1
|
Liang J, Zhaoping L. Trans-saccadic integration for object recognition peters out with pre-saccadic object eccentricity as target-directed saccades become more saliency-driven. Vision Res 2025; 226:108500. [PMID: 39608201 DOI: 10.1016/j.visres.2024.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/23/2024] [Accepted: 10/02/2024] [Indexed: 11/30/2024]
Abstract
Bringing objects from peripheral locations to fovea via saccades facilitates their recognition. Human observers integrate pre- and post-saccadic information for recognition. This integration has only been investigated using instructed saccades to prescribed locations. Typically, the target has a fixed pre-saccadic location in an uncluttered scene and is viewed by a pre-determined post-saccadic duration. Consequently, whether trans-saccadic integration is limited or absent when the pre-saccadic target eccentricity is too large in cluttered scenes in unknown. Our study revealed this limit during visual exploration, when observers decided themselves when and to where to make their saccades. We asked thirty observers (400 trials each) to find and report as quickly as possible a target amongst 404 non-targets in an image spanning 57.3°×33.8° in visual angle. We measured the target's pre-saccadic eccentricity e, the duration Tpre of the fixation before the saccade, and the post-saccadic foveal viewing duration Tpost. This Tpost increased with e before starting to saturate around eccentricity ep=10°-20°. Meanwhile, Tpre increased much more slowly with e and started decreasing before ep. These observations imply the following at sufficiently large pre-saccadic eccentricities: the trans-saccadic integration ceases, target recognition relies exclusively on post-saccadic foveal vision, decision to saccade to the target relies exclusively on target saliency rather than identification. These implications should be applicable to general behavior, although ep should depend on object and scene properties. They are consistent with the Central-peripheral Dichotomy that central and peripheral vision are specialized for seeing and looking, respectively.
Collapse
Affiliation(s)
- Junhao Liang
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Li Zhaoping
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.
| |
Collapse
|
2
|
Sharvashidze N, Valsecchi M, Schütz AC. Transsaccadic perception of changes in object regularity. J Vis 2024; 24:3. [PMID: 39630465 PMCID: PMC11627247 DOI: 10.1167/jov.24.13.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
The visual system compensates for differences between peripheral and foveal vision using different mechanisms. Although peripheral vision is characterized by higher spatial uncertainty and lower resolution than foveal vision, observers reported objects to be less distorted and less blurry in the periphery than the fovea in a visual matching task during fixation (Valsecchi et al., 2018). Here, we asked whether a similar overcompensation could be found across saccadic eye movements and whether it would bias the detection of transsaccadic changes in object regularity. The blur and distortion levels of simple geometric shapes were manipulated in the Eidolons algorithm (Koenderink et al., 2017). In an appearance discrimination task, participants had to judge the appearance of blur (experiment 1) and distortion (experiment 2) separately before and after a saccade. Objects appeared less blurry before a saccade (in the periphery) than after a saccade (in the fovea). No differences were found in the appearance of distortion. In a change discrimination task, participants had to judge if blur (experiment 1) and distortion (experiment 2) either increased or decreased during a saccade. Overall, they showed a tendency to report an increase in both blur and distortion across saccades. The precision of the responses was improved by a 200-ms postsaccadic blank. Results from the change discrimination task of both experiments suggest that a transsaccadic decrease in regularity is more visible, compared to an increase in regularity. In line with the previous study that reported a peripheral overcompensation in the visual matching task, we found a similar mechanism, exhibiting a phenomenological sharpening of blurry edges before a saccade. These results generalize peripheral-foveal differences observed during fixation to the here tested dynamic, transsaccadic conditions where they contribute to biases in transsaccadic change detection.
Collapse
Affiliation(s)
- Nino Sharvashidze
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| | - Matteo Valsecchi
- Dipartimento di Psicologia, Università di Bologna, Bologna, Italy
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Giessen, and Darmstadt, Germany
- https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| |
Collapse
|
3
|
Grzeczkowski L, Stein A, Rolfs M. Trans-retinal predictive signals of visual features are precise, saccade-specific and operate over a wide range of spatial frequencies. J Neurophysiol 2024; 132:1887-1895. [PMID: 39531342 DOI: 10.1152/jn.00364.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Saccadic eye movements successively project the saccade target on two retinal locations: a peripheral one before the saccade, and the fovea after the saccade. Typically, performance in discriminating stimulus features changes between these two projections is very poor. However, a short (∼200 ms) blanking of the target upon saccade onset drastically improves performance, demonstrating that a precise signal of the peripheral projection is retained during the saccade. Although little is known about the nature of that transsaccadic signal, previous reports conjectured that it relies on information processed by the magnocellular system. Across two experiments, we investigated the feature blanking effect for a wide range of spatial frequencies (0.5-8 cycles per degree of visual angle, dva), stimulus sizes (1-4 dva), and eccentricities (6-10 dva). In each trial, participants executed a saccade to a high-contrast grating presented either left or right of fixation. During the saccade, the grating changed orientation (clockwise or counter-clockwise) either instantaneously or after a 200-ms blank, and participants reported the change's direction. We contrasted this saccade condition with a trans-retinal fixation condition mimicking the peripheral-then-foveal sequence of the target stimulus occurring across a saccade. Remarkably, blanking improved performance reliably for each spatial frequency, stimulus size, and eccentricity, but only in the saccade condition. Performance with blanking in saccade trials systematically exceeded performance in the fixation condition. Our results demonstrate a robust feature blanking effect across saccades, suggesting that transsaccadic processes involve low-level visual features beyond those processed in the magnocellular system.NEW & NOTEWORTHY Across a saccadic eye movement, the visual system is able to keep track of the signals carrying the visual features of a saccade target. We provide evidence that these signals are sensitive to a wide range of stimulus sizes, can use a wide range spatial frequencies channels and, operate at various saccade amplitudes. Our results suggest an underlying mechanism operating beyond the magnocellular pathway that is contingent to saccade execution.
Collapse
Affiliation(s)
| | - Arne Stein
- Department Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Rolfs
- Department Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Lopes A, Rasmussen S, Au R, Chakravarthy V, Chinnery T, Christie J, Djordjevic B, Gomez JA, Grindrod N, Policelli R, Sharma A, Tran C, Walsh JC, Wehrli B, Ward AD, Cecchini MJ. Identification of Distinct Visual Scan Paths for Pathologists in Rare-Element Search Tasks. Int J Surg Pathol 2024:10668969241294239. [PMID: 39563530 DOI: 10.1177/10668969241294239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
BACKGROUND The search for rare elements, like mitotic figures, is crucial in pathology. Combining digital pathology with eye-tracking technology allows for the detailed study of how pathologists complete these important tasks. OBJECTIVES To determine if pathologists have distinct search characteristics in domain- and nondomain-specific tasks. DESIGN Six pathologists and six graduate students were recruited as observers. Each observer was given five digital "Where's Waldo?" puzzles and asked to search for the Waldo character as a nondomain-specific task. Each pathologist was then given five images of a breast digital pathology slide to search for a single mitotic figure as a domain-specific task. The observers' eye gaze data were collected. RESULTS Pathologists' median fixation duration was 244 ms, compared to 300 ms for nonpathologists searching for Waldo (P < .001), and compared to 233 ms for pathologists searching for mitotic figures (P = .003). Pathologists' median fixation and saccade rates were 3.17/second and 2.77/second, respectively, compared to 2.61/second and 2.47/second for nonpathologists searching for Waldo (P < .001), and compared to 3.34/second and 3.09/second for pathologists searching for mitotic figures (P = .222 and P = .187, respectively). There was no significant difference between the two cohorts in their accuracy in identifying the target of their search. CONCLUSIONS When searching for rare elements during a nondomain-specific search task, pathologists' search characteristics were fundamentally different compared to nonpathologists, indicating pathologists can rapidly classify the objects of their fixations without compromising accuracy. Further, pathologists' search characteristics were fundamentally different between a domain-specific and nondomain-specific rare-element search task.
Collapse
Affiliation(s)
- Alana Lopes
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Gerald C. Baines Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Sean Rasmussen
- Department of Pathology and Laboratory Medicine, Western University and London Health Science Centre, London, Ontario, Canada
| | - Ryan Au
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Gerald C. Baines Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Vignesh Chakravarthy
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Gerald C. Baines Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Tricia Chinnery
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Gerald C. Baines Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Jaryd Christie
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Gerald C. Baines Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Bojana Djordjevic
- Department of Pathology and Laboratory Medicine, Western University and London Health Science Centre, London, Ontario, Canada
| | - Jose A Gomez
- Department of Pathology and Laboratory Medicine, Western University and London Health Science Centre, London, Ontario, Canada
| | - Natalie Grindrod
- Department of Pathology and Laboratory Medicine, Western University and London Health Science Centre, London, Ontario, Canada
| | - Robert Policelli
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Gerald C. Baines Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Anurag Sharma
- Department of Pathology and Laboratory Medicine, Western University and London Health Science Centre, London, Ontario, Canada
| | - Christopher Tran
- Department of Pathology and Laboratory Medicine, Western University and London Health Science Centre, London, Ontario, Canada
| | - Joanna C Walsh
- Department of Pathology and Laboratory Medicine, Western University and London Health Science Centre, London, Ontario, Canada
| | - Bret Wehrli
- Department of Pathology and Laboratory Medicine, Western University and London Health Science Centre, London, Ontario, Canada
| | - Aaron D Ward
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Gerald C. Baines Centre, London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University and London Health Science Centre, London, Ontario, Canada
| |
Collapse
|
5
|
Crayen MA, Treue S, Esghaei M. Interactions between the fovea and the periphery shape misbinding of visual features in a continuous report paradigm. Sci Rep 2024; 14:28381. [PMID: 39551785 PMCID: PMC11570667 DOI: 10.1038/s41598-024-78867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Human object perception depends on the proper integration of multiple visual features, such as color and motion. When features are integrated incorrectly, they are perceptually misbound and can cause illusions. This study investigates the phenomenon of continuous misbinding of color and motion features in peripheral vision, addressing the role of spatial continuity and color configuration in binding processes. Using a novel continuous report task, human subjects reported the perceived movement direction of color-coded dots in the peripheral visual field that were either congruent or incongruent with a foveal stimulus. Results indicate that spatial continuity is crucial for feature misbinding, with a marked decrease in peripheral perceptions bound to match foveal perception when the foveal and peripheral stimuli are spatially disjointed. Additionally, performance improved significantly when peripheral and foveal features were aligned, suggesting a 'positive illusion' effect where congruent features enhance perceptual accuracy. This effect was independent of the color pairings used, challenging the notion that color processing discrepancies might drive erroneous perception in this stimulus. These findings highlight the complex interplay between spatial configuration and perceptual accuracy in visual feature integration, with implications for understanding the neural basis of vision and developing applications to address perceptual inaccuracies in visual disorders.
Collapse
Affiliation(s)
- Max Arwed Crayen
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany.
- International Max Planck Research School for Neurosciences, University of Göttingen, Göttingen, Germany.
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Moein Esghaei
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
6
|
Márquez I, Treviño M. Pupillary responses to directional uncertainty while intercepting a moving target. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240606. [PMID: 39359460 PMCID: PMC11444787 DOI: 10.1098/rsos.240606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Pupillary responses serve as sensitive indicators of cognitive processes, attentional shifts and decision-making dynamics. Our study investigates how directional uncertainty and target speed (V T) influence pupillary responses in a foveal tracking task involving the interception of a moving dot. Directional uncertainty, reflecting the unpredictability of the target's direction changes, was manipulated by altering the angular range (AR) from which random directions for the moving dot were extracted. Higher AR values were associated with reduced pupillary diameters, indicating that heightened uncertainty led to smaller pupil sizes. Additionally, an inverse U-shaped relationship between V T and pupillary responses suggested maximal diameters at intermediate speeds. Analysis of saccade-triggered responses showed a negative correlation between pupil diameter and directional uncertainty. Dynamic linear modelling revealed the influence of past successful collisions and other behavioural parameters on pupillary responses, emphasizing the intricate interaction between task variables and cognitive processing. Our results highlight the dynamic interplay between the directional uncertainty of a single moving target, V T and pupillary responses, with implications for understanding attentional mechanisms, decision-making processes and potential applications in emerging technologies.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico
- Laboratorio de Conducta Animal, Departamento de Psicología, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico
| | - Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
7
|
Huang Y, Cao J, Shi X, Wang J, Chang J. Stereo imaging inspired by bionic optics. OPTICS LETTERS 2024; 49:5647-5650. [PMID: 39353028 DOI: 10.1364/ol.537074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Stereo imaging has been a focal point in fields such as robotics and autonomous driving. This Letter discusses the imaging mechanisms of jumping spiders and human eyes from a biomimetic perspective and proposes a monocular stereo imaging solution with low computational cost and high stability. The stereo imaging mechanism of jumping spiders enables monocular imaging without relying on multiple viewpoints, thus avoiding complex large-scale feature point matching and significantly conserving computational resources. The foveal imaging mechanism of the human eye allows for complex imaging tasks to be completed only on the locally interested regions, resulting in more efficient execution of various visual tasks. By combining these two advantages, we have developed a more computationally efficient monocular stereo imaging method that can achieve stereo imaging on only the locally interested regions without sacrificing the performance of wide field-of-view (FOV) imaging. Finally, through experimental validation, we demonstrate that the method proposed in this Letter exhibits excellent stereo imaging performance.
Collapse
|
8
|
Liu X, Melcher D, Carrasco M, Hanning NM. Presaccadic preview shapes postsaccadic processing more where perception is poor. Proc Natl Acad Sci U S A 2024; 121:e2411293121. [PMID: 39236235 PMCID: PMC11406264 DOI: 10.1073/pnas.2411293121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
The presaccadic preview of a peripheral target enhances the efficiency of its postsaccadic processing, termed the extrafoveal preview effect. Peripheral visual performance-and thus the quality of the preview-varies around the visual field, even at isoeccentric locations: It is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants to preview four tilted gratings at the cardinals, until a central cue indicated which one to saccade to. During the saccade, the target orientation either remained or slightly changed (valid/invalid preview). After saccade landing, participants discriminated the orientation of the (briefly presented) second grating. Stimulus contrast was titrated with adaptive staircases to assess visual performance. Expectedly, valid previews increased participants' postsaccadic contrast sensitivity. This preview benefit, however, was inversely related to polar angle perceptual asymmetries; largest at the upper, and smallest at the horizontal meridian. This finding reveals that the visual system compensates for peripheral asymmetries when integrating information across saccades, by selectively assigning higher weights to the less-well perceived preview information. Our study supports the recent line of evidence showing that perceptual dynamics around saccades vary with eye movement direction.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Division of Science, Psychology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Psychology, Princeton University, Princeton, NJ 08540
| | - David Melcher
- Division of Science, Psychology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10012
| | - Nina M Hanning
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10012
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| |
Collapse
|
9
|
Varesco G, Sarcher A, Doron J, Jubeau M. Striking a balance: Exploring attention, attack accuracy and speed in fencing performance. Eur J Sport Sci 2024; 24:1278-1286. [PMID: 39073230 PMCID: PMC11369319 DOI: 10.1002/ejsc.12176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/11/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
In fencing, it remains unclear whether practice enhances visual-spatial attention allocation. We explored whether this ability is improved in fencers and if it is related to attack speed and accuracy. Twelve novices (<1 year of experience) and 12 trained epee fencers (18 ± 10 years of experience) visited the laboratory twice (familiarization and testing session). They performed a covert orienting of visuospatial attention test (COVAT) on a computer and an epee test, involving 30 trials of 3 shuttles followed by fast attack phases where the fencers quickly hit a target (randomly proposed out of 8). We measured COVAT reaction time, number of successful target hits, and execution time to hit in the fencing test. We found shorter COVAT reaction time for trained fencers (332 ± 24 ms) versus novices (367 ± 32 ms; p < 0.001). The number of hits was greater for trained fencers (22 ± 3) versus novices (16 ± 3; p < 0.001). ANCOVA showed a difference in execution time at the test (823 ± 73 ms vs. 913 ± 141 ms, p = 0.035). A relationship was found between hits and execution time and between execution time and COVAT reaction time for the trained group (r = 0.62, p = 0.03 and r = 0.70, p = 0.01, respectively) but not in the novice group (r = 0.11, p = 0.72 and r = 0.45, p = 0.14, respectively). Mediation analysis showed that the relationship between execution time and number of hits (ADE: p = 0.008) was not mediated by COVAT reaction time (ACME: p = 0.17). These results evidence the importance of visual-spatial attention allocation in fencing and evidence differences between novices and trained fencers with important implications for talent development in the early career stage.
Collapse
Affiliation(s)
- Giorgio Varesco
- Nantes UniversitéLaboratory Movement – Interactions – Performance (MIP), UR 4334NantesFrance
| | - Aurélie Sarcher
- Nantes UniversitéLaboratory Movement – Interactions – Performance (MIP), UR 4334NantesFrance
| | - Julie Doron
- Nantes UniversitéLaboratory Movement – Interactions – Performance (MIP), UR 4334NantesFrance
| | - Marc Jubeau
- Nantes UniversitéLaboratory Movement – Interactions – Performance (MIP), UR 4334NantesFrance
| |
Collapse
|
10
|
Kandemir G, Olivers C. Comparing Neural Correlates of Memory Encoding and Maintenance for Foveal and Peripheral Stimuli. J Cogn Neurosci 2024; 36:1807-1826. [PMID: 38940724 PMCID: PMC11324249 DOI: 10.1162/jocn_a_02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Visual working memory is believed to rely on top-down attentional mechanisms that sustain active sensory representations in early visual cortex, a mechanism referred to as sensory recruitment. However, both bottom-up sensory input and top-down attentional modulations thereof appear to prioritize the fovea over the periphery, such that initially peripheral percepts may even be assimilated by foveal processes. This raises the question whether and how visual working memory differs for central and peripheral input. To address this, we conducted a delayed orientation recall task in which an orientation was presented either at the center of the screen or at 15° eccentricity to the left or right. Response accuracy, EEG activity, and gaze position were recorded from 30 participants. Accuracy was slightly but significantly higher for foveal versus peripheral memories. Decoding of EEG recordings revealed a clear dissociation between early sensory and later maintenance signals. Although sensory signals were clearly decodable for foveal stimuli, they were not for peripheral input. In contrast, maintenance signals were equally decodable for both foveal and peripheral memories, suggesting comparable top-down components regardless of eccentricity. Moreover, although memory representations were initially spatially specific and reflected in voltage fluctuations, later during the maintenance period, they generalized across locations, as emerged in alpha oscillations, thus revealing a dynamic transformation within memory from separate sensory traces to what we propose are common output-related codes. Furthermore, the combined absence of reliable decoding of sensory signals and robust presence of maintenance decoding indicates that storage activity patterns as measured by EEG reflect signals beyond primary visual cortex. We discuss the implications for the sensory recruitment hypothesis.
Collapse
|
11
|
Sharvashidze N, Hübner C, Schütz AC. A bias in transsaccadic perception of spatial frequency changes. Vision Res 2024; 222:108453. [PMID: 38991467 DOI: 10.1016/j.visres.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Visual processing differs between the foveal and peripheral visual field. These differences can lead to different appearances of objects in the periphery and the fovea, posing a challenge to perception across saccades. Differences in the appearance of visual features between the peripheral and foveal visual field may bias change discrimination across saccades. Previously it has been reported that spatial frequency (SF) appears higher in the periphery compared to the fovea (Davis et al., 1987). In this study, we investigated the visual appearance of SF before and after a saccade and the discrimination of SF changes during saccades. In addition, we tested the contributions of pre- and postsaccadic information to change discrimination performance. In the first experiment, we found no differences in the appearance of SF before and after a saccade. However, participants showed a clear bias to report SF increases. Interestingly, a 200-ms postsaccadic blank improved the precision of the responses but did not affect the bias. In the second experiment, participants showed lower thresholds for SF increases than for decreases, suggesting that the bias in the first experiment was not just a response bias. Finally, we asked participants to discriminate the SF of stimuli presented before a saccade. Thresholds in the presaccadic discrimination task were lower than in the change discrimination task, suggesting that transsaccadic change discrimination is not merely limited by presaccadic discrimination in the periphery. The change direction bias might stem from more effective masking or overwriting of the presaccadic stimulus by the postsaccadic low SF stimulus.
Collapse
Affiliation(s)
- Nino Sharvashidze
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Carolin Hübner
- Allgemeine Psychologie & Human Factors, Technische Universität Chemnitz, Chemnitz, Germany
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
12
|
Zhaoping L. Looking with or without seeing in an individual with age-related macular degeneration impairing central vision. Iperception 2024; 15:20416695241265821. [PMID: 39148556 PMCID: PMC11325320 DOI: 10.1177/20416695241265821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Looking leads gaze to objects; seeing recognizes them. Visual crowding makes seeing difficult or impossible before looking brings objects to the fovea. Looking before seeing can be guided by saliency mechanisms in the primary visual cortex (V1). We have proposed that looking and seeing are mainly supported by peripheral and central vision, respectively. This proposal is tested in an observer with central vision loss due to macular degeneration, using a visual search task that can be accomplished solely through looking, but is actually impeded through seeing. The search target is an uniquely oriented, salient, bar among identically shaped bars. Each bar, including the target, is part of an " " X " shape. The target's " X is identical to, although rotated from, the other " X 's in the image, which normally causes confusion. However, this observer exhibits no such confusion, presumably because she cannot see the " X 's shape, but can look towards the target. This result demonstrates a critical dichotomy between central and peripheral vision.
Collapse
Affiliation(s)
- Li Zhaoping
- Max-Planck-Institute for Biological Cybernetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Klein DS, Karmakar S, Jonnalagadda A, Abbey CK, Eckstein MP. Greater benefits of deep learning-based computer-aided detection systems for finding small signals in 3D volumetric medical images. J Med Imaging (Bellingham) 2024; 11:045501. [PMID: 38988989 PMCID: PMC11232702 DOI: 10.1117/1.jmi.11.4.045501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose Radiologists are tasked with visually scrutinizing large amounts of data produced by 3D volumetric imaging modalities. Small signals can go unnoticed during the 3D search because they are hard to detect in the visual periphery. Recent advances in machine learning and computer vision have led to effective computer-aided detection (CADe) support systems with the potential to mitigate perceptual errors. Approach Sixteen nonexpert observers searched through digital breast tomosynthesis (DBT) phantoms and single cross-sectional slices of the DBT phantoms. The 3D/2D searches occurred with and without a convolutional neural network (CNN)-based CADe support system. The model provided observers with bounding boxes superimposed on the image stimuli while they looked for a small microcalcification signal and a large mass signal. Eye gaze positions were recorded and correlated with changes in the area under the ROC curve (AUC). Results The CNN-CADe improved the 3D search for the small microcalcification signal ( Δ AUC = 0.098 , p = 0.0002 ) and the 2D search for the large mass signal ( Δ AUC = 0.076 , p = 0.002 ). The CNN-CADe benefit in 3D for the small signal was markedly greater than in 2D ( Δ Δ AUC = 0.066 , p = 0.035 ). Analysis of individual differences suggests that those who explored the least with eye movements benefited the most from the CNN-CADe ( r = - 0.528 , p = 0.036 ). However, for the large signal, the 2D benefit was not significantly greater than the 3D benefit ( Δ Δ AUC = 0.033 , p = 0.133 ). Conclusion The CNN-CADe brings unique performance benefits to the 3D (versus 2D) search of small signals by reducing errors caused by the underexploration of the volumetric data.
Collapse
Affiliation(s)
- Devi S. Klein
- University of California, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| | - Srijita Karmakar
- University of California, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| | - Aditya Jonnalagadda
- University of California, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Craig K. Abbey
- University of California, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| | - Miguel P. Eckstein
- University of California, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
- University of California, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
- University of California, Department of Computer Science, Santa Barbara, California, United States
| |
Collapse
|
14
|
Lecce M, Miazza D, Muzio C, Parigi M, Miazza A, Bergomi MG. Visuospatial, oculomotor, and executive reading skills evolve in elementary school, and errors are significant: a topological RAN study. Front Psychol 2024; 15:1383969. [PMID: 38903458 PMCID: PMC11188999 DOI: 10.3389/fpsyg.2024.1383969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
We investigate the development of visuospatial and oculomotor reading skills in a cohort of elementary school children. Employing a longitudinal methodology, the study applies the Topological serial digit Rapid Automated Naming (Top-RAN) battery, which evaluates visuospatial reading skills leveraging metrics addressing crowding, distractors, and voluntary attention orientation. The participant pool comprises 142 students (66 males, 76 females), including 46 non-native speakers (21 males, 25 females), representing a diverse range of ethnic backgrounds. The Top-RAN dataset encompasses performance, error, and self-correction metrics for each subtest and student, underscoring the significance of these factors in the process of reading acquisition. Analytical methods include dimensionality reduction, clustering, and classification algorithms, consolidated into a Python package to facilitate reproducible results. Our results indicate that visuospatial reading abilities vary according to the task and demonstrate a marked evolution over time, as seen in the progressive decrease in execution times, errors, and self-corrections. This pattern supports the hypothesis that the growth of oculomotor, attentional, and executive skills is primarily fostered by educational experiences and maturation. This investigation provides valuable insights into the dynamic nature of these skills during pivotal educational stages.
Collapse
|
15
|
Bertamini M, Oletto CM, Contemori G. The Role of Uniform Textures in Making Texture Elements Visible in the Visual Periphery. Open Mind (Camb) 2024; 8:462-482. [PMID: 38665546 PMCID: PMC11045036 DOI: 10.1162/opmi_a_00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
There are important differences between central and peripheral vision. With respect to shape, contours retain phenomenal sharpness, although some contours disappear if they are near other contours. This leads to some uniform textures to appear non-uniform (Honeycomb illusion, Bertamini et al., 2016). Unlike other phenomena of shape perception in the periphery, this illusion is showing how continuity of the texture does not contribute to phenomenal continuity. We systematically varied the relationship between central and peripheral regions, and we collected subjective reports (how far can one see lines) as well as judgments of line orientation. We used extended textures created with a square grid and some additional lines that are invisible when they are located at the corners of the grid, or visible when they are separated from the grid (control condition). With respects to subjective reports, we compared the region of visibility for cases in which the texture was uniform (Exp 1a), or when in a central region the lines were different (Exp 1b). There were no differences, showing no role of objective uniformity on visibility. Next, in addition to the region of visibility we measured sensitivity using a forced-choice task (line tilted left or right) (Exp 2). The drop in sensitivity with eccentricity matched the size of the region in which lines were perceived in the illusion condition, but not in the control condition. When participants were offered a choice to report of the lines were present or absent (Exp 3) they confirmed that they did not see them in the illusion condition, but saw them in the control condition. We conclude that mechanisms that control perception of contours operate differently in the periphery, and override prior expectations, including that of uniformity. Conversely, when elements are detected in the periphery, we assign to them properties based on information from central vision, but these shapes cannot be identified correctly when the task requires such discrimination.
Collapse
|
16
|
Zhaoping L. Peripheral vision is mainly for looking rather than seeing. Neurosci Res 2024; 201:18-26. [PMID: 38000447 DOI: 10.1016/j.neures.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Vision includes looking and seeing. Looking, mainly via gaze shifts, selects a fraction of visual input information for passage through the brain's information bottleneck. The selected input is placed within the attentional spotlight, typically in the central visual field. Seeing decodes, i.e., recognizes and discriminates, the selected inputs. Hence, peripheral vision should be mainly devoted to looking, in particular, deciding where to shift the gaze. Looking is often guided exogenously by a saliency map created by the primary visual cortex (V1), and can be effective with no seeing and limited awareness. In seeing, peripheral vision not only suffers from poor spatial resolution, but is also subject to crowding and is more vulnerable to illusions by misleading, ambiguous, and impoverished visual inputs. Central vision, mainly for seeing, enjoys the top-down feedback that aids seeing in light of the bottleneck which is hypothesized to starts from V1 to higher areas. This feedback queries for additional information from lower visual cortical areas such as V1 for ongoing recognition. Peripheral vision is deficient in this feedback according to the Central-peripheral Dichotomy (CPD) theory. The saccades engendered by peripheral vision allows looking to combine with seeing to give human observers the impression of seeing the whole scene clearly despite inattentional blindness.
Collapse
Affiliation(s)
- Li Zhaoping
- University of Tübingen, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
17
|
Contemori G, Oletto CM, Battaglini L, Bertamini M. On the relationship between foveal mask interference and mental imagery in peripheral object recognition. Proc Biol Sci 2024; 291:20232867. [PMID: 38471562 DOI: 10.1098/rspb.2023.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
A delayed foveal mask affects perception of peripheral stimuli. The effect is determined by the timing of the mask and by the similarity with the peripheral stimulus. A congruent mask enhances performance, while an incongruent one impairs it. It is hypothesized that foveal masks disrupt a feedback mechanism reaching the foveal cortex. This mechanism could be part of a broader circuit associated with mental imagery, but this hypothesis has not as yet been tested. We investigated the link between mental imagery and foveal feedback. We tested the relationship between performance fluctuations caused by the foveal mask-measured in terms of discriminability (d') and criterion (C)-and the scores from two questionnaires designed to assess mental imagery vividness (VVIQ) and another exploring object imagery, spatial imagery and verbal cognitive styles (OSIVQ). Contrary to our hypotheses, no significant correlations were found between VVIQ and the mask's impact on d' and C. Neither the object nor spatial subscales of OSIVQ correlated with the mask's impact. In conclusion, our findings do not substantiate the existence of a link between foveal feedback and mental imagery. Further investigation is needed to determine whether mask interference might occur with more implicit measures of imagery.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, Padova, Italy
| | | | - Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marco Bertamini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
18
|
Goktepe N, Schütz AC. Frequency-specific and periodic masking of peripheral characters by delayed foveal input. Sci Rep 2024; 14:4642. [PMID: 38409140 PMCID: PMC10897220 DOI: 10.1038/s41598-024-51710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
The foveal-feedback mechanism supports peripheral object recognition by processing information about peripheral objects in foveal retinotopic visual cortex. When a foveal object is asynchronously presented with a peripheral target, peripheral discrimination performance is affected differently depending on the relationship between the foveal and peripheral objects. However, it is not clear whether the delayed foveal input competes for foveal resources with the information processed by foveal-feedback or masks it. In the current study, we tested these hypotheses by measuring the effect of foveal noise at different spatial frequencies on peripheral discrimination of familiar and novel characters. Our results showed that the impairment of foveal-feedback was strongest for low-spatial frequency noise. A control experiment revealed that for spatially overlapping noise, low-spatial frequencies were more effective than medium-spatial frequencies in the periphery, but vice versa in the fovea. This suggests that the delayed foveal input selectively masks foveal-feedback when it is sufficiently similar to the peripheral information. Additionally, this foveal masking was periodic as evidenced by behavioral oscillations at around 5 Hz. Thus, we conclude that foveal-feedback supports peripheral discrimination of familiar and novel objects by periodically processing peripheral object information.
Collapse
Affiliation(s)
- Nedim Goktepe
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Alexander C Schütz
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Giessen, and Darmstadt, Marburg, Germany
| |
Collapse
|
19
|
Mu Y, Schubö A, Tünnermann J. Adapting attentional control settings in a shape-changing environment. Atten Percept Psychophys 2024; 86:404-421. [PMID: 38169028 PMCID: PMC10805924 DOI: 10.3758/s13414-023-02818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
In rich visual environments, humans have to adjust their attentional control settings in various ways, depending on the task. Especially if the environment changes dynamically, it remains unclear how observers adapt to these changes. In two experiments (online and lab-based versions of the same task), we investigated how observers adapt their target choices while searching for color singletons among shape distractor contexts that changed over trials. The two equally colored targets had shapes that differed from each other and matched a varying number of distractors. Participants were free to select either target. The results show that participants adjusted target choices to the shape ratio of distractors: even though the task could be finished by focusing on color only, participants showed a tendency to choose targets matching with fewer distractors in shape. The time course of this adaptation showed that the regularities in the changing environment were taken into account. A Bayesian modeling approach was used to provide a fine-grained picture of how observers adapted their behavior to the changing shape ratio with three parameters: the strength of adaptation, its delay relative to the objective distractor shape ratio, and a general bias toward specific shapes. Overall, our findings highlight that systematic changes in shape, even when it is not a target-defining feature, influence how searchers adjust their attentional control settings. Furthermore, our comparison between lab-based and online assessments with this paradigm suggests that shape is a good choice as a feature dimension in adaptive choice online experiments.
Collapse
Affiliation(s)
- Yunyun Mu
- Department of Psychology, Cognitive Neuroscience of Perception and Action, Philipps-University Marburg, Gutenbergstraße 18, 35032, Marburg, Germany.
| | - Anna Schubö
- Department of Psychology, Cognitive Neuroscience of Perception and Action, Philipps-University Marburg, Gutenbergstraße 18, 35032, Marburg, Germany
| | - Jan Tünnermann
- Department of Psychology, Cognitive Neuroscience of Perception and Action, Philipps-University Marburg, Gutenbergstraße 18, 35032, Marburg, Germany
| |
Collapse
|
20
|
Samonds JM, Szinte M, Barr C, Montagnini A, Masson GS, Priebe NJ. Mammals Achieve Common Neural Coverage of Visual Scenes Using Distinct Sampling Behaviors. eNeuro 2024; 11:ENEURO.0287-23.2023. [PMID: 38164577 PMCID: PMC10860624 DOI: 10.1523/eneuro.0287-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Most vertebrates use head and eye movements to quickly change gaze orientation and sample different portions of the environment with periods of stable fixation. Visual information must be integrated across fixations to construct a complete perspective of the visual environment. In concert with this sampling strategy, neurons adapt to unchanging input to conserve energy and ensure that only novel information from each fixation is processed. We demonstrate how adaptation recovery times and saccade properties interact and thus shape spatiotemporal tradeoffs observed in the motor and visual systems of mice, cats, marmosets, macaques, and humans. These tradeoffs predict that in order to achieve similar visual coverage over time, animals with smaller receptive field sizes require faster saccade rates. Indeed, we find comparable sampling of the visual environment by neuronal populations across mammals when integrating measurements of saccadic behavior with receptive field sizes and V1 neuronal density. We propose that these mammals share a common statistically driven strategy of maintaining coverage of their visual environment over time calibrated to their respective visual system characteristics.
Collapse
Affiliation(s)
- Jason M Samonds
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| | - Martin Szinte
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Carrie Barr
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| | - Anna Montagnini
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Nicholas J Priebe
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| |
Collapse
|
21
|
Han NX, Eckstein MP. Inferential eye movement control while following dynamic gaze. eLife 2023; 12:e83187. [PMID: 37615158 PMCID: PMC10473837 DOI: 10.7554/elife.83187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Attending to other people's gaze is evolutionary important to make inferences about intentions and actions. Gaze influences covert attention and triggers eye movements. However, we know little about how the brain controls the fine-grain dynamics of eye movements during gaze following. Observers followed people's gaze shifts in videos during search and we related the observer eye movement dynamics to the time course of gazer head movements extracted by a deep neural network. We show that the observers' brains use information in the visual periphery to execute predictive saccades that anticipate the information in the gazer's head direction by 190-350ms. The brain simultaneously monitors moment-to-moment changes in the gazer's head velocity to dynamically alter eye movements and re-fixate the gazer (reverse saccades) when the head accelerates before the initiation of the first forward gaze-following saccade. Using saccade-contingent manipulations of the videos, we experimentally show that the reverse saccades are planned concurrently with the first forward gaze-following saccade and have a functional role in reducing subsequent errors fixating on the gaze goal. Together, our findings characterize the inferential and functional nature of social attention's fine-grain eye movement dynamics.
Collapse
Affiliation(s)
- Nicole Xiao Han
- Department of Psychological and Brain Sciences, Institute for Collaborative Biotechnologies, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Miguel Patricio Eckstein
- Department of Psychological and Brain Sciences, Department of Electrical and Computer Engineering, Department of Computer Science, Institute for Collaborative Biotechnologies, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
22
|
Tas AC, Parker JL. The role of color in transsaccadic object correspondence. J Vis 2023; 23:5. [PMID: 37535373 PMCID: PMC10408768 DOI: 10.1167/jov.23.8.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
With each saccade, visual information is disrupted, and the visual system is tasked with establishing object correspondence between the presaccadic and postsaccadic representations of the saccade target. There is substantial evidence that the visual system consults spatiotemporal continuity when determining object correspondence across saccades. The evidence for surface feature continuity, however, is mixed. Surface features that are integral to the saccade target object's identity (e.g., shape and contrast polarity) are informative of object continuity, but features that may only imply the state of the object (e.g., orientation) are ignored. The present study tested whether color information is consulted to determine transsaccadic object continuity. We used two variations of the intrasaccadic target displacement task. In Experiments 1 and 2, participants reported the direction of the target displacement. In Experiments 3 and 4, they instead reported whether they detected any target movement. In all experiments, we manipulated the saccade target's continuity by removing it briefly (i.e., blanking) and by changing its color. We found that large color changes can disrupt stability and increase sensitivity to displacements for both direction and movement reports, although not as strongly as long blank durations (250 ms). Interestingly, even smaller color changes, but not blanking, reduced response biases. These results indicate that disrupting surface feature continuity may impact the process of transsaccadic object correspondence more strongly than spatiotemporal disruptions by both increasing the sensitivity and decreasing the response bias.
Collapse
Affiliation(s)
- A Caglar Tas
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
| | - Jessica L Parker
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
23
|
Klein DS, Lago MA, Abbey CK, Eckstein MP. A 2D Synthesized Image Improves the 3D Search for Foveated Visual Systems. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2176-2188. [PMID: 37027767 PMCID: PMC10476603 DOI: 10.1109/tmi.2023.3246005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Current medical imaging increasingly relies on 3D volumetric data making it difficult for radiologists to thoroughly search all regions of the volume. In some applications (e.g., Digital Breast Tomosynthesis), the volumetric data is typically paired with a synthesized 2D image (2D-S) generated from the corresponding 3D volume. We investigate how this image pairing affects the search for spatially large and small signals. Observers searched for these signals in 3D volumes, 2D-S images, and while viewing both. We hypothesize that lower spatial acuity in the observers' visual periphery hinders the search for the small signals in the 3D images. However, the inclusion of the 2D-S guides eye movements to suspicious locations, improving the observer's ability to find the signals in 3D. Behavioral results show that the 2D-S, used as an adjunct to the volumetric data, improves the localization and detection of the small (but not large) signal compared to 3D alone. There is a concomitant reduction in search errors as well. To understand this process at a computational level, we implement a Foveated Search Model (FSM) that executes human eye movements and then processes points in the image with varying spatial detail based on their eccentricity from fixations. The FSM predicts human performance for both signals and captures the reduction in search errors when the 2D-S supplements the 3D search. Our experimental and modeling results delineate the utility of 2D-S in 3D search-reduce the detrimental impact of low-resolution peripheral processing by guiding attention to regions of interest, effectively reducing errors.
Collapse
|
24
|
Goktepe N, Schütz AC. Familiar objects benefit more from transsaccadic feature predictions. Atten Percept Psychophys 2023; 85:1949-1961. [PMID: 36720784 PMCID: PMC10545618 DOI: 10.3758/s13414-022-02651-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/02/2023]
Abstract
The transsaccadic feature prediction mechanism associates peripheral and foveal information belonging to the same object to make predictions about how an object seen in the periphery would appear in the fovea or vice versa. It is unclear if such transsaccadic predictions require experience with the object such that only familiar objects benefit from this mechanism by virtue of having peripheral-foveal associations. In two experiments, we tested whether familiar objects have an advantage over novel objects in peripheral-foveal matching and transsaccadic change detection tasks. In both experiments, observers were unknowingly familiarized with a small set of stimuli by completing a sham orientation change detection task. In the first experiment, observers subsequently performed a peripheral-foveal matching task, where they needed to pick the foveal test object that matched a briefly presented peripheral target. In the second experiment, observers subsequently performed a transsaccadic object change detection task where a peripheral target was exchanged or not exchanged with another target after the saccade, either immediately or after a 300-ms blank period. We found an advantage of familiar objects over novel objects in both experiments. While foveal-peripheral associations explained the familiarity effect in the matching task of the first experiment, the second experiment provided evidence for the advantage of peripheral-foveal associations in transsaccadic object change detection. Introducing a postsaccadic blank improved change detection performance in general but more for familiar than for novel objects. We conclude that familiar objects benefit from additional object-specific predictions.
Collapse
Affiliation(s)
- Nedim Goktepe
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Alexander C Schütz
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
25
|
Maiello G, Kwon M. Despite Impaired Binocular Function, Binocular Disparity Integration Across the Visual Field Is Spared in Normal Aging and Glaucoma. Invest Ophthalmol Vis Sci 2023; 64:2. [PMID: 37129906 PMCID: PMC10158989 DOI: 10.1167/iovs.64.5.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Purpose To examine how binocularly asymmetric glaucomatous visual field damage affects binocular disparity processing across the visual field. Methods We recruited 18 patients with primary open-angle glaucoma, 16 age-matched controls, and 13 young controls. Participants underwent standard clinical assessments of binocular visual acuity, binocular contrast sensitivity, stereoacuity, and perimetry. We employed a previously validated psychophysical procedure to measure how sensitivity to binocular disparity varied across spatial frequencies and visual field sectors (i.e., with full-field stimuli spanning the central 21° of the visual field and with stimuli restricted to annular regions spanning 0°-3°, 3°-9°, or 9°-21°). We employed measurements with annular stimuli to model different possible scenarios regarding how disparity information is combined across visual field sectors. We adjudicated between potential mechanisms by comparing model predictions to the patterns observed with full-field stimuli. Results Perimetry confirmed that patients with glaucoma exhibited binocularly asymmetric visual field damage (P < 0.001). Across participant groups, foveal regions preferentially processed disparities at finer spatial scales, whereas periphery regions were tuned for coarser scales (P < 0.001). Disparity sensitivity also decreased from fovea to periphery (P < 0.001) and across participant groups (Ps < 0.01). Finally, similar to controls, patients with glaucoma exhibited near-optimal disparity integration, specifically at low spatial frequencies (P < 0.001). Conclusions Contrary to the conventional view that glaucoma spares central vision, we find that glaucomatous damage causes a widespread loss of disparity sensitivity across both foveal and peripheral regions. Despite these losses, cortical integration mechanisms appear to be well preserved, suggesting that patients with glaucoma make the best possible use of their remaining binocular function.
Collapse
Affiliation(s)
- Guido Maiello
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - MiYoung Kwon
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
26
|
Fabius JH, Fracasso A, Deodato M, Melcher D, Van der Stigchel S. Bilateral increase in MEG planar gradients prior to saccade onset. Sci Rep 2023; 13:5830. [PMID: 37037892 PMCID: PMC10086038 DOI: 10.1038/s41598-023-32980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Every time we move our eyes, the retinal locations of objects change. To distinguish the changes caused by eye movements from actual external motion of the objects, the visual system is thought to anticipate the consequences of eye movements (saccades). Single neuron recordings have indeed demonstrated changes in receptive fields before saccade onset. Although some EEG studies with human participants have also demonstrated a pre-saccadic increased potential over the hemisphere that will process a stimulus after a saccade, results have been mixed. Here, we used magnetoencephalography to investigate the timing and lateralization of visually evoked planar gradients before saccade onset. We modelled the gradients from trials with both a saccade and a stimulus as the linear combination of the gradients from two conditions with either only a saccade or only a stimulus. We reasoned that any residual gradients in the condition with both a saccade and a stimulus must be uniquely linked to visually-evoked neural activity before a saccade. We observed a widespread increase in residual planar gradients. Interestingly, this increase was bilateral, showing activity both contralateral and ipsilateral to the stimulus, i.e. over the hemisphere that would process the stimulus after saccade offset. This pattern of results is consistent with predictive pre-saccadic changes involving both the current and the future receptive fields involved in processing an attended object, well before the start of the eye movement. The active, sensorimotor coupling of vision and the oculomotor system may underlie the seamless subjective experience of stable and continuous perception.
Collapse
Affiliation(s)
- Jasper H Fabius
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Van der Stigchel
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Wallerius KP, Bayan SL, Armstrong MF, Lebechi CA, Dey JK, Orbelo DM. Visual Interpretation of Vocal Fold Paralysis in Flexible Laryngoscopy Using Eye Tracking Technology. J Voice 2023:S0892-1997(23)00091-7. [PMID: 37005128 DOI: 10.1016/j.jvoice.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVES Interpretation of laryngoscopy is an important diagnostic skill in otolaryngology. There is, however, limited understanding of the specific visual strategies used while assessing flexible laryngoscopy video. Eye-tracking technology allows for objective study of eye movements during dynamic tasks. The purpose of the present study was to explore visual gaze strategies during laryngoscopy interpretation of unilateral vocal fold paralysis (UVFP) across clinician experience from novice to expert. METHODS Thirty individuals were shown five flexible laryngoscopy videos, each 10 seconds long. After viewing each video, participants reported their impressions of "left vocal fold paralysis," "right vocal fold paralysis," or "no vocal fold paralysis." Eye tracking data were collected and analyzed for duration of fixation and number of fixations on select areas of interest (AOI). Diagnostic accuracy and visual gaze patterns were compared between novice, experienced, and expert groups. RESULTS Diagnostic accuracy among learners in the novice group was significantly lower than those in the more experienced groups (P = 0.04). All groups demonstrated similar visual gaze patterns when viewing the video with normal bilateral vocal fold mobility, spending the greatest percentage of time viewing the trachea. There were differences among groups when viewing the videos of left or right VFP, but the trachea was always in the top three structures for greatest fixation duration and highest number of fixations. CONCLUSIONS Eye-tracking is a novel tool in the setting of laryngoscopy interpretation. With further study it has the potential to be useful for the training of otolaryngology learners to improve diagnostic skills.
Collapse
Affiliation(s)
- Katherine P Wallerius
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Semirra L Bayan
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Michael F Armstrong
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Chiamaka A Lebechi
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jacob K Dey
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Diana M Orbelo
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
28
|
Oletto CM, Contemori G, Bertamini M, Battaglini L. The Role of Foveal Cortex in Discriminating Peripheral Stimuli: The Sketchpad Hypothesis. NEUROSCI 2023; 4:9-17. [PMID: 39484295 PMCID: PMC11523757 DOI: 10.3390/neurosci4010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 11/03/2024] Open
Abstract
Foveal (central) and peripheral vision are strongly interconnected to provide an integrated experience of the world around us. Recently, it has been suggested that there is a feedback mechanism that links foveal and peripheral vision. This peripheral-to-foveal feedback differs from other feedback mechanisms in that during visual processing a novel representation of a stimulus is formed in a different cortical region than that of the feedforward representation. The functional role of foveal feedback is not yet completely understood, but some evidence from neuroimaging studies suggests a link with peripheral shape processing. Behavioural and transcranial magnetic stimulation studies show impairment in peripheral shape discrimination when the foveal retinotopic cortex is disrupted post stimulus presentation. This review aims to link these findings to the visual sketchpad hypothesis. According to this hypothesis, foveal retinotopic cortex stores task-relevant information to aid identification of peripherally presented objects. We discuss how the characteristics of foveal feedback support this hypothesis and rule out other possible explanations. We also discuss the possibility that the foveal feedback may be independent of the sensory modality of the stimulation.
Collapse
Affiliation(s)
| | | | | | - Luca Battaglini
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
29
|
Feng Y, Chen Y, Zhang J, Tian C, Ren R, Han T, Proctor RW. Human-centred design of next generation transportation infrastructure with connected and automated vehicles: a system-of-systems perspective. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2023. [DOI: 10.1080/1463922x.2023.2182003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Yiheng Feng
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
| | - Yunfeng Chen
- School of Construction Management Technology, Purdue University, West Lafayette, IN, USA
| | - Jiansong Zhang
- School of Construction Management Technology, Purdue University, West Lafayette, IN, USA
| | - Chi Tian
- School of Construction Management Technology, Purdue University, West Lafayette, IN, USA
| | - Ran Ren
- School of Construction Management Technology, Purdue University, West Lafayette, IN, USA
| | - Tianfang Han
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Robert W. Proctor
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
30
|
Moussaoui S, Pereira CF, Niemeier M. Working memory in action: Transsaccadic working memory deficits in the left visual field and after transcallosal remapping. Cortex 2023; 159:26-38. [PMID: 36608419 DOI: 10.1016/j.cortex.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/08/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Every waking second, we make three saccadic eye movements that move our retinal images. Thus, to attain a coherent image of the world we need to remember visuo-spatial information across saccades. But transsaccadic working memory (tWM) remains poorly understood. Crucially, there has been a debate whether there are any differences in tWM for the left vs. right visual field and depending on saccade direction. However, previous studies have probed tWM with minimal loads whereas spatial differences might arise with higher loads. Here we employed a task that probed higher memory load for spatial information in the left and right visual field and with horizontal as well as vertical saccades. We captured several measures of precision and accuracy of performance that, when submitted to principal component analysis, produced two components. Component 1, mainly associated with precision, yielded greater error for the left than the right visual field. Component 2 was associated with performance accuracy and unexpectedly produced a disadvantage after rightward saccades. Both components showed that performance was worse when rightward or leftward saccades afforded a shift of memory representations between visual fields compared to remapping within the same field. Our study offers several novel findings. It is the first to show that tWM involves at least two components likely reflecting working memory capacity and strategic aspects of working memory, respectively. Reduced capacity for the left, rather than the right visual field is consistent with how the left and right visual fields are known to be represented in the two hemispheres. Remapping difficulties between visual fields is consistent with the limited information transfer across the corpus callosum. Finally, the impact of rightward saccades on working memory might be due to greater interference of the accompanying shifts of attention. Our results highlight the dynamic nature of transsaccadic working memory.
Collapse
Affiliation(s)
- Simar Moussaoui
- Department of Psychology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Christina F Pereira
- Department of Psychology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Matthias Niemeier
- Department of Psychology, University of Toronto at Scarborough, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada; Vision Science to Applications (VISTA) Program, York University, Toronto, ON, Canada.
| |
Collapse
|
31
|
Men H, Altin A, Schütz AC. Underestimation of the number of hidden objects. J Vis 2023; 23:1. [PMID: 36723930 PMCID: PMC9904329 DOI: 10.1167/jov.23.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The perceptual representation of our environment does not only involve what we actually can see, but also inferences about what is hidden from our sight. For example, in amodal completion, simple contours or surfaces are filled-in behind occluding objects allowing for a complete representation. This is important for many everyday tasks, such as visual search, foraging, and object handling. Although there is support for completion of simple patterns from behavioral and neurophysiological studies, it is unclear if these mechanisms extend to complex, irregular patterns. Here, we show that the number of hidden objects on partially occluded surfaces is underestimated. Observers did not consider accurately the number of visible objects and the proportion of occlusion to infer the number of hidden objects, although these quantities were perceived accurately and reliably. However, visible objects were not simply ignored: estimations of hidden objects increased when the visible objects formed a line across the occluder and decreased when the visible objects formed a line outside of the occluder. Confidence ratings for numerosity estimation were similar for fully visible and partially occluded surfaces. These results suggest that perceptual inferences about what is hidden in our environment can be very inaccurate und underestimate the complexity of the environment.
Collapse
Affiliation(s)
- Hui Men
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,
| | - Anna Altin
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,
| | - Alexander C. Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany,Center for Mind, Brain and Behaviour, Philipps-Universität Marburg, Marburg, Germany,https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| |
Collapse
|
32
|
Osterbrink C, Herwig A. What determines location specificity or generalization of transsaccadic learning? J Vis 2023; 23:8. [PMID: 36648417 PMCID: PMC9851281 DOI: 10.1167/jov.23.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Humans incorporate knowledge of transsaccadic associations into peripheral object perception. Several studies have shown that learning of new manipulated transsaccadic associations leads to a presaccadic perceptual bias. However, there was still disagreement whether this learning effect was location specific (Herwig, Weiß, & Schneider, 2018) or generalizes to new locations (Valsecchi & Gegenfurtner, 2016). The current study investigated under what conditions location generalization of transsaccadic learning occurs. In all experiments, there were acquisition phases in which the spatial frequency (Experiment 1) or the size (Experiment 2 and 3) of objects was changed transsaccadically. In the test phases, participants judged the respective feature of peripheral objects. These could appear either at the location where learning had taken place or at new locations. All experiments replicated the perceptual bias effect at the old learning locations. In two experiments, transsaccadic learning remained location specific even when learning occurred at multiple locations (Experiment 1) or with the feature of size (Experiment 2) for which a transfer had previously been shown. Only in Experiment 3 was a transfer of the learning effect to new locations observable. Here, learning only took place for one object and not for several objects that had to be discriminated. Therefore, one can conclude that, when specific associations are learned for multiple objects, transsaccadic learning stays location specific and when a transsaccadic association is learned for only one object it allows a generalization to other locations.
Collapse
Affiliation(s)
- Corinna Osterbrink
- Department of Psychology and Cluster of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany.,
| | - Arvid Herwig
- Department of Psychology, Bielefeld University, Bielefeld, Germany.,
| |
Collapse
|
33
|
Kuroki S. Anisotropic distortion in the perceived direction of motion on the arm. Sci Rep 2023; 13:69. [PMID: 36593256 PMCID: PMC9807636 DOI: 10.1038/s41598-022-27032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Skin covers the entire body, and its thickness and distribution of mechanoreceptors vary markedly across body parts. It has been shown that the brain is not able to fully compensate for such anisotropy, and as a result, the representational space of touch differs depending on which parts the stimulus is applied to. Here, by contrasting the hand and arm, we investigated the difference in perceived motion. Using a large-area braille display, we were able to present precisely controlled touchable motion stimuli with randomizing stimulus trajectories and varying the size. We found a new perceptual illusion in which the motion direction of stimuli perceived on the arm is rotated regionally, or even flipped. In particular, obliquely moving stimuli that move toward the distal radial are perceived as move toward the proximal radial, and stimuli that move toward the proximal ulnar are perceived as move toward the distal ulnar. This illusion was not observed on the palm, regardless of compensation for the stimulus size. Current study adds a clear example of how presenting the same motion stimuli to different body parts results in a different perception, emphasizing that the perceived tactile space is not uniform and needs to be examined in detail.
Collapse
Affiliation(s)
- Scinob Kuroki
- grid.419819.c0000 0001 2184 8682NTT Communication Science Laboratories, NTT Corporation, 3-1, Morinosato-Wakamiya, Atsugi, Kanagawa, 2430198 Japan
| |
Collapse
|
34
|
Humans trade off search costs and accuracy in a combined visual search and perceptual task. Atten Percept Psychophys 2023; 85:23-40. [PMID: 36451074 PMCID: PMC9816200 DOI: 10.3758/s13414-022-02600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/02/2022]
Abstract
To interact with one's environment, relevant objects have to be selected as targets for saccadic eye movements. Previous studies have demonstrated that factors such as visual saliency and reward influence saccade target selection, and that humans can dynamically trade off these factors to maximize expected value during visual search. However, expected value in everyday situations not only depends on saliency and reward, but also on the required time to find objects, and the likelihood of a successful object-interaction after search. Here we studied whether search costs and the accuracy to discriminate an object feature can be traded off to maximize expected value. We designed a combined visual search and perceptual discrimination task, where participants chose whether to search for an easy- or difficult-to-discriminate target in search displays populated by distractors that shared features with either the easy or the difficult target. Participants received a monetary reward for correct discriminations and were given limited time to complete as many trials as they could. We found that participants considered their discrimination performance and the search costs when choosing targets and, by this, maximized expected value. However, the accumulated reward was constrained by noise in both the choice of which target to search for, and which elements to fixate during search. We conclude that humans take into account the prospective search time and the likelihood of successful a object-interaction, when deciding what to search for. However, search performance is constrained by noise in decisions about what to search for and how to search for it.
Collapse
|
35
|
A proposed attention-based model for spatial memory formation and retrieval. Cogn Process 2022; 24:199-212. [PMID: 36576704 DOI: 10.1007/s10339-022-01121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Animals use sensory information and memory to build internal representations of space. It has been shown that such representations extend beyond the geometry of an environment and also encode rich sensory experiences usually referred to as context. In mammals, contextual inputs from sensory cortices appear to be converging on the hippocampus as a key area for spatial representations and memory. How metric and external sensory inputs (e.g., visual context) are combined into a coherent and stable place representation is not fully understood. Here, I review the evidence of attentional effects along the ventral visual pathway and in the medial temporal lobe and propose an attention-based model for the integration of visual context in spatial representations. I further suggest that attention-based retrieval of spatial memories supports a feedback mechanism that allows consolidation of old memories and new sensory experiences related to the same place, thereby contributing to the stability of spatial representations. The resulting model has the potential to generate new hypotheses to explain complex responses of spatial cells such as place cells in the hippocampus.
Collapse
|
36
|
Vice JE, Biles MK, Maniglia M, Visscher KM. Oculomotor changes following learned use of an eccentric retinal locus. Vision Res 2022; 201:108126. [PMID: 36162313 PMCID: PMC9840844 DOI: 10.1016/j.visres.2022.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023]
Abstract
People with bilateral central vision loss sometimes develop a new point of oculomotor reference called a preferred retinal locus (PRL) that is used for fixating and planning saccadic eye movements. How individuals develop and learn to effectively use a PRL is still debated; in particular, the time course of learning to plan saccades using a PRL and learning to stabilize peripheral fixation at the desired location. Here we address knowledge limitations through research describing how eye movements change as a person learns to adopt an eccentric retinal locus. Using a gaze-contingent, eye tracking-guided paradigm to simulate central vision loss, 40 participants developed a PRL by engaging in an oculomotor and visual recognition task. After 12 training sessions, significant improvements were observed in six eye movement metrics addressing different aspects involved in learning to use a PRL: first saccade landing dispersion, saccadic re-referencing, saccadic precision, saccadic latency, percentage of useful trials, and fixation stability. Importantly, our analyses allowed separate examination of the stability of target fixation separately from the dispersion and precision of the landing location of saccades. These measures explained 50% of the across-subject variance in accuracy. Fixation stability and saccadic precision showed a strong, positive correlation. Although there was no statistically significant difference in rate of learning, individuals did tend to learn saccadic precision faster than fixation stability. Saccadic precision was also more associated with accuracy than fixation stability for the behavioral task. This suggests effective intervention strategies in low vision should address both fixation stability and saccadic precision.
Collapse
Affiliation(s)
- Jason E Vice
- Vision Science Graduate Program, University of Alabama at Birmingham, United States
| | - Mandy K Biles
- Department of Psychology, University of Alabama at Birmingham, United States
| | - Marcello Maniglia
- Department of Psychology, University of California at Riverside, United States
| | - Kristina M Visscher
- Department of Neurobiology, University of Alabama at Birmingham, United States
| |
Collapse
|
37
|
Contemori G, Oletto CM, Cessa R, Marini E, Ronconi L, Battaglini L, Bertamini M. Investigating the role of the foveal cortex in peripheral object discrimination. Sci Rep 2022; 12:19952. [PMID: 36402850 PMCID: PMC9675757 DOI: 10.1038/s41598-022-23720-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral object discrimination is hindered by a central dynamic mask presented between 150 and 300 ms after stimulus onset. The mask is thought to interfere with task-relevant feedback coming from higher visual areas to the foveal cortex in V1. Fan et al. (2016) supported this hypothesis by showing that the effect of mask can be further delayed if the task requires mental manipulation of the peripheral target. The main purpose of this study was to better characterize the temporal dynamics of foveal feedback. Specifically, in two experiments we have shown that (1) the effect of foveal noise mask is sufficiently robust to be replicated in an online data collection (2) in addition to a change in sensitivity the mask affects also the criterion, which becomes more conservative; (3) the expected dipper function for sensitivity approximates a quartic with a global minimum at 94 ms, while the best fit for criterion is a quintic with a global maximum at 174 ms; (4) the power spectrum analysis of perceptual oscillations in sensitivity data shows a cyclic effect of mask at 3 and 12 Hz. Overall, our results show that foveal noise affects sensitivity in a cyclic manner, with a global dip emerging earlier than previously found. The noise also affects the response bias, even though with a different temporal profile. We, therefore, suggest that foveal noise acts on two distinct feedback mechanisms, a faster perceptual feedback followed by a slower cognitive feedback.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, 35131, Padova, Italy
| | | | - Roberta Cessa
- Department of General Psychology, University of Padova, 35131, Padova, Italy
| | - Elena Marini
- Department of General Psychology, University of Padova, 35131, Padova, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luca Battaglini
- Department of General Psychology, University of Padova, 35131, Padova, Italy
| | - Marco Bertamini
- Department of Psychology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
38
|
Pramod RT, Katti H, Arun SP. Human peripheral blur is optimal for object recognition. Vision Res 2022; 200:108083. [PMID: 35830763 PMCID: PMC7614542 DOI: 10.1016/j.visres.2022.108083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 01/25/2023]
Abstract
Our vision is sharpest at the centre of our gaze and becomes progressively blurry into the periphery. It is widely believed that this high foveal resolution evolved at the expense of peripheral acuity. But what if this sampling scheme is actually optimal for object recognition? To test this hypothesis, we trained deep neural networks on "foveated" images mimicking how our eyes sample the visual field: objects (wherever they were in the image) were sampled at high resolution, and their surroundings were sampled with decreasing resolution away from the objects. Remarkably, networks trained with the known human peripheral blur profile yielded the best performance compared to networks trained on shallower and steeper blur profiles, and compared to baseline state-of-the-art networks trained on full resolution images. This improvement, although slight, is noteworthy since the state-of-the-art networks are already trained to saturation on these datasets. When we tested human subjects on object categorization, their accuracy deteriorated only for steeper blur profiles, which is expected since they already have peripheral blur in their eyes. Taken together, our results suggest that blurry peripheral vision may have evolved to optimize object recognition rather than merely due to wiring constraints.
Collapse
Affiliation(s)
- R T Pramod
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Harish Katti
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India.
| | - S P Arun
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
39
|
Kroell LM, Rolfs M. Foveal vision anticipates defining features of eye movement targets. eLife 2022; 11:e78106. [PMID: 36082940 PMCID: PMC9581528 DOI: 10.7554/elife.78106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/03/2022] [Indexed: 11/13/2022] Open
Abstract
High-acuity foveal processing is vital for human vision. Nonetheless, little is known about how the preparation of large-scale rapid eye movements (saccades) affects visual sensitivity in the center of gaze. Based on findings from passive fixation tasks, we hypothesized that during saccade preparation, foveal processing anticipates soon-to-be fixated visual features. Using a dynamic large-field noise paradigm, we indeed demonstrate that defining features of an eye movement target are enhanced in the pre-saccadic center of gaze. Enhancement manifested as higher Hit Rates for foveal probes with target-congruent orientation and a sensitization to incidental, target-like orientation information in foveally presented noise. Enhancement was spatially confined to the center of gaze and its immediate vicinity, even after parafoveal task performance had been raised to a foveal level. Moreover, foveal enhancement during saccade preparation was more pronounced and developed faster than enhancement during passive fixation. Based on these findings, we suggest a crucial contribution of foveal processing to trans-saccadic visual continuity: Foveal processing of saccade targets commences before the movement is executed and thereby enables a seamless transition once the center of gaze reaches the target.
Collapse
Affiliation(s)
- Lisa M Kroell
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt-Universität zu BerlinBerlinGermany
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt-Universität zu BerlinBerlinGermany
- Exzellenzcluster Science of Intelligence, Technische Universität BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
| |
Collapse
|
40
|
Anderson EM, Seemiller ES, Smith LB. Scene saliencies in egocentric vision and their creation by parents and infants. Cognition 2022; 229:105256. [PMID: 35988453 DOI: 10.1016/j.cognition.2022.105256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
Across the lifespan, humans are biased to look first at what is easy to see, with a handful of well-documented visual saliences shaping our attention (e.g., Itti & Koch, 2001). These attentional biases may emerge from the contexts in which moment-tomoment attention occurs, where perceivers and their social partners actively shape bottom-up saliences, moving their bodies and objects to make targets of interest more salient. The goal of the present study was to determine the bottom-up saliences present in infant egocentric images and to provide evidence on the role that infants and their mature social partners play in highlighting targets of interest via these saliences. We examined 968 unique scenes in which an object had purposefully been placed in the infant's egocentric view, drawn from videos created by one-year-old infants wearing a head camera during toy-play with a parent. To understand which saliences mattered in these scenes, we conducted a visual search task, asking participants (n = 156) to find objects in the egocentric images. To connect this to the behaviors of perceivers, we then characterized the saliences of objects placed by infants or parents compared to objects that were otherwise present in the scenes. Our results show that body-centric properties, such as increases in the centering and visual size of the object, as well as decreases in the number of competing objects immediately surrounding it, both predicted faster search time and distinguished placed and unplaced objects. The present results suggest that the bottom-up saliences that can be readily controlled by perceivers and their social partners may most strongly impact our attention. This finding has implications for the functional role of saliences in human vision, their origin, the social structure of perceptual environments, and how the relation between bottom-up and top-down control of attention in these environments may support infant learning.
Collapse
Affiliation(s)
| | | | - Linda B Smith
- Psychological and Brain Sciences, Indiana University, USA
| |
Collapse
|
41
|
|
42
|
Abstract
Peripheral vision is fundamental for many real-world tasks, including walking, driving, and aviation. Nonetheless, there has been no effort to connect these applied literatures to research in peripheral vision in basic vision science or sports science. To close this gap, we analyzed 60 relevant papers, chosen according to objective criteria. Applied research, with its real-world time constraints, complex stimuli, and performance measures, reveals new functions of peripheral vision. Peripheral vision is used to monitor the environment (e.g., road edges, traffic signs, or malfunctioning lights), in ways that differ from basic research. Applied research uncovers new actions that one can perform solely with peripheral vision (e.g., steering a car, climbing stairs). An important use of peripheral vision is that it helps compare the position of one’s body/vehicle to objects in the world. In addition, many real-world tasks require multitasking, and the fact that peripheral vision provides degraded but useful information means that tradeoffs are common in deciding whether to use peripheral vision or move one’s eyes. These tradeoffs are strongly influenced by factors like expertise, age, distraction, emotional state, task importance, and what the observer already knows. These tradeoffs make it hard to infer from eye movements alone what information is gathered from peripheral vision and what tasks we can do without it. Finally, we recommend three ways in which basic, sport, and applied science can benefit each other’s methodology, furthering our understanding of peripheral vision more generally.
Collapse
|
43
|
Radhakrishnan R, Dronamraju VR, Leung M, Gruesen A, Solanki AK, Walterhouse S, Roehrich H, Song G, da Costa Monsanto R, Cureoglu S, Martin R, Kondkar AA, van Kuijk FJ, Montezuma SR, Knöelker HJ, Hufnagel RB, Lobo GP. The role of motor proteins in photoreceptor protein transport and visual function. Ophthalmic Genet 2022; 43:285-300. [PMID: 35470760 DOI: 10.1080/13816810.2022.2062391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, wherein the perception of vision is initiated when these neurons respond to photons in the light stimuli. The photoreceptor cell is structurally studied as outer segments (OS) and inner segments (IS) where proper protein sorting, localization, and compartmentalization are critical for phototransduction, visual function, and survival. In human retinal diseases, improper protein transport to the OS or mislocalization of proteins to the IS and other cellular compartments could lead to impaired visual responses and photoreceptor cell degeneration that ultimately cause loss of visual function. RESULTS Therefore, studying and identifying mechanisms involved in facilitating and maintaining proper protein transport in photoreceptor cells would help our understanding of pathologies involving retinal cell degeneration in inherited retinal dystrophies, age-related macular degeneration, and Usher Syndrome. CONCLUSIONS Our mini-review will discuss mechanisms of protein transport within photoreceptors and introduce a novel role for an unconventional motor protein, MYO1C, in actin-based motor transport of the visual chromophore Rhodopsin to the OS, in support of phototransduction and visual function.
Collapse
Affiliation(s)
- Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Venkateshwara R Dronamraju
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthias Leung
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Gruesen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashish K Solanki
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Stephen Walterhouse
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Grace Song
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rafael da Costa Monsanto
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebahattin Cureoglu
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Altaf A Kondkar
- Department of Ophthalmology.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Frederik J van Kuijk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Glenn P Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA.,Department of Ophthalmology, Medical University of South Carolina, South Carolina, USA
| |
Collapse
|
44
|
Onagawa R, Mukai K, Kudo K. Different planning policies for the initial movement velocity depending on whether the known uncertainty is in the cursor or in the target: Motor planning in situations where two potential movement distances exist. PLoS One 2022; 17:e0265943. [PMID: 35353863 PMCID: PMC8967013 DOI: 10.1371/journal.pone.0265943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Abstract
During goal-directed behaviors, individuals can be required to start a movement before deciding on the final goal. Previous studies have focused on the initial movement direction in situations involving multiple targets in different directions from the starting position and have shown that the movement is initiated in the average direction among the target directions. However, the previous studies only included situations with targets at equivalent distances, and the characteristics of motor planning in situations with multiple movement possibilities over different potential distances are unclear. In such situations, movement velocity is another important control variable. Furthermore, while previous studies examined situations with an uncertain motor target position, uncertainty can also exist in the effector position (e.g., body or tool locations). Therefore, we examined (1) whether the average output is confirmed in the initial movement velocity during execution in situations involving two potential movements with different distances. In addition, we examined (2) whether planning of the movement velocity can differ depending on the presence of uncertainty in the cursor or the target. In the main conditions, the participants were required to start a reaching movement with two potential movement distances; in the two-cursor condition, two cursors were presented before the start of the trial, and in the two-target condition, two targets were presented. As a control condition, a distance condition corresponding to each main condition was also performed. In the control condition, the initial movement velocity varied linearly with distance. Then, we tested whether the initial movement velocity in situations with two potential movement distances would follow the averaging output of the corresponding control condition. The results revealed that while the initial movement velocity in the two-target condition was slower than the averaging output, that in the two-cursor condition approached the averaging output. These results suggest that the velocity profile of the goal-directed movement is not simply averaged in a situation where two potential targets exist, and that there is a difference in the planning policy of the initial movement depending on whether the known uncertainty is for the movement goal or the effector.
Collapse
Affiliation(s)
- Ryoji Onagawa
- Laboratory of Sports Sciences, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- * E-mail: (RO); (KK)
| | - Kae Mukai
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Kazutoshi Kudo
- Laboratory of Sports Sciences, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (RO); (KK)
| |
Collapse
|
45
|
The effect of the degree and location of danger in traffic hazard perception: an ERP study. Neuroreport 2022; 33:215-220. [PMID: 35287145 DOI: 10.1097/wnr.0000000000001770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The aim of this study is to explore the influence of the degree and location of the danger of traffic hazards on the neural reaction process. METHODS 26 automobile drivers were asked to look at the pictures and press buttons on the pictures unrelated to traffic. Electroencephalography responses to traffic-related images were recorded and analyzed. RESULTS It was found that danger in the central visual region induced a larger amplitude of the N100 component than in the peripheral visual region and the trend of different hazard levels was consistent. The danger in the central visual area also induced a larger amplitude of the P200 component than in the peripheral vision area. In addition, when the danger appeared in the central visual area (0°), the P200 amplitude induced by the low-hazard situation was smaller than that of the high-hazard situation. When the danger appeared in the peripheral visual area (7°), the P200 amplitude induced by the low-hazard situation was larger than that of the high-hazard situation. Finally, the presence of danger evoked a larger amplitude of the P300 component in the peripheral visual area than in the central visual area and the P300 amplitude was larger in the low-hazard situation than in the high-hazard situation. CONCLUSIONS The results suggest that hazards are more easily processed in the central visual area during the early stage of automatic perception. In the later hazard evaluation stage, the hazard in the central visual area and the high-hazard situation were more easily processed.
Collapse
|
46
|
Pedziwiatr MA, Kümmerer M, Wallis TSA, Bethge M, Teufel C. Semantic object-scene inconsistencies affect eye movements, but not in the way predicted by contextualized meaning maps. J Vis 2022; 22:9. [PMID: 35171232 PMCID: PMC8857618 DOI: 10.1167/jov.22.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Semantic information is important in eye movement control. An important semantic influence on gaze guidance relates to object-scene relationships: objects that are semantically inconsistent with the scene attract more fixations than consistent objects. One interpretation of this effect is that fixations are driven toward inconsistent objects because they are semantically more informative. We tested this explanation using contextualized meaning maps, a method that is based on crowd-sourced ratings to quantify the spatial distribution of context-sensitive “meaning” in images. In Experiment 1, we compared gaze data and contextualized meaning maps for images, in which objects-scene consistency was manipulated. Observers fixated more on inconsistent versus consistent objects. However, contextualized meaning maps did not assign higher meaning to image regions that contained semantic inconsistencies. In Experiment 2, a large number of raters evaluated image-regions, which were deliberately selected for their content and expected meaningfulness. The results suggest that the same scene locations were experienced as slightly less meaningful when they contained inconsistent compared to consistent objects. In summary, we demonstrated that — in the context of our rating task — semantically inconsistent objects are experienced as less meaningful than their consistent counterparts and that contextualized meaning maps do not capture prototypical influences of image meaning on gaze guidance.
Collapse
Affiliation(s)
- Marek A Pedziwiatr
- Cardiff University, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, UK.,Queen Mary University of London, Department of Biological and Experimental Psychology, London, UK.,
| | | | - Thomas S A Wallis
- Technical University of Darmstadt, Institute for Psychology and Centre for Cognitive Science, Darmstadt, Germany.,
| | | | - Christoph Teufel
- Cardiff University, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, UK.,
| |
Collapse
|
47
|
Complete evaluation of retinal function in Major Depressive Disorder: From central slowdown to hyperactive periphery. J Affect Disord 2021; 295:453-462. [PMID: 34507226 DOI: 10.1016/j.jad.2021.08.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Developing easy-to-access biomarkers is crucial in Major Depressive Disorder. The retina has already been suggested as relevant. However, there is a need for a global and local assessment of whole retinal function using a reproducible, standardized protocol allowing for comparison across studies. Our aim is to assess whole retinal function in patients with actual unipolar Major Depressive Episode (MDE) using pattern, flash and multifocal electroretinogram (ERG) according to the International Society for Clinical Electrophysiology of Vision standardized protocols. METHODS We assessed retinal function in 14 males and females with MDE, diagnosed based on the Diagnostic and Statistical Manual of Mental Disorders, and in age- and sex-matched healthy controls. RESULTS Comparing the patients with the controls, we observed the following using multifocal ERG: a significant increase in N1 peak time in ring 3 and a decrease in P1 amplitude in ring 2; using pattern ERG: a significant increase in P50 peak time; using flash ERG: a decrease in a- and b-wave peak time and an increase in the b-wave amplitude in dark-adapted 3.0, a decrease in a- and b-wave peak time and an increase in both wave amplitudes in light-adapted 3.0, and a decrease in the b-wave peak time in light-adapted flicker. LIMITATIONS Sample size. Contribution of pharmacological treatments to the outcomes cannot be formally excluded. CONCLUSIONS Patients with MDE exhibit delayed signaling in the central retina and hyperreactivity to light in the periphery. Central retinal function may be a marker of psychomotor retardation and cognitive impairment in MDE.
Collapse
|
48
|
Li MS, Abbatecola C, Petro LS, Muckli L. Numerosity Perception in Peripheral Vision. Front Hum Neurosci 2021; 15:750417. [PMID: 34803635 PMCID: PMC8597708 DOI: 10.3389/fnhum.2021.750417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral vision has different functional priorities for mammals than foveal vision. One of its roles is to monitor the environment while central vision is focused on the current task. Becoming distracted too easily would be counterproductive in this perspective, so the brain should react to behaviourally relevant changes. Gist processing is good for this purpose, and it is therefore not surprising that evidence from both functional brain imaging and behavioural research suggests a tendency to generalize and blend information in the periphery. This may be caused by the balance of perceptual influence in the periphery between bottom-up (i.e., sensory information) and top-down (i.e., prior or contextual information) processing channels. Here, we investigated this interaction behaviourally using a peripheral numerosity discrimination task with top-down and bottom-up manipulations. Participants compared numerosity between the left and right peripheries of a screen. Each periphery was divided into a centre and a surrounding area, only one of which was a task relevant target region. Our top-down task modulation was the instruction which area to attend - centre or surround. We varied the signal strength by altering the stimuli durations i.e., the amount of information presented/processed (as a combined bottom-up and recurrent top-down feedback factor). We found that numerosity perceived in target regions was affected by contextual information in neighbouring (but irrelevant) areas. This effect appeared as soon as stimulus duration allowed the task to be reliably performed and persisted even at the longest duration (1 s). We compared the pattern of results with an ideal-observer model and found a qualitative difference in the way centre and surround areas interacted perceptually in the periphery. When participants reported on the central area, the irrelevant surround would affect the response as a weighted combination - consistent with the idea of a receptive field focused in the target area to which irrelevant surround stimulation leaks in. When participants report on surround, we can best describe the response with a model in which occasionally the attention switches from task relevant surround to task irrelevant centre - consistent with a selection model of two competing streams of information. Overall our results show that the influence of spatial context in the periphery is mandatory but task dependent.
Collapse
Affiliation(s)
- Min Susan Li
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Clement Abbatecola
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Lucy S Petro
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Lars Muckli
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
49
|
Hübner C, Schütz AC. Rapid visual adaptation persists across saccades. iScience 2021; 24:102986. [PMID: 34485868 PMCID: PMC8403744 DOI: 10.1016/j.isci.2021.102986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/28/2021] [Accepted: 07/09/2021] [Indexed: 11/26/2022] Open
Abstract
Neurons in the visual cortex quickly adapt to constant input, which should lead to perceptual fading within few tens of milliseconds. However, perceptual fading is rarely observed in everyday perception, possibly because eye movements refresh retinal input. Recently, it has been suggested that amplitudes of large saccadic eye movements are scaled to maximally decorrelate presaccadic and postsaccadic inputs and thus to annul perceptual fading. However, this argument builds on the assumption that adaptation within naturally brief fixation durations is strong enough to survive any visually disruptive saccade and affect perception. We tested this assumption by measuring the effect of luminance adaptation on postsaccadic contrast perception. We found that postsaccadic contrast perception was affected by presaccadic luminance adaptation during brief periods of fixation. This adaptation effect emerges within 100 milliseconds and persists over seconds. These results indicate that adaptation during natural fixation periods can affect perception even after visually disruptive saccades.
Collapse
Affiliation(s)
- Carolin Hübner
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, 35037 Marburg, Germany.,Institut für Psychologie, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, 35037 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35037 Marburg, Germany
| |
Collapse
|
50
|
Fusz K, Kovács-Öller T, Kóbor P, Szabó-Meleg E, Völgyi B, Buzás P, Telkes I. Regional Variation of Gap Junctional Connections in the Mammalian Inner Retina. Cells 2021; 10:2396. [PMID: 34572046 PMCID: PMC8466939 DOI: 10.3390/cells10092396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
The retinas of many species show regional specialisations that are evident in the differences in the processing of visual input from different parts of the visual field. Regional specialisation is thought to reflect an adaptation to the natural visual environment, optical constraints, and lifestyle of the species. Yet, little is known about regional differences in synaptic circuitry. Here, we were interested in the topographical distribution of connexin-36 (Cx36), the major constituent of electrical synapses in the retina. We compared the retinas of mice, rats, and cats to include species with different patterns of regional specialisations in the analysis. First, we used the density of Prox1-immunoreactive amacrine cells as a marker of any regional specialisation, with higher cell density signifying more central regions. Double-labelling experiments showed that Prox1 is expressed in AII amacrine cells in all three species. Interestingly, large Cx36 plaques were attached to about 8-10% of Prox1-positive amacrine cell somata, suggesting the strong electrical coupling of pairs or small clusters of cell bodies. When analysing the regional changes in the volumetric density of Cx36-immunoreactive plaques, we found a tight correlation with the density of Prox1-expressing amacrine cells in the ON, but not in the OFF sublamina in all three species. The results suggest that the relative contribution of electrical synapses to the ON- and OFF-pathways of the retina changes with retinal location, which may contribute to functional ON/OFF asymmetries across the visual field.
Collapse
Affiliation(s)
- Katalin Fusz
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, 7624 Pécs, Hungary
| | - Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Edina Szabó-Meleg
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Institute of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, 7624 Pécs, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|