1
|
Nemoto H, Honjo M, Arai S, Miyazaki T, Aihara M. Apoptosis inhibitor of macrophages/CD5L enhances phagocytosis in the trabecular meshwork cells and regulates ocular hypertension. J Cell Physiol 2023; 238:2451-2467. [PMID: 37584382 DOI: 10.1002/jcp.31097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The trabecular meshwork (TM) cells of the eye are important for controlling intraocular pressure (IOP) and regulating outflow resistance in the aqueous humor. TM cells can remove particles and cellular debris by phagocytosis, decreasing both outflow resistance and IOP. However, the underlying mechanisms remain unclear. Here, we investigate whether apoptosis inhibitor of macrophages (AIM), which mediates the removal of dead cells and debris in renal tubular epithelial cells, regulates the phagocytic capacity of TM cells. In vitro experiments revealed that CD36, the main receptor for AIM, colocalized with AIM in human TM cells; additionally, phagocytosis was stimulated when AIM was provided. Furthermore, in a mouse model with transient IOP elevation induced by laser iridotomy (LI), removal of accumulated iris pigment epithelial cells or debris in the TM and recovery of IOP to baseline levels were delayed in AIM-/- mice, compared with control mice. However, treatment with AIM eyedrops rescued AIM-/- mice from the elevated IOP after LI. Since AIM is a protein known to inhibit macrophage apoptosis, we additionally verified its involvement in macrophage removal of cellular debris and IOP. There were no statistically significant differences in the number of macrophages between control mice and AIM-/- mice in the TM. Additionally, we confirmed the rescue effect of the rAIM eyedrops after macrophages had been removed by clodronate liposomes. Therefore, AIM plays an important role in regulating the phagocytic capacity of TM cells, thereby affecting outflow resistance. Our results suggest that drugs targeting the phagocytic capacity of TM cells via the AIM-CD36 pathway may be used to treat glaucoma.
Collapse
Affiliation(s)
- Hotaka Nemoto
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Ruiz-Lozano RE, Azar NS, Mousa HM, Quiroga-Garza ME, Komai S, Wheelock-Gutierrez L, Cartes C, Perez VL. Ocular surface disease: a known yet overlooked side effect of topical glaucoma therapy. FRONTIERS IN TOXICOLOGY 2023; 5:1067942. [PMID: 37547228 PMCID: PMC10403269 DOI: 10.3389/ftox.2023.1067942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Ocular surface disease (OSD), a disorder affecting the lacrimal and meibomian glands and the corneal and conjunctival epithelium, is a well-known complication of topical glaucoma therapy. OSD can present as a new or pre-existing condition that virtually any anti-glaucoma formulation can exacerbate. As such, both glaucoma and OSD frequently coexist. Typical OSD symptoms include ocular discomfort, redness, burning, and dryness, whereas signs include periorbital and eyelid skin pigmentation, conjunctival scarring, and superficial punctate keratitis. Pressure-lowering eyedrops can cause toxic, allergic, and inflammatory reactions on the ocular surface. The latter can result from either preservatives or direct toxicity from the active molecule. Although usually mild, OSD can cause significant symptoms that lead to poor quality of life, decreased compliance to therapy, glaucoma progression, and worse visual outcomes. Given the chronic nature of glaucoma, lack of curative therapy, and subsequent lifelong treatment, addressing OSD is necessary. This manuscript aims to provide an up-to-date overview of OSD's signs, symptoms, and pathogenic mechanisms from glaucoma therapy toxicity.
Collapse
Affiliation(s)
- Raul E. Ruiz-Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Monterrey, Mexico
| | - Nadim S. Azar
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | - Hazem M. Mousa
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | - Manuel E. Quiroga-Garza
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | - Seitaro Komai
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | | | - Cristian Cartes
- Unidad Oftalmología, Departamento de Especialidades, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Victor L. Perez
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
3
|
Sharif NA, Odani-Kawabata N, Lu F, Pinchuk L. FP and EP2 prostanoid receptor agonist drugs and aqueous humor outflow devices for treating ocular hypertension and glaucoma. Exp Eye Res 2023; 229:109415. [PMID: 36803996 DOI: 10.1016/j.exer.2023.109415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
Prostaglandin (PG) receptors represent important druggable targets due to the many diverse actions of PGs in the body. From an ocular perspective, the discovery, development, and health agency approvals of prostaglandin F (FP) receptor agonists (FPAs) have revolutionized the medical treatment of ocular hypertension (OHT) and glaucoma. FPAs, such as latanoprost, travoprost, bimatoprost, and tafluprost, powerfully lower and control intraocular pressure (IOP), and became first-line therapeutics to treat this leading cause of blindness in the late 1990s to early 2000s. More recently, a latanoprost-nitric oxide (NO) donor conjugate, latanoprostene bunod, and a novel FP/EP3 receptor dual agonist, sepetaprost (ONO-9054 or DE-126), have also demonstrated robust IOP-reducing activity. Moreover, a selective non-PG prostanoid EP2 receptor agonist, omidenepag isopropyl (OMDI), was discovered, characterized, and has been approved in the United States, Japan and several other Asian countries for treating OHT/glaucoma. FPAs primarily enhance uveoscleral (UVSC) outflow of aqueous humor (AQH) to reduce IOP, but cause darkening of the iris and periorbital skin, uneven thickening and elongation of eyelashes, and deepening of the upper eyelid sulcus during chronic treatment. In contrast, OMDI lowers and controls IOP by activation of both the UVSC and trabecular meshwork outflow pathways, and it has a lower propensity to induce the aforementioned FPA-induced ocular side effects. Another means to address OHT is to physically promote the drainage of the AQH from the anterior chamber of the eye of patients with OHT/glaucoma. This has successfully been achieved by the recent approval and introduction of miniature devices into the anterior chamber by minimally invasive glaucoma surgeries. This review covers the three major aspects mentioned above to highlight the etiology of OHT/glaucoma, and the pharmacotherapeutics and devices that can be used to combat this blinding ocular disease.
Collapse
Affiliation(s)
- Najam A Sharif
- Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, USA; Singapore Eye Research Institute, Singapore; Eye-ACP Duke-National University of Singapore Medical School, Singapore; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX, USA; Department of Pharmacy Sciences, Creighton University, Omaha, NE, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA; Imperial College of Science and Technology, St. Mary's Campus, London, UK; Institute of Ophthalmology, University College London, London, UK.
| | | | - Fenghe Lu
- Product Development Division, Santen Inc., Emeryville, CA, USA
| | - Leonard Pinchuk
- Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, USA; Biomedical Engineering Department, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Kaplan TM, Sit AJ. Emerging drugs for the treatment of glaucoma: a review of phase II & III trials. Expert Opin Emerg Drugs 2022; 27:321-331. [PMID: 35924872 DOI: 10.1080/14728214.2022.2110240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Glaucoma is a progressive optic neuropathy and the leading cause of irreversible vision loss. By 2040, the number of individuals with glaucoma is expected to nearly double. The only known modifiable risk factor for glaucoma is intraocular pressure. Topical medications are often used as first-line therapies. Although there are numerous available treatments, there continues to be a need for the development of new medical therapies due to variable response, intolerable side-effect profiles in some patients, and elevated intraocular pressure refractory to other treatments. AREAS COVERED This review will cover glaucoma medications currently undergoing phase II and III of drug development. EXPERT OPINION There are numerous drugs currently in development that have demonstrated significant and clinically relevant reduction of intraocular pressure. Differentiating factors include improved tolerability, novel mechanisms of action, multiple mechanisms of action, or superior IOP reduction. However, the availability of generic prostaglandin analogs may limit adoption of these novel compounds as first-line agents, except for certain subgroups of glaucoma patients. Use as adjuvant or second-line therapy appears more likely for the majority of glaucoma patients.
Collapse
Affiliation(s)
- Tyler M Kaplan
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Arthur J Sit
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Liu P, Wang F, Song Y, Wang M, Zhang X. Current situation and progress of drugs for reducing intraocular pressure. Ther Adv Chronic Dis 2022; 13:20406223221140392. [PMID: 36479139 PMCID: PMC9720821 DOI: 10.1177/20406223221140392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Glaucoma, the most common cause of irreversible blindness worldwide, usually causes characteristic optic nerve damage. Pathological intraocular pressure (IOP) elevation is a major risk factor. Drug reduction of IOP is the preferred treatment for clinicians because it can delay the progression of disease. However, the traditional IOP-lowering drugs currently used by patients may be poorly tolerated. Therefore, in recent years, some new drugs have been put into clinical application or in clinical phase I–III studies. They have a better IOP-lowering effect and fewer adverse reactions. Because glaucoma is a chronic disease, drugs need to be administered continuously for a long time. For patients, good compliance and high drug bioavailability have a positive effect on the prognosis of the disease. Therefore, clinicians and scientists have developed drug delivery systems to solve this complex problem. In addition, natural compounds and dietary supplements have a good effect of reducing IOP, and they can also protect the optic nerve through antioxidant action. We summarize the current traditional drugs, new drugs, sustained-release drug delivery systems, and complementary drugs and outline the mechanism of action and clinical effects of these drugs on glaucoma and their recent advances.
Collapse
Affiliation(s)
- Peiyu Liu
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Feifei Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yuning Song
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Menghui Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang 330006, China
| |
Collapse
|