C, Chen S. Disease-causing mutations in genes encoding transcription factors critical for photoreceptor development. Front Mol Neurosci 2023; 16:1134839. [PMID: 37181651 PMCID: PMC10172487 DOI: 10.3389/fnmol.2023.1134839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Photoreceptor development of the vertebrate visual system is controlled by a complex transcription regulatory network. OTX2 is expressed in the mitotic retinal progenitor cells (RPCs) and controls photoreceptor genesis. CRX that is activated by OTX2 is expressed in photoreceptor precursors after cell cycle exit. NEUROD1 is also present in photoreceptor precursors that are ready to specify into rod and cone photoreceptor subtypes. NRL is required for the rod fate and regulates downstream rod-specific genes including the orphan nuclear receptor NR2E3 which further activates rod-specific genes and simultaneously represses cone-specific genes. Cone subtype specification is also regulated by the interplay of several transcription factors such as THRB and RXRG. Mutations in these key transcription factors are responsible for ocular defects at birth such as microphthalmia and inherited photoreceptor diseases such as Leber congenital amaurosis (LCA), retinitis pigmentosa (RP) and allied dystrophies. In particular, many mutations are inherited in an autosomal dominant fashion, including the majority of missense mutations in CRX and NRL. In this review, we describe the spectrum of photoreceptor defects that are associated with mutations in the above-mentioned transcription factors, and summarize the current knowledge of molecular mechanisms underlying the pathogenic mutations. At last, we deliberate the outstanding gaps in our understanding of the genotype-phenotype correlations and outline avenues for future research of the treatment strategies.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Chi Sun,
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Novel Compound Heterozygous Variations in MPDZ Gene Caused Isolated Bilateral Macular Coloboma in a Chinese Family. Cells 2022; 11:cells11223602. [PMID: 36429029 PMCID: PMC9688216 DOI: 10.3390/cells11223602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Macular coloboma (MC) is a rare congenital retinochoroidal defect characterized by lesions of different sizes in the macular region. The pathological mechanism underlying congenital MC is unknown. Novel compound heterozygous variations, c.4301delA (p.Asp1434fs*3) and c.5255C>G (p.Ser1752Ter), in the multiple PDZ domain (MPDZ) proteins were identified via whole-exome analysis on the proband with isolated bilateral macular coloboma in a Chinese family. Segregation analysis revealed that each of the unaffected parents was heterozygous for one of the two variants. The results of the in silico and bioinformatics analysis were aligned with the experimental data. The knockdown of MPDZ in zebrafish caused a decrease in the ellipsoid zone, a destruction of the outer limiting membrane, and the subsequent RPE degeneration. Overall, the loss of MPDZ in zebrafish contributed to retinal development failure. These results indicate that MPDZ plays an essential role in the occurrence and maintenance of the macula, and the novel compound heterozygous variations were responsible for an autosomal recessive macular deficiency in this Chinese family.
Collapse
|
6
|
Van de Sompele S, Small KW, Cicekdal MB, Soriano VL, D'haene E, Shaya FS, Agemy S, Van der Snickt T, Rey AD, Rosseel T, Van Heetvelde M, Vergult S, Balikova I, Bergen AA, Boon CJF, De Zaeytijd J, Inglehearn CF, Kousal B, Leroy BP, Rivolta C, Vaclavik V, van den Ende J, van Schooneveld MJ, Gómez-Skarmeta JL, Tena JJ, Martinez-Morales JR, Liskova P, Vleminckx K, De Baere E. Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy. Am J Hum Genet 2022; 109:2029-2048. [PMID: 36243009 PMCID: PMC9674966 DOI: 10.1016/j.ajhg.2022.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.
Collapse
Affiliation(s)
- Stijn Van de Sompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kent W Small
- Macula and Retina Institute, Los Angeles and Glendale, California, USA
| | - Munevver Burcu Cicekdal
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Víctor López Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Eva D'haene
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fadi S Shaya
- Macula and Retina Institute, Los Angeles and Glendale, California, USA
| | - Steven Agemy
- Department of Ophthalmology, SUNY Downstate Medical Center University, Brooklyn, New York, USA
| | - Thijs Van der Snickt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Toon Rosseel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Mattias Van Heetvelde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Irina Balikova
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; Queen Emma Centre of Precision Medicine, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Bohdan Kousal
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium; Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Veronika Vaclavik
- University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Bartiméus, Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan R Martinez-Morales
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kris Vleminckx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
7
|
Small KW, Wiggins R, Udar N, Silva-Garcia R, Avetisjan J, Vincent A, Shaya FS. North Carolina Macular Dystrophy (NCMD/MCDR1): Long-term follow-up of the original family. Ophthalmol Retina 2022; 6:512-519. [PMID: 35151913 DOI: 10.1016/j.oret.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE The phenotype of NCMD is highly variable and remains poorly appreciated and understood often causing misdiagnoses in isolated cases. One of the features of NCMD is the general lack of progression despite its original name, "dominant progressive foveal dystrophy", as reported in 1971 by Lefler (HL) et al. The purpose of this study is to report long-term follow-up of this condition. DESIGN A systematic, longitudinal and detailed documentation along with imaging of the peripheral retina. SUBJECTS We reexamined 27 of the original NCMD family members in an office setting 30-50 years after first being reported. METHODS Evaluation of all affected subjects included: best-corrected visual acuity (BCVA), slit lamp and dilated fundus examinations, wide-field fundus and autofluorescent photography and SD-OCT. Blood was collected for DNA extraction, banking and sequencing. MAIN OUTCOME MEASURES Best-corrected visual acuity (BCVA), slit lamp and dilated fundus examinations, wide-field fundus and autofluorescent photography and SD-OCT. RESULTS The 27 subjects examined were part of the original NCMD family initially reported in 1971. The point mutation (NC_000006.11:g.100040906G>T)(Hg19) in a non-coding region of a DNASE1 hypersensitivity binding site was found in all affected subjects. Nine were affected children of those originally examined 30 - 50 years ago by KS and HL and the remaining 17 subjects (34 eyes) had been examined 30 years previously by KS. Of these 17 subjects (34 eyes), 4/34 (11%) eyes showed worsening of vision with evidence of fibrosis from choroidal neovascular membranes (CNVMs). Fourteen of the 27 patients (51%) showed peripheral retinal drusen, which did not seem to correlate with the macular disease severity. CONCLUSIONS Most NCMD patients have stable vision and fundus findings throughout their lives even up to 50 years follow-up. The ones who experienced BCVA decline did so because of apparent evidence of choroidal neovascular membranes (CNVMs). Patients with grade 2 NCMD seem to be more at risk for further/ progressive vision loss due to CNVMs. Intravitreal therapy with vascular endothelial growth factor inhibitors may benefit these patients if treated in a timely fashion. Peripheral retina drusen of varying degrees of severity were found in slightly more than half of the affected subjects and of those, 5 showed the retinal drusen to be autofluorescent.
Collapse
Affiliation(s)
- Kent W Small
- Macula and Retina Institute, Glendale, CA, United States; Molecular Insight Research Foundation, Los Angeles and Glendale, CA, United States.
| | | | - Nitin Udar
- Macula and Retina Institute, Glendale, CA, United States; Molecular Insight Research Foundation, Los Angeles and Glendale, CA, United States
| | - Rosemary Silva-Garcia
- Macula and Retina Institute, Glendale, CA, United States; Molecular Insight Research Foundation, Los Angeles and Glendale, CA, United States
| | - Jessica Avetisjan
- Macula and Retina Institute, Glendale, CA, United States; Molecular Insight Research Foundation, Los Angeles and Glendale, CA, United States
| | - Andrea Vincent
- University of Auckland, New Zealand Eye Centre, Auckland, New Zealand
| | - Fadi S Shaya
- Macula and Retina Institute, Glendale, CA, United States; Molecular Insight Research Foundation, Los Angeles and Glendale, CA, United States
| |
Collapse
|
8
|
Seaby EG, Rehm HL, O’Donnell-Luria A. Strategies to Uplift Novel Mendelian Gene Discovery for Improved Clinical Outcomes. Front Genet 2021; 12:674295. [PMID: 34220947 PMCID: PMC8248347 DOI: 10.3389/fgene.2021.674295] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Rare genetic disorders, while individually rare, are collectively common. They represent some of the most severe disorders affecting patients worldwide with significant morbidity and mortality. Over the last decade, advances in genomic methods have significantly uplifted diagnostic rates for patients and facilitated novel and targeted therapies. However, many patients with rare genetic disorders still remain undiagnosed as the genetic etiology of only a proportion of Mendelian conditions has been discovered to date. This article explores existing strategies to identify novel Mendelian genes and how these discoveries impact clinical care and therapeutics. We discuss the importance of data sharing, phenotype-driven approaches, patient-led approaches, utilization of large-scale genomic sequencing projects, constraint-based methods, integration of multi-omics data, and gene-to-patient methods. We further consider the health economic advantages of novel gene discovery and speculate on potential future methods for improved clinical outcomes.
Collapse
Affiliation(s)
- Eleanor G. Seaby
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Genomic Informatics Group, University Hospital Southampton, Southampton, United Kingdom
- Center for Genomic Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, United States
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, United States
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Center for Genomic Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Center for Genomic Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, United States
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, United States
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|